1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
#include <ggml-alloc.h>
#include <ggml-backend-impl.h>
#include <ggml-cpp.h>
#include <ggml-impl.h>
#include <ggml.h>
#include <algorithm>
#include <exception>
#include <memory>
#include <vector>
//
// dummy backend with configurable max_buffer_size, tracks allocations
uint8_t * const alloc_base = (uint8_t *) 16;
struct dummy_backend_context {
size_t max_buffer_size = 64;
size_t alignment = 8;
ggml_backend_buffer_i buffer_interface;
std::vector<ggml_backend_buffer_t> buffers;
size_t allocated_total() const {
size_t n = 0;
for (ggml_backend_buffer_t buf : buffers) {
n += ggml_backend_buffer_get_size(buf);
}
return n;
}
};
// ggml_backend_buffer_type interface
static const char * dummy_backend_buffer_type_get_name(ggml_backend_buffer_type_t) {
return "dummy_buffer_type";
}
static ggml_backend_buffer_t dummy_backend_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
dummy_backend_context * ctx = (dummy_backend_context *) buft->context;
ggml_backend_buffer_t & buffer = ctx->buffers.emplace_back();
buffer = ggml_backend_buffer_init(buft, ctx->buffer_interface, ctx, size);
return buffer;
}
static size_t dummy_backend_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
dummy_backend_context * ctx = (dummy_backend_context *) buft->context;
return ctx->alignment;
}
static size_t dummy_backend_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
dummy_backend_context * ctx = (dummy_backend_context *) buft->context;
return ctx->max_buffer_size;
}
static bool dummy_backend_buffer_type_is_host(ggml_backend_buffer_type_t) {
return true;
}
// ggml_backend_buffer interface
static void dummy_backend_buffer_free_buffer(ggml_backend_buffer_t buffer) {
dummy_backend_context * ctx = (dummy_backend_context *) buffer->context;
auto i = std::find(ctx->buffers.begin(), ctx->buffers.end(), buffer);
GGML_ASSERT(i != ctx->buffers.end());
ctx->buffers.erase(i);
}
static void * dummy_backend_buffer_get_base(ggml_backend_buffer_t) {
return alloc_base;
}
static ggml_status dummy_backend_buffer_init_tensor(ggml_backend_buffer_t, ggml_tensor *) {
return GGML_STATUS_SUCCESS;
}
static void dummy_backend_buffer_memset_tensor(ggml_backend_buffer_t, ggml_tensor *, uint8_t, size_t, size_t) {}
static void dummy_backend_buffer_set_tensor(ggml_backend_buffer_t, ggml_tensor *, const void *, size_t, size_t) {}
static void dummy_backend_buffer_get_tensor(ggml_backend_buffer_t, const ggml_tensor *, void *, size_t, size_t) {}
static void dummy_backend_buffer_clear(ggml_backend_buffer_t, uint8_t) {}
// dummy_backend (not really a full backend, just provides what gallocr needs)
struct dummy_backend {
std::unique_ptr<dummy_backend_context> context;
ggml_backend_buffer_type buffer_type;
};
static dummy_backend dummy_backend_init(size_t max_buffer_size, size_t alignment = 8) {
dummy_backend b{};
b.context = std::make_unique<dummy_backend_context>();
b.context->alignment = alignment;
b.context->max_buffer_size = max_buffer_size;
b.context->buffer_interface.free_buffer = dummy_backend_buffer_free_buffer;
b.context->buffer_interface.get_base = dummy_backend_buffer_get_base;
b.context->buffer_interface.init_tensor = dummy_backend_buffer_init_tensor;
b.context->buffer_interface.memset_tensor = dummy_backend_buffer_memset_tensor;
b.context->buffer_interface.set_tensor = dummy_backend_buffer_set_tensor;
b.context->buffer_interface.get_tensor = dummy_backend_buffer_get_tensor;
b.context->buffer_interface.clear = dummy_backend_buffer_clear;
b.buffer_type.context = b.context.get();
b.buffer_type.iface.get_name = dummy_backend_buffer_type_get_name;
b.buffer_type.iface.alloc_buffer = dummy_backend_buffer_type_alloc_buffer;
b.buffer_type.iface.get_alignment = dummy_backend_buffer_type_get_alignment;
b.buffer_type.iface.get_max_size = dummy_backend_buffer_type_get_max_size;
b.buffer_type.iface.is_host = dummy_backend_buffer_type_is_host;
return b;
}
//
// test utilities
struct test_context_with_graph {
ggml_context * ctx;
ggml_cgraph * graph;
ggml_context_ptr ctx_ptr;
};
static test_context_with_graph make_context() {
ggml_init_params params{};
params.mem_size = 48 * ggml_tensor_overhead() + ggml_graph_overhead();
params.no_alloc = true;
ggml_context * ctx = ggml_init(params);
ggml_context_ptr ctx_ptr = ggml_context_ptr(ctx);
ggml_cgraph * graph = ggml_new_graph(ctx);
return { ctx, graph, std::move(ctx_ptr) };
}
static ggml_tensor * make_input_1d(ggml_context * ctx, int64_t n_elements) {
ggml_tensor * t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
ggml_set_input(t);
return t;
}
static ggml_tensor * make_input_with_size(ggml_context * ctx, size_t size_bytes) {
GGML_ASSERT(size_bytes % 4 == 0);
return make_input_1d(ctx, size_bytes / 4);
}
static void assign_names(ggml_context * ctx, const char * prefix = "x") {
int i = 0;
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t; t = ggml_get_next_tensor(ctx, t)) {
ggml_format_name(t, "%s%d", prefix, i++);
}
}
static int get_leaf_id(ggml_cgraph * graph, const char * tensor_name) {
for (int i = 0; i < graph->n_leafs; ++i) {
if (strncmp(graph->leafs[i]->name, tensor_name, GGML_MAX_NAME) == 0) {
return i;
}
}
fprintf(stderr, "leaf not found: %s\n", tensor_name);
return -1;
}
static int get_node_id(ggml_cgraph * graph, const char * tensor_name) {
for (int i = 0; i < graph->n_nodes; ++i) {
if (strncmp(graph->nodes[i]->name, tensor_name, GGML_MAX_NAME) == 0) {
return i;
}
}
fprintf(stderr, "node not found: %s", tensor_name);
return -1;
}
static ggml_gallocr_ptr allocate_graph(ggml_cgraph * graph, ggml_tensor * out, ggml_backend_buffer_type_t buft) {
ggml_set_output(out);
ggml_build_forward_expand(graph, out);
ggml_gallocr_ptr galloc = ggml_gallocr_ptr(ggml_gallocr_new(buft));
bool result = ggml_gallocr_alloc_graph(galloc.get(), graph);
GGML_ASSERT(result);
return galloc;
}
//
// correctness checks for result allocations
static void check_all_allocated(ggml_cgraph * graph) {
for (int i = 0; i < ggml_graph_n_nodes(graph); ++i) {
ggml_tensor * t = ggml_graph_node(graph, i);
GGML_ASSERT(t->buffer != nullptr);
GGML_ASSERT(t->data != nullptr);
}
}
static void check_max_size(ggml_context * ctx) {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t; t = ggml_get_next_tensor(ctx, t)) {
auto buft = ggml_backend_buffer_get_type(t->buffer);
size_t max_size = ggml_backend_buft_get_max_size(buft);
size_t offset = (char *) t->data - (char *) ggml_backend_buffer_get_base(t->buffer);
GGML_ASSERT(t->data >= ggml_backend_buffer_get_base(t->buffer));
GGML_ASSERT((size_t) offset + ggml_nbytes(t) <= max_size);
}
}
static bool can_reuse_memory(ggml_cgraph * graph, int current_i, ggml_tensor * current, ggml_tensor * other) {
if (other->flags & GGML_TENSOR_FLAG_OUTPUT) {
return false;
}
// Check if `other` is still "alive", ie. an input to any node after the `current` op
for (int i = current_i; i < ggml_graph_n_nodes(graph); ++i) {
ggml_tensor * t = ggml_graph_node(graph, i);
for (int s = 0; s < GGML_MAX_SRC; s++) {
if (t == current && ggml_op_can_inplace(t->op)) {
continue;
}
if (t->src[s] == other) {
return false;
}
if (t->src[s] && t->src[s]->view_src == other) {
return false;
}
}
}
return true;
}
static bool memory_overlap(ggml_tensor * a, ggml_tensor * b) {
if (a->buffer != b->buffer) {
return false;
}
int64_t a0 = (int64_t) a->data;
int64_t a1 = a0 + ggml_nbytes(a);
int64_t b0 = (int64_t) b->data;
int64_t b1 = b0 + ggml_nbytes(b);
return a1 > b0 && b1 > a0;
}
static ggml_tensor * get_view_source(ggml_tensor * t) {
while (t->view_src) {
t = t->view_src;
}
return t;
}
static void check_no_overlap(ggml_cgraph * graph) {
for (int i = 0; i < ggml_graph_n_nodes(graph); ++i) {
for (int j = 0; j < i; ++j) {
ggml_tensor * t = ggml_graph_node(graph, i);
ggml_tensor * o = ggml_graph_node(graph, j);
GGML_ASSERT(t != o);
if (get_view_source(t) == get_view_source(o)) {
continue;
}
if (memory_overlap(t, o)) {
GGML_ASSERT(can_reuse_memory(graph, i, t, o));
}
}
}
}
//
// test cases
// Scenario where the first backend buffer is completely exhausted and there are further
// tensors which require a second buffer
static void test_max_size_too_many_tensors() {
dummy_backend backend = dummy_backend_init(16);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[7];
x[0] = make_input_with_size(ctx, 8);
x[1] = make_input_with_size(ctx, 8);
x[2] = make_input_with_size(ctx, 8);
x[3] = ggml_mul(ctx, x[0], x[1]);
x[4] = ggml_add(ctx, x[1], x[2]);
x[5] = ggml_add(ctx, x[3], x[0]);
x[6] = ggml_add(ctx, x[4], x[5]);
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[6], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
check_max_size(ctx);
GGML_ASSERT(backend.context->allocated_total() <= 16 + 16);
}
// Scenario where there is some space left in the first buffer, but not enough to accomodate
// a larger tensor, so a second buffer is required
static void test_max_size_tensor_too_large() {
dummy_backend backend = dummy_backend_init(32);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[3];
x[0] = make_input_with_size(ctx, 16); // chunk 0, [0 , 16)
x[1] = make_input_with_size(ctx, 8); // chunk 0, [16, 24)
x[2] = ggml_concat(ctx, x[0], x[1], 0); // chunk 1, [0 , 24)
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[2], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
check_max_size(ctx);
GGML_ASSERT(backend.context->allocated_total() <= 32 + 24);
}
// Scenario where a single tensor exceeds the max buffer size - in this case the allocator
// should try to create a bigger buffer anyway, and wait for the backend to throw an error.
// Backends may report an artificially lower max size in some cases for compatibility reasons.
static void test_tensor_larger_than_max_size() {
dummy_backend backend = dummy_backend_init(16);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[2];
x[0] = make_input_with_size(ctx, 24);
x[1] = ggml_scale(ctx, x[0], 2.0f);
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[1], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
GGML_ASSERT(backend.context->allocated_total() == 24);
}
// This test assumes a max of 16 buffer chunks, and tries to allocate tensors that would
// require more. Expectation is that the last buffer should grow to fit everything,
// leaving it to the backend to error out if it can't allocate that much.
static void test_not_enough_chunks() {
const int max_chunks = 16;
const int max_size = 8;
dummy_backend backend = dummy_backend_init(max_size);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[max_chunks + 1];
for (int i = 0; i < max_chunks + 1; ++i) {
x[i] = make_input_with_size(ctx, max_size);
}
ggml_tensor * acc = x[0];
for (int i = 0; i < max_chunks; ++i) {
acc = ggml_add(ctx, acc, x[i + 1]);
}
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, acc, &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
GGML_ASSERT(backend.context->allocated_total() > max_chunks * max_size);
}
// Fill up leftover unallocated space of a chunk after allocating a large tensor that
// requires a new chunk.
static void test_fill_leftover_space() {
dummy_backend backend = dummy_backend_init(16);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[4];
x[0] = make_input_with_size(ctx, 8);
x[1] = ggml_pad(ctx, x[0], 2, 0, 0, 0);
x[3] = ggml_mean(ctx, x[1]);
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[3], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
check_max_size(ctx);
GGML_ASSERT(backend.context->allocated_total() <= 12 + 16);
}
// Check that views don't require any extra memory
static void test_view_inplace() {
dummy_backend backend = dummy_backend_init(32);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[6];
x[0] = make_input_1d(ctx, 4); // chunk 0, [0, 16)
x[1] = ggml_reshape_2d(ctx, x[0], 2, 2); // view of x0
x[2] = ggml_permute(ctx, x[1], 1, 0, 2, 3); // view of x0
x[3] = ggml_view_1d(ctx, x[2], 2, 4); // view of x0
x[4] = make_input_1d(ctx, 2); // chunk 0, [16, 24)
x[5] = ggml_add(ctx, x[3], x[4]); // reuse (inplace add)
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[5], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
check_max_size(ctx);
GGML_ASSERT(backend.context->allocated_total() <= 24);
}
static void test_reuse_and_free() {
dummy_backend backend = dummy_backend_init(40);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[9];
x[0] = make_input_with_size(ctx, 24);
x[1] = make_input_with_size(ctx, 8);
x[2] = make_input_with_size(ctx, 8);
x[3] = ggml_add(ctx, x[1], x[2]); // reuse, free x2
x[4] = ggml_pad(ctx, x[0], 2, 0, 0, 0); // alloc new buffer, free x0
x[5] = ggml_scale(ctx, x[4], 2.0f); // alloc from free block
x[6] = ggml_add(ctx, x[4], x[5]); // reuse, free x5
x[7] = ggml_view_1d(ctx, x[6], 2, 8); // view
x[8] = ggml_add(ctx, x[3], x[7]); // reuse
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[8], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
check_max_size(ctx);
GGML_ASSERT(backend.context->allocated_total() <= 40 + 32 + 32);
}
static void test_merge_free_block(size_t max_buffer_size) {
dummy_backend backend = dummy_backend_init(max_buffer_size);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[9];
x[0] = make_input_with_size(ctx, 16);
x[1] = make_input_with_size(ctx, 16);
x[2] = make_input_with_size(ctx, 16);
x[3] = ggml_mean(ctx, x[0]);
x[4] = ggml_mean(ctx, x[1]);
x[5] = ggml_pad(ctx, x[2], 2, 0, 0, 0);
x[6] = ggml_add(ctx, x[3], x[4]);
x[7] = ggml_pad(ctx, x[6], 5, 0, 0, 0);
x[8] = ggml_add(ctx, x[5], x[7]);
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[8], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
check_max_size(ctx);
GGML_ASSERT(backend.context->allocated_total() <= 32 + 32 + 24);
}
// Check that previously allocated but freed memory is preferred over allocating
// additional memory, even if the remaining space in a chunk would match tensor size better
static void test_prefer_already_allocated_memory() {
dummy_backend backend = dummy_backend_init(32, /*align*/ 4);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[3];
x[0] = make_input_with_size(ctx, 24); // [24b][8b unused]
x[1] = ggml_mean(ctx, x[0]); // [24b free][4b][4b unused]
x[2] = ggml_mean(ctx, x[1]); // should be allocated in the 24b block
assign_names(ctx);
ggml_gallocr_ptr galloc = allocate_graph(graph, x[2], &backend.buffer_type);
check_all_allocated(graph);
check_no_overlap(graph);
GGML_ASSERT(backend.context->allocated_total() <= 28);
}
// test for allocating on multiple devices with some tensors in the graph
// allocated externally (not by gallocr).
static void test_multiple_buffer_types() {
dummy_backend backend_a = dummy_backend_init(32);
dummy_backend backend_b = dummy_backend_init(SIZE_MAX);
auto [ctx_a, _a, ctx_a_ptr] = make_context();
auto [ctx_b, _b, ctx_b_ptr] = make_context();
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * a[2];
a[0] = make_input_with_size(ctx_a, 16);
a[1] = make_input_with_size(ctx_a, 16);
assign_names(ctx_a, "a");
ggml_tensor * b[2];
b[0] = make_input_with_size(ctx_b, 24);
b[1] = make_input_with_size(ctx_b, 4);
assign_names(ctx_b, "b");
ggml_tensor * x[9];
x[0] = make_input_with_size(ctx, 16);
x[1] = ggml_mul(ctx, x[0], a[0]);
x[2] = ggml_pad(ctx, x[1], 2, 0, 0, 0);
x[3] = ggml_mul(ctx, x[2], b[0]);
x[4] = ggml_mean(ctx, x[3]);
x[5] = ggml_add(ctx, x[4], b[1]);
x[6] = ggml_pad(ctx, x[5], 3, 0, 0, 0);
x[7] = ggml_add(ctx, x[6], a[1]);
x[8] = ggml_scale(ctx, x[7], 2.0f);
assign_names(ctx, "x");
ggml_backend_buffer_ptr buf_a(ggml_backend_alloc_ctx_tensors_from_buft(ctx_a, &backend_a.buffer_type));
ggml_backend_buffer_ptr buf_b(ggml_backend_alloc_ctx_tensors_from_buft(ctx_b, &backend_b.buffer_type));
ggml_backend_buffer_type_t bufts[2] = { &backend_a.buffer_type, &backend_b.buffer_type };
// assign buffer types manually to avoid extra complexity from backend scheduler
ggml_set_output(x[8]);
ggml_build_forward_expand(graph, x[8]);
GGML_ASSERT(graph->n_leafs == 5);
int leaf_buffer_ids[5];
leaf_buffer_ids[get_leaf_id(graph, "a0")] = 0;
leaf_buffer_ids[get_leaf_id(graph, "a1")] = 0;
leaf_buffer_ids[get_leaf_id(graph, "b0")] = 1;
leaf_buffer_ids[get_leaf_id(graph, "b1")] = 1;
leaf_buffer_ids[get_leaf_id(graph, "x0")] = 0;
GGML_ASSERT(graph->n_nodes == 8);
int node_buffer_ids[8];
node_buffer_ids[get_node_id(graph, "x1")] = 0;
node_buffer_ids[get_node_id(graph, "x2")] = 0;
node_buffer_ids[get_node_id(graph, "x3")] = 1;
node_buffer_ids[get_node_id(graph, "x4")] = 1;
node_buffer_ids[get_node_id(graph, "x5")] = 1;
node_buffer_ids[get_node_id(graph, "x6")] = 1;
node_buffer_ids[get_node_id(graph, "x7")] = 0;
node_buffer_ids[get_node_id(graph, "x8")] = 0;
ggml_gallocr_ptr galloc(ggml_gallocr_new_n(bufts, 2));
ggml_gallocr_reserve_n(galloc.get(), graph, node_buffer_ids, leaf_buffer_ids);
ggml_gallocr_alloc_graph(galloc.get(), graph);
check_all_allocated(graph);
check_no_overlap(graph);
check_max_size(ctx);
GGML_ASSERT(backend_a.context->allocated_total() <= 32 + 32 + 24);
GGML_ASSERT(backend_b.context->allocated_total() <= 32 + 24);
}
static void test_buffer_size_zero() {
dummy_backend backend_a = dummy_backend_init(SIZE_MAX);
dummy_backend backend_b = dummy_backend_init(SIZE_MAX);
auto [ctx, graph, ctx_ptr] = make_context();
ggml_tensor * x[2];
x[0] = make_input_with_size(ctx, 16);
x[1] = ggml_scale(ctx, x[0], 2.0f);
ggml_set_output(x[1]);
ggml_build_forward_expand(graph, x[1]);
int leaf_buffer_ids[1] = { 0 };
int node_buffer_ids[1] = { 0 };
ggml_backend_buffer_type_t bufts[2] = { &backend_a.buffer_type, &backend_b.buffer_type };
ggml_gallocr_ptr galloc = ggml_gallocr_ptr(ggml_gallocr_new_n(bufts, 2));
bool res1 = ggml_gallocr_reserve_n(galloc.get(), graph, node_buffer_ids, leaf_buffer_ids);
bool res2 = ggml_gallocr_alloc_graph(galloc.get(), graph);
GGML_ASSERT(res1 && res2);
check_all_allocated(graph);
GGML_ASSERT(backend_a.context->allocated_total() == 16);
GGML_ASSERT(backend_b.context->allocated_total() == 0);
}
static void run(const char * name, void (*f)()) {
printf("%s ", name);
fflush(stdout);
f();
printf("PASSED\n");
}
int main() {
run("test_max_size_too_many_tensors", test_max_size_too_many_tensors);
run("test_max_size_tensor_too_large", test_max_size_tensor_too_large);
run("test_tensor_larger_than_max_size", test_tensor_larger_than_max_size);
run("test_not_enough_chunks", test_not_enough_chunks);
run("test_fill_leftover_space", test_fill_leftover_space);
run("test_view_inplace", test_view_inplace);
run("test_reuse_and_free", test_reuse_and_free);
run("test_merge_free_block(32)", []() { test_merge_free_block(32); });
run("test_merge_free_block(SIZE_MAX)", []() { test_merge_free_block(SIZE_MAX); });
run("test_prefer_already_allocated_memory", test_prefer_already_allocated_memory);
run("test_multiple_buffer_types", test_multiple_buffer_types);
run("test_buffer_size_zero", test_buffer_size_zero);
return 0;
}
|