File: mtmd-audio.cpp

package info (click to toggle)
llama.cpp 6641%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 43,640 kB
  • sloc: cpp: 218,020; ansic: 117,624; python: 29,020; lisp: 9,094; sh: 5,776; objc: 1,045; javascript: 828; xml: 259; makefile: 219
file content (769 lines) | stat: -rw-r--r-- 24,121 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
#include "mtmd-audio.h"

#define _USE_MATH_DEFINES // for M_PI
#include <cmath>
#include <cstdint>
#include <cstring>
#include <thread>
#include <vector>
#include <fstream>
#include <algorithm>

// most of the code here is copied from whisper.cpp

// align x to upper multiple of n
#define _ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))

namespace whisper_preprocessor {

#define SIN_COS_N_COUNT WHISPER_N_FFT
namespace {
struct whisper_global_cache {
    // In FFT, we frequently use sine and cosine operations with the same values.
    // We can use precalculated values to speed up the process.
    float sin_vals[SIN_COS_N_COUNT];
    float cos_vals[SIN_COS_N_COUNT];

    // Hann window (Use cosf to eliminate difference)
    // ref: https://pytorch.org/docs/stable/generated/torch.hann_window.html
    // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L147
    float hann_window[WHISPER_N_FFT];

    whisper_global_cache() {
        fill_sin_cos_table();
        fill_hann_window(sizeof(hann_window)/sizeof(hann_window[0]), true, hann_window);
    }

    void fill_sin_cos_table() {
        for (int i = 0; i < SIN_COS_N_COUNT; i++) {
            double theta = (2 * M_PI * i) / SIN_COS_N_COUNT;
            sin_vals[i] = sinf(theta);
            cos_vals[i] = cosf(theta);
        }
    }

    void fill_hann_window(int length, bool periodic, float * output) {
        int offset = -1;
        if (periodic) {
            offset = 0;
        }
        for (int i = 0; i < length; i++) {
            output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
        }
    }
} global_cache;
}

// naive Discrete Fourier Transform
// input is real-valued
// output is complex-valued
static void dft(const float* in, int N, float* out) {
    const int sin_cos_step = SIN_COS_N_COUNT / N;

    for (int k = 0; k < N; k++) {
        float re = 0;
        float im = 0;

        for (int n = 0; n < N; n++) {
            int idx = (k * n * sin_cos_step) % (SIN_COS_N_COUNT); // t = 2*M_PI*k*n/N
            re += in[n]*global_cache.cos_vals[idx]; // cos(t)
            im -= in[n]*global_cache.sin_vals[idx]; // sin(t)
        }

        out[k*2 + 0] = re;
        out[k*2 + 1] = im;
    }
}

// Cooley-Tukey FFT
// poor man's implementation - use something better
// input is real-valued
// output is complex-valued
static void fft(float* in, int N, float* out) {
    if (N == 1) {
        out[0] = in[0];
        out[1] = 0;
        return;
    }

    const int half_N = N / 2;
    if (N - half_N*2 == 1) {
        dft(in, N, out);
        return;
    }

    float* even = in + N;
    for (int i = 0; i < half_N; ++i) {
        even[i]= in[2*i];
    }
    float* even_fft = out + 2 * N;
    fft(even, half_N, even_fft);

    float* odd = even;
    for (int i = 0; i < half_N; ++i) {
        odd[i] = in[2*i + 1];
    }
    float* odd_fft = even_fft + N;
    fft(odd, half_N, odd_fft);

    const int sin_cos_step = SIN_COS_N_COUNT / N;
    for (int k = 0; k < half_N; k++) {
        int idx = k * sin_cos_step; // t = 2*M_PI*k/N
        float re = global_cache.cos_vals[idx]; // cos(t)
        float im = -global_cache.sin_vals[idx]; // sin(t)

        float re_odd = odd_fft[2*k + 0];
        float im_odd = odd_fft[2*k + 1];

        out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
        out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;

        out[2*(k + half_N) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
        out[2*(k + half_N) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
    }
}

static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
                                              int n_samples, int frame_size, int frame_step, int n_threads,
                                              const whisper_filters & filters, whisper_mel & mel) {
    std::vector<float> fft_in(frame_size * 2, 0.0);
    std::vector<float> fft_out(frame_size * 2 * 2 * 2);

    int n_fft = filters.n_fft;
    int i = ith;

    // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
    WHISPER_ASSERT(n_fft == 1 + (frame_size / 2));

    // calculate FFT only when fft_in are not all zero
    for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) {
        const int offset = i * frame_step;

        // apply Hann window (~10% faster)
        for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
            fft_in[j] = hann[j] * samples[offset + j];
        }

        // fill the rest with zeros
        if (n_samples - offset < frame_size) {
            std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
        }

        // FFT
        fft(fft_in.data(), frame_size, fft_out.data());

        // Calculate modulus^2 of complex numbers
        // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
        for (int j = 0; j < n_fft; j++) {
            fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
        }

        // mel spectrogram
        for (int j = 0; j < mel.n_mel; j++) {
            double sum = 0.0;
            // unroll loop (suggested by GH user @lunixbochs)
            int k = 0;
            for (k = 0; k < n_fft - 3; k += 4) {
                sum +=
                        fft_out[k + 0] * filters.data[j * n_fft + k + 0] +
                        fft_out[k + 1] * filters.data[j * n_fft + k + 1] +
                        fft_out[k + 2] * filters.data[j * n_fft + k + 2] +
                        fft_out[k + 3] * filters.data[j * n_fft + k + 3];
            }
            // handle n_fft remainder
            for (; k < n_fft; k++) {
                sum += fft_out[k] * filters.data[j * n_fft + k];
            }
            sum = log10(std::max(sum, 1e-10));
            mel.data[j * mel.n_len + i] = sum;
        }
    }

    // Otherwise fft_out are all zero
    double sum = log10(1e-10);
    for (; i < mel.n_len; i += n_threads) {
        for (int j = 0; j < mel.n_mel; j++) {
            mel.data[j * mel.n_len + i] = sum;
        }
    }
}

// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
static bool log_mel_spectrogram(
        const float * samples,
        const int   n_samples,
        const int   /*sample_rate*/,
        const int   frame_size,
        const int   frame_step,
        const int   n_mel,
        const int   n_threads,
        const whisper_filters & filters,
        const bool   debug,
        whisper_mel & mel) {
    //const int64_t t_start_us = ggml_time_us();

    // Hann window
    WHISPER_ASSERT(frame_size == WHISPER_N_FFT && "Unsupported frame_size");
    const float * hann = global_cache.hann_window;

    // Calculate the length of padding
    int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
    int64_t stage_2_pad = frame_size / 2;

    // Initialize a vector and copy data from C array to it.
    std::vector<float> samples_padded;
    samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
    std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);

    // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
    std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);

    // reflective pad 200 samples at the beginning of audio
    std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());

    mel.n_mel     = n_mel;
    // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
    // Calculate number of frames + remove the last frame
    mel.n_len     = (samples_padded.size() - frame_size) / frame_step;
    // Calculate semi-padded sample length to ensure compatibility
    mel.n_len_org = 1 + (n_samples + stage_2_pad - frame_size) / frame_step;
    mel.data.resize(mel.n_mel * mel.n_len);

    {
        std::vector<std::thread> workers(n_threads - 1);
        for (int iw = 0; iw < n_threads - 1; ++iw) {
            workers[iw] = std::thread(
                    log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded),
                    n_samples + stage_2_pad, frame_size, frame_step, n_threads,
                    std::cref(filters), std::ref(mel));
        }

        // main thread
        log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, filters, mel);

        for (int iw = 0; iw < n_threads - 1; ++iw) {
            workers[iw].join();
        }
    }

    // clamping and normalization
    double mmax = -1e20;
    for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
        if (mel.data[i] > mmax) {
            mmax = mel.data[i];
        }
    }

    mmax -= 8.0;

    for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
        if (mel.data[i] < mmax) {
            mel.data[i] = mmax;
        }

        mel.data[i] = (mel.data[i] + 4.0)/4.0;
    }

    // Dump log_mel_spectrogram
    if (debug) {
        std::ofstream outFile("log_mel_spectrogram.json");
        outFile << "[";
        for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
            outFile << mel.data[i] << ", ";
        }
        outFile << mel.data[mel.data.size() - 1] << "]";
        outFile.close();
    }

    return true;
}

bool preprocess_audio(
        const float * samples,
        size_t n_samples,
        const whisper_filters & filters,
        std::vector<whisper_mel> & output) {

    if (n_samples == 0) {
        // empty audio
        return false;
    }

    whisper_mel out_full;
    bool ok = log_mel_spectrogram(
                samples,
                n_samples,
                COMMON_SAMPLE_RATE,
                WHISPER_N_FFT,
                WHISPER_HOP_LENGTH,
                filters.n_mel,
                4, // n_threads
                filters,
                false, // debug
                out_full);
    if (!ok) {
        return false;
    }

    // because the cgraph in clip.cpp only accepts 3000 frames each, we need to split the mel
    // we always expect the mel to have 3000 silent frames at the end
    // printf("n_len %d\n", out_full.n_len);
    const size_t frames_per_chunk = 3000;
    GGML_ASSERT((size_t)out_full.n_len > frames_per_chunk);
    for (size_t off = 0; off < (size_t)out_full.n_len; off += frames_per_chunk) {
        int n_len = std::min(frames_per_chunk, (size_t)out_full.n_len - off);
        if ((size_t)n_len < frames_per_chunk) {
            break; // last uncomplete chunk will always be a padded chunk, safe to ignore
        }

        whisper_mel out_chunk;
        out_chunk.n_len     = n_len;
        out_chunk.n_mel     = out_full.n_mel;
        out_chunk.n_len_org = out_full.n_mel; // unused
        out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);

        for (int i = 0; i < out_full.n_mel; i++) {
            auto src = out_full.data.begin() + i*out_full.n_len + off;
            out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
        }

        output.push_back(std::move(out_chunk));
    }

    return true;
}

} // namespace whisper_preprocessor


// precalculated mel filter banks
// values are multiplied by 1000.0 to save space, and will be divided by 1000.0 in the end of the function
//
// generated from python code:
//
// from numpy import load
// data = load('mel_filters.npz')
// lst = data.files
// for item in lst:
//   print(item)
//   print(data[item].shape)
//   n_mel = data[item].shape[0]
//   n_fft = data[item].shape[1]
//   for i, row in enumerate(data[item]):
//     for j, val in enumerate(row):
//       val = val * 1000.0
//       if val != 0:
//         print(f"data[{i*n_fft + j}] = {val:.6f};")

namespace whisper_precalc_filters {

whisper_preprocessor::whisper_filters get_128_bins() {
    whisper_preprocessor::whisper_filters filters;
    filters.n_mel = 128;
    filters.n_fft = 201;
    std::vector data(filters.n_mel * filters.n_fft, 0.0f);

    data[1] = 12.37398665;
    data[202] = 30.39256483;
    data[404] = 24.74797331;
    data[605] = 18.01857911;
    data[807] = 37.12195903;
    data[1008] = 5.64459199;
    data[1009] = 6.72939420;
    data[1210] = 36.03715822;
    data[1412] = 19.10337992;
    data[1613] = 23.66316877;
    data[1815] = 31.47736564;
    data[2016] = 11.28918398;
    data[2017] = 1.08480197;
    data[2218] = 41.68175161;
    data[2420] = 13.45878839;
    data[2621] = 29.30776216;
    data[2823] = 25.83277412;
    data[3024] = 16.93377644;
    data[3226] = 38.20675984;
    data[3427] = 4.55979025;
    data[3428] = 7.81419594;
    data[3629] = 34.95235741;
    data[3831] = 20.18818259;
    data[4032] = 22.57836796;
    data[4234] = 32.56217018;
    data[4435] = 10.20438317;
    data[4436] = 2.16960395;
    data[4637] = 40.59694707;
    data[4839] = 14.54358920;
    data[5040] = 28.22295949;
    data[5242] = 26.91757679;
    data[5443] = 15.84897563;
    data[5645] = 39.29156065;
    data[5846] = 3.47498828;
    data[5847] = 8.89899861;
    data[6048] = 33.86755288;
    data[6250] = 21.27298526;
    data[6451] = 21.49356715;
    data[6653] = 33.64697099;
    data[6854] = 9.11958050;
    data[6855] = 3.25440569;
    data[7056] = 39.51214626;
    data[7258] = 15.62839188;
    data[7459] = 27.13815868;
    data[7661] = 28.00237760;
    data[7862] = 14.76417296;
    data[8064] = 40.37636518;
    data[8265] = 2.38068704;
    data[8266] = 10.20263787;
    data[8467] = 31.61146119;
    data[8669] = 24.54700135;
    data[8870] = 15.32919332;
    data[8871] = 1.66583748;
    data[9072] = 36.72905266;
    data[9274] = 20.09709924;
    data[9475] = 16.93102531;
    data[9476] = 2.90265540;
    data[9677] = 32.84499049;
    data[9879] = 23.52004871;
    data[10080] = 11.03894413;
    data[10081] = 10.72582975;
    data[10282] = 22.71829173;
    data[10484] = 32.27872774;
    data[10685] = 0.11626833;
    data[10686] = 22.85348251;
    data[10887] = 8.56344029;
    data[10888] = 14.97978810;
    data[11089] = 15.51398356;
    data[11090] = 8.51490628;
    data[11291] = 21.10680379;
    data[11292] = 3.32652032;
    data[11493] = 25.47064796;
    data[11695] = 27.35907957;
    data[11896] = 0.65853616;
    data[11897] = 23.83812517;
    data[12098] = 3.44359246;
    data[12099] = 21.22455277;
    data[12300] = 5.35842171;
    data[12301] = 19.42555793;
    data[12502] = 6.49324711;
    data[12503] = 18.35542172;
    data[12704] = 6.93138083;
    data[12705] = 17.93504693;
    data[12906] = 6.74968259;
    data[12907] = 18.09151843;
    data[13108] = 6.01899112;
    data[13109] = 18.75767298;
    data[13310] = 4.80452832;
    data[13311] = 19.87172849;
    data[13512] = 3.16627859;
    data[13513] = 21.37690969;
    data[13514] = 1.25317345;
    data[13714] = 1.15934468;
    data[13715] = 20.80361731;
    data[13716] = 4.04486805;
    data[13917] = 17.55363122;
    data[13918] = 7.08320038;
    data[14119] = 14.07538634;
    data[14120] = 10.32655034;
    data[14321] = 10.40921453;
    data[14322] = 13.73696327;
    data[14523] = 6.59187697;
    data[14524] = 17.27988198;
    data[14525] = 1.46804214;
    data[14725] = 2.65681883;
    data[14726] = 18.09193194;
    data[14727] = 5.85655728;
    data[14928] = 13.34277913;
    data[14929] = 10.28267574;
    data[15130] = 8.56800377;
    data[15131] = 14.72230814;
    data[15132] = 1.04039861;
    data[15332] = 3.79085587;
    data[15333] = 17.14678481;
    data[15334] = 6.11609267;
    data[15535] = 11.75929047;
    data[15536] = 11.13393717;
    data[15737] = 6.43857848;
    data[15738] = 16.07806236;
    data[15739] = 4.23917221;
    data[15939] = 1.19989377;
    data[15940] = 12.75671553;
    data[15941] = 9.65298992;
    data[16142] = 7.06935255;
    data[16143] = 14.94054683;
    data[16144] = 4.19024844;
    data[16344] = 1.51483389;
    data[16345] = 12.00899947;
    data[16346] = 9.84823331;
    data[16547] = 6.10224018;
    data[16548] = 15.33857174;
    data[16549] = 5.57676842;
    data[16749] = 0.36827257;
    data[16750] = 9.89749376;
    data[16751] = 11.35340426;
    data[16752] = 2.05122307;
    data[16952] = 3.89297144;
    data[16953] = 12.97352277;
    data[16954] = 8.06631614;
    data[17155] = 6.74493238;
    data[17156] = 13.85874674;
    data[17157] = 5.41190524;
    data[17357] = 0.74220158;
    data[17358] = 8.98779090;
    data[17359] = 11.37871388;
    data[17360] = 3.32958088;
    data[17560] = 2.82313535;
    data[17561] = 10.68049297;
    data[17562] = 9.43340641;
    data[17563] = 1.76325557;
    data[17763] = 4.39018616;
    data[17764] = 11.87758986;
    data[17765] = 7.97005836;
    data[17766] = 0.66104700;
    data[17966] = 5.49466675;
    data[17967] = 12.62953598;
    data[17968] = 6.93987962;
    data[18169] = 6.18401915;
    data[18170] = 12.93473132;
    data[18171] = 6.29778765;
    data[18371] = 0.02325210;
    data[18372] = 6.50206627;
    data[18373] = 12.32661773;
    data[18374] = 6.00216538;
    data[18574] = 0.31548753;
    data[18575] = 6.48925547;
    data[18576] = 12.04130240;
    data[18577] = 6.01462880;
    data[18777] = 0.29979556;
    data[18778] = 6.18288014;
    data[18779] = 12.04272825;
    data[18780] = 6.29981188;
    data[18781] = 0.55689598;
    data[18980] = 0.01120471;
    data[18981] = 5.61729167;
    data[18982] = 11.22337859;
    data[18983] = 6.82516303;
    data[18984] = 1.35264499;
    data[19184] = 4.82410006;
    data[19185] = 10.16623247;
    data[19186] = 7.56075513;
    data[19187] = 2.34590308;
    data[19387] = 3.83235747;
    data[19388] = 8.92296247;
    data[19389] = 8.47910438;
    data[19390] = 3.50978645;
    data[19590] = 2.66873185;
    data[19591] = 7.51965167;
    data[19592] = 9.55500547;
    data[19593] = 4.81966138;
    data[19594] = 0.08431751;
    data[19793] = 1.35767367;
    data[19794] = 5.98019501;
    data[19795] = 10.60271543;
    data[19796] = 6.25298498;
    data[19797] = 1.74059917;
    data[19997] = 4.32644226;
    data[19998] = 8.73131864;
    data[19999] = 7.78916525;
    data[20000] = 3.48923868;
    data[20200] = 2.57835095;
    data[20201] = 6.77582854;
    data[20202] = 9.40941647;
    data[20203] = 5.31194592;
    data[20204] = 1.21447595;
    data[20403] = 0.75411191;
    data[20404] = 4.75395704;
    data[20405] = 8.75380263;
    data[20406] = 7.19209015;
    data[20407] = 3.28754401;
    data[20607] = 2.68179690;
    data[20608] = 6.49331464;
    data[20609] = 9.11457930;
    data[20610] = 5.39387390;
    data[20611] = 1.67316827;
    data[20810] = 0.57394296;
    data[20811] = 4.20600036;
    data[20812] = 7.83805829;
    data[20813] = 7.52023002;
    data[20814] = 3.97470826;
    data[20815] = 0.42918732;
    data[21014] = 1.90464477;
    data[21015] = 5.36569161;
    data[21016] = 8.82673822;
    data[21017] = 6.27609482;
    data[21018] = 2.89750961;
    data[21218] = 2.89885257;
    data[21219] = 6.19694078;
    data[21220] = 8.56699049;
    data[21221] = 5.34748193;
    data[21222] = 2.12797290;
    data[21421] = 0.44750227;
    data[21422] = 3.59030394;
    data[21423] = 6.73310598;
    data[21424] = 7.77023612;
    data[21425] = 4.70231380;
    data[21426] = 1.63439126;
    data[21625] = 1.01536023;
    data[21626] = 4.01018746;
    data[21627] = 7.00501446;
    data[21628] = 7.23442994;
    data[21629] = 4.31095669;
    data[21630] = 1.38748321;
    data[21829] = 1.33348850;
    data[21830] = 4.18730825;
    data[21831] = 7.04112789;
    data[21832] = 6.93188375;
    data[21833] = 4.14605811;
    data[21834] = 1.36023236;
    data[22033] = 1.42879714;
    data[22034] = 4.14824858;
    data[22035] = 6.86769979;
    data[22036] = 6.83705276;
    data[22037] = 4.18239459;
    data[22038] = 1.52773573;
    data[22237] = 1.32610439;
    data[22238] = 3.91751388;
    data[22239] = 6.50892360;
    data[22240] = 6.92639686;
    data[22241] = 4.39672917;
    data[22242] = 1.86706171;
    data[22441] = 1.04827771;
    data[22442] = 3.51767405;
    data[22443] = 5.98707050;
    data[22444] = 7.17824046;
    data[22445] = 4.76767914;
    data[22446] = 2.35711760;
    data[22645] = 0.61636406;
    data[22646] = 2.96949223;
    data[22647] = 5.32262027;
    data[22648] = 7.57265091;
    data[22649] = 5.27558755;
    data[22650] = 2.97852419;
    data[22651] = 0.68146095;
    data[22849] = 0.04971400;
    data[22850] = 2.29204819;
    data[22851] = 4.53438237;
    data[22852] = 6.77671656;
    data[22853] = 5.90240723;
    data[22854] = 3.71349836;
    data[22855] = 1.52458926;
    data[23054] = 1.50285335;
    data[23055] = 3.63961048;
    data[23056] = 5.77636715;
    data[23057] = 6.63159089;
    data[23058] = 4.54574358;
    data[23059] = 2.45989650;
    data[23060] = 0.37404924;
    data[23258] = 0.61795861;
    data[23259] = 2.65410915;
    data[23260] = 4.69025923;
    data[23261] = 6.72641024;
    data[23262] = 5.46034705;
    data[23263] = 3.47270933;
    data[23264] = 1.48507138;
    data[23463] = 1.59233576;
    data[23464] = 3.53261665;
    data[23465] = 5.47289755;
    data[23466] = 6.44368259;
    data[23467] = 4.54962999;
    data[23468] = 2.65557761;
    data[23469] = 0.76152512;
    data[23667] = 0.46749352;
    data[23668] = 2.31641904;
    data[23669] = 4.16534441;
    data[23670] = 6.01426978;
    data[23671] = 5.67844696;
    data[23672] = 3.87357362;
    data[23673] = 2.06870004;
    data[23674] = 0.26382666;
    data[23872] = 1.05349103;
    data[23873] = 2.81536230;
    data[23874] = 4.57723346;
    data[23875] = 6.33910485;
    data[23876] = 5.12815686;
    data[23877] = 3.40826320;
    data[23878] = 1.68837002;
    data[24077] = 1.43350090;
    data[24078] = 3.11241671;
    data[24079] = 4.79133241;
    data[24080] = 6.40943693;
    data[24081] = 4.77052201;
    data[24082] = 3.13160778;
    data[24083] = 1.49269309;
    data[24281] = 0.02932359;
    data[24282] = 1.62918994;
    data[24283] = 3.22905602;
    data[24284] = 4.82892245;
    data[24285] = 6.14671456;
    data[24286] = 4.58496623;
    data[24287] = 3.02321767;
    data[24288] = 1.46146910;
    data[24486] = 0.13601698;
    data[24487] = 1.66055572;
    data[24488] = 3.18509457;
    data[24489] = 4.70963307;
    data[24490] = 6.04072399;
    data[24491] = 4.55250870;
    data[24492] = 3.06429295;
    data[24493] = 1.57607743;
    data[24494] = 0.08786193;
    data[24691] = 0.09328097;
    data[24692] = 1.54603878;
    data[24693] = 2.99879676;
    data[24694] = 4.45155473;
    data[24695] = 5.90431225;
    data[24696] = 4.65566106;
    data[24697] = 3.23751615;
    data[24698] = 1.81937125;
    data[24699] = 0.40122634;
    data[24897] = 1.30262633;
    data[24898] = 2.68698297;
    data[24899] = 4.07133950;
    data[24900] = 5.45569602;
    data[24901] = 4.87832492;
    data[24902] = 3.52695142;
    data[24903] = 2.17557792;
    data[24904] = 0.82420459;
    data[25102] = 0.94595028;
    data[25103] = 2.26512621;
    data[25104] = 3.58430226;
    data[25105] = 4.90347855;
    data[25106] = 5.20569785;
    data[25107] = 3.91795207;
    data[25108] = 2.63020652;
    data[25109] = 1.34246063;
    data[25110] = 0.05471494;
    data[25307] = 0.49037894;
    data[25308] = 1.74744334;
    data[25309] = 3.00450763;
    data[25310] = 4.26157191;
    data[25311] = 5.51863620;
    data[25312] = 4.39707236;
    data[25313] = 3.16995848;
    data[25314] = 1.94284460;
    data[25315] = 0.71573065;
    data[25513] = 1.14698056;
    data[25514] = 2.34485767;
    data[25515] = 3.54273478;
    data[25516] = 4.74061165;
    data[25517] = 4.95198462;
    data[25518] = 3.78264743;
    data[25519] = 2.61331047;
    data[25520] = 1.44397374;
    data[25521] = 0.27463681;
    data[25718] = 0.47569509;
    data[25719] = 1.61717169;
    data[25720] = 2.75864848;
    data[25721] = 3.90012516;
    data[25722] = 5.04160160;
    data[25723] = 4.45712078;
    data[25724] = 3.34284059;
    data[25725] = 2.22856039;
    data[25726] = 1.11428020;

    for (auto & val : data) {
        val /= 1000.0f;
    }

    filters.data = std::move(data);
    return filters;
}

} // namespace whisper_precalc_filters