File: diffusion-cli.cpp

package info (click to toggle)
llama.cpp 6641%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 43,824 kB
  • sloc: cpp: 218,020; ansic: 117,624; python: 29,020; lisp: 9,094; sh: 5,776; objc: 1,045; javascript: 828; xml: 259; makefile: 219
file content (693 lines) | stat: -rw-r--r-- 28,239 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
#include "arg.h"
#include "chat.h"
#include "common.h"
#include "llama.h"
#include "log.h"

#include <limits.h>

#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
#include <random>
#include <string>
#include <vector>

enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 };

// Unified transfer scheduling methods
enum transfer_schedule {
    TIMESTEP_BASED = 0,  // Dream-style: (1.0 - s/t) * remaining
    BLOCK_BASED    = 1,  // LLaDA-style: process in blocks with get_num_transfer_tokens
};

typedef bool (*diffusion_step_callback_t)(int32_t             step,
                                          int32_t             total_steps,
                                          const llama_token * tokens,
                                          int32_t             n_tokens,
                                          void *              user_data);

struct diffusion_params {
    int32_t                   steps                   = 0;
    float                     temperature             = 0;
    llama_token               mask_token_id           = LLAMA_TOKEN_NULL;
    diffusion_step_callback_t step_callback           = nullptr;
    void *                    step_callback_user_data = nullptr;
    int32_t                   seed                    = 0;
    bool                      visual_mode             = false;
    bool                      shift_logits            = false;  // Shift logits by -1 after decode

    float   top_p = 0.;
    int32_t top_k = 0.;

    diffusion_algorithm algorithm = CONFIDENCE_BASED;
    transfer_schedule   schedule  = TIMESTEP_BASED;

    float   cfg_scale        = 0.;     // Config scale for classifier-free guidance
    float   eps              = 0.;     // Timestep scheduling
    int32_t block_length     = 0;      // Block size (for block scheduling)
    float   alg_temp         = 0;      // algorithm temperature (0.0 = deterministic)
    bool    add_gumbel_noise = false;  // Add gumbel noise to the logits if temp > 0.0

    int32_t max_length = 0;            // Maximum sequence length
};

struct callback_data {
    diffusion_params *  diff_params;
    const llama_vocab * vocab;
    int32_t             n_input;
};

static float calculate_confidence(const llama_token_data_array & cur_p,
                                  diffusion_algorithm            algorithm,
                                  std::mt19937 &                 rng) {
    switch (algorithm) {
        case CONFIDENCE_BASED:
            return cur_p.data[cur_p.selected].p;  // Selected token probability

        case ENTROPY_BASED:
            {
                float       entropy = 0.0f;
                const float epsilon = 1e-10f;
                for (size_t i = 0; i < cur_p.size; i++) {
                    float prob = cur_p.data[i].p;
                    entropy += prob * logf(prob + epsilon);
                }
                return -entropy;  // Higher entropy = lower confidence
            }

        case MARGIN_BASED:
            return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p;

        case RANDOM:
            {
                std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
                return uniform(rng);  // Random confidence
            }

        case ORIGIN:
            return cur_p.data[cur_p.selected].p;

        default:
            return 0.0f;
    }
}

// Unified transfer count calculation function
static int32_t calculate_transfer_count(int32_t                      step,
                                        int32_t                      total_steps,
                                        int32_t                      remaining_masked,
                                        transfer_schedule            schedule,
                                        float                        eps,
                                        const std::vector<int32_t> & num_transfer_tokens = {}) {
    switch (schedule) {
        case TIMESTEP_BASED:
            {
                float t          = 1.0f - (float) step / total_steps * (1.0f - eps);
                float s          = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps);
                float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f;
                return (int32_t) (remaining_masked * p_transfer);
            }

        case BLOCK_BASED:
            if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) {
                return num_transfer_tokens[step];
            }
            return remaining_masked / (total_steps - step);  // Fallback

        default:
            return remaining_masked / (total_steps - step);
    }
}

static bool diffusion_step_callback(int32_t             step,
                                    int32_t             total_steps,
                                    const llama_token * tokens,
                                    int32_t             n_tokens,
                                    void *              user_data) {
    (void) user_data;

    callback_data * data = static_cast<callback_data *>(user_data);

    auto print_progress_bar = [](int32_t step, int32_t total_steps) {
        int progress_percent = (step * 100) / total_steps;
        int progress_bars    = (step * 50) / total_steps;
        LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
                step,
                total_steps,
                std::string(progress_bars, '=').c_str(),
                std::string(50 - progress_bars, ' ').c_str(),
                progress_percent);
    };

    if (data->diff_params->visual_mode) {
        // Visual mode: clear
        LOG_INF("\033[2J\033[H");  // Clear screen and move cursor to top-left

        print_progress_bar(step, total_steps);

        LOG_INF("\n");

        std::string current_text = " ";

        for (int32_t i = data->n_input; i < n_tokens; i++) {
            std::string token_str;
            if (tokens[i] != llama_vocab_mask(data->vocab)) {
                char piece[256];
                int  n_chars = llama_token_to_piece(data->vocab, tokens[i], piece, sizeof(piece), 0, false);
                if (n_chars > 0) {
                    piece[n_chars] = '\0';
                    token_str      = piece;
                }
            } else {
                token_str = " ";
            }

            current_text += token_str;
        }

        LOG_INF("%s\n", current_text.c_str());
    } else {
        print_progress_bar(step, total_steps);
    }

    return true;
}

static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) {
    if (temperature == 0.0f) {
        return;
    }

    std::uniform_real_distribution<double> uniform(0.0, 1.0);
    for (int32_t i = 0; i < n_vocab; i++) {
        double noise        = uniform(rng);
        // Prevent log(0)
        noise               = std::max(noise, 1e-20);
        double gumbel_noise = std::pow(-std::log(noise), temperature);
        logits[i]           = std::exp(logits[i]) / gumbel_noise;
    }
}

static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) {
    std::vector<int32_t> num_transfer_tokens(steps);

    int32_t base      = mask_count / steps;
    int32_t remainder = mask_count % steps;

    for (int32_t i = 0; i < steps; i++) {
        num_transfer_tokens[i] = base + (i < remainder ? 1 : 0);
    }

    return num_transfer_tokens;
}

static void diffusion_generate(llama_context *          ctx,
                               const llama_token *      input_tokens,
                               llama_token *            output_tokens,
                               int32_t                  n_input,
                               const diffusion_params & params,
                               int32_t &                n_generated) {
    n_generated = 0;
    if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) {
        return;
    }

    const llama_model * model = llama_get_model(ctx);

    // Initialize with input and pad with mask tokens
    std::copy(input_tokens, input_tokens + n_input, output_tokens);
    std::fill(output_tokens + n_input, output_tokens + params.max_length, params.mask_token_id);

    std::mt19937 rng(params.seed);

    llama_set_causal_attn(ctx, false);

    int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));

    std::vector<llama_token_data> candidates(n_vocab);
    std::vector<llama_token_data> conf_candidates;
    conf_candidates.reserve(params.max_length);
    std::vector<int32_t> mask_positions;
    mask_positions.reserve(params.max_length);

    // Setup sampler chain
    struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
    if (params.top_k > 0) {
        llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
    }
    if (params.top_p < 1.0f) {
        llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
    }
    if (params.temperature > 0.0f) {
        llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
    }
    llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));

    struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);

    llama_batch batch = llama_batch_init(params.max_length, 0, 1);
    batch.n_tokens    = params.max_length;

    // Pre-allocate buffers for CFG if needed
    int32_t                  logits_size = n_vocab * params.max_length;
    std::vector<float>       cond_logits_buffer;
    std::vector<llama_token> un_x_buffer;
    if (params.cfg_scale > 0.0f) {
        cond_logits_buffer.resize(logits_size);
        un_x_buffer.resize(params.max_length);
    }

    // For block-based processing
    std::vector<int32_t> num_transfer_tokens;
    int32_t              num_blocks      = 1;
    int32_t              steps_per_block = params.steps;

    if (params.schedule == BLOCK_BASED) {
        GGML_ASSERT(params.max_length % params.block_length == 0);
        num_blocks = params.max_length / params.block_length;
        GGML_ASSERT(params.steps % num_blocks == 0);
        steps_per_block = params.steps / num_blocks;
    }

    std::vector<float> confidence(params.max_length);

    int64_t total_sampling_time = 0;
    int64_t total_time          = 0;
    int64_t time_start          = ggml_time_us();

    for (int block_num = 0; block_num < num_blocks; block_num++) {
        int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0;
        int32_t block_end   = (params.schedule == BLOCK_BASED) ?
                                  std::min(n_input + (block_num + 1) * params.block_length, params.max_length) :
                                  params.max_length;

        // Count masked tokens in current block for block-based processing
        if (params.schedule == BLOCK_BASED) {
            int32_t block_mask_count = 0;
            for (int i = block_start; i < block_end; i++) {
                if (output_tokens[i] == params.mask_token_id) {
                    block_mask_count++;
                }
            }
            num_transfer_tokens = get_num_transfer_tokens(block_mask_count, steps_per_block);
        }

        for (int32_t step = 0; step < steps_per_block; step++) {
            int32_t global_step = block_num * steps_per_block + step;

            if (params.step_callback) {
                if (!params.step_callback(
                        global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) {
                    break;
                }
            }

            // Setup batch
            for (int32_t i = 0; i < params.max_length; i++) {
                batch.token[i]     = output_tokens[i];
                batch.pos[i]       = i;
                batch.n_seq_id[i]  = 1;
                batch.seq_id[i][0] = 0;
                batch.logits[i]    = 1;
            }

            float * logits = nullptr;

            if (params.cfg_scale > 0.0f) {
                int ret = llama_decode(ctx, batch);
                if (ret != 0) {
                    LOG_ERR("Failed to generate conditional");
                    break;
                }
                float * cond_logits_ptr = llama_get_logits(ctx);
                std::memcpy(cond_logits_buffer.data(), cond_logits_ptr, logits_size * sizeof(float));

                // Unconditional generation (mask input)
                std::copy(output_tokens, output_tokens + params.max_length, un_x_buffer.begin());
                for (int32_t i = 0; i < n_input; i++) {
                    un_x_buffer[i] = params.mask_token_id;
                }

                for (int32_t i = 0; i < params.max_length; i++) {
                    batch.token[i] = un_x_buffer[i];
                }
                ret = llama_decode(ctx, batch);
                if (ret != 0) {
                    LOG_ERR("Failed to generate unconditional");
                    break;
                }
                float * uncond_logits = llama_get_logits(ctx);

                // Apply CFG
                for (int32_t i = 0; i < logits_size; i++) {
                    cond_logits_buffer[i] =
                        uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]);
                }
                logits = cond_logits_buffer.data();
            } else {
                int ret = llama_decode(ctx, batch);
                if (ret != 0) {
                    LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, global_step, ret);
                    break;
                }
                logits = llama_get_logits(ctx);
            }

            if (!logits) {
                LOG_ERR("%s: failed to get logits at step %d\n", __func__, global_step);
                break;
            }

            auto get_logits_for_pos = [&](int32_t pos) -> const float * {
                if (params.shift_logits) {
                    return pos == 0 ? logits : logits + (pos - 1) * n_vocab;
                }
                return logits + (pos) *n_vocab;
            };

            int64_t time_start_sampling = ggml_time_us();

            mask_positions.clear();
            for (int32_t i = 0; i < params.max_length; i++) {
                if (output_tokens[i] == params.mask_token_id) {
                    // For block-based, only consider current block
                    if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) {
                        mask_positions.push_back(i);
                    }
                }
            }

            if (mask_positions.empty()) {
                break;
            }

            if (params.add_gumbel_noise && params.temperature > 0.0f) {
                add_gumbel_noise(logits, n_vocab, params.temperature, rng);
            }

            if (params.algorithm == ORIGIN) {
                int32_t transfer_count = calculate_transfer_count(
                    step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
                float p_transfer = (float) transfer_count / mask_positions.size();

                for (int32_t pos : mask_positions) {
                    if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
                        const float * pos_logits = get_logits_for_pos(pos);
                        for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
                            candidates[token_id].id    = token_id;
                            candidates[token_id].logit = pos_logits[token_id];
                            candidates[token_id].p     = 0.0f;
                        }

                        llama_token_data_array cur_p = {
                            candidates.data(),
                            (size_t) n_vocab,
                            -1,
                            false,
                        };

                        llama_sampler_apply(sampler, &cur_p);
                        output_tokens[pos] = cur_p.data[cur_p.selected].id;
                    }
                }
            } else {
                std::vector<std::pair<float, int32_t>> confidences;
                std::vector<llama_token>               sampled_tokens(mask_positions.size());

                for (size_t i = 0; i < mask_positions.size(); i++) {
                    int32_t       pos        = mask_positions[i];
                    const float * pos_logits = get_logits_for_pos(pos);

                    for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
                        candidates[token_id].logit = pos_logits[token_id];
                        candidates[token_id].p     = 0.0f;
                        candidates[token_id].id    = token_id;
                    }

                    llama_token_data_array cur_p = {
                        candidates.data(),
                        candidates.size(),
                        -1,
                        false,
                    };

                    llama_sampler_apply(sampler, &cur_p);
                    llama_token sampled_token = cur_p.data[cur_p.selected].id;

                    float conf = calculate_confidence(cur_p, params.algorithm, rng);

                    sampled_tokens[i] = sampled_token;
                    confidences.emplace_back(conf, i);
                }

                int32_t transfer_count = calculate_transfer_count(
                    step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);

                if (transfer_count > 0) {
                    if (params.alg_temp == 0.0f) {
                        std::partial_sort(confidences.begin(),
                                          confidences.begin() + std::min(transfer_count, (int32_t) confidences.size()),
                                          confidences.end(),
                                          [](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
                                              if (a.first != b.first) {
                                                  return a.first > b.first;
                                              }
                                              return a.second < b.second;
                                          });

                        for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
                            int32_t mask_idx   = confidences[i].second;
                            int32_t pos        = mask_positions[mask_idx];
                            output_tokens[pos] = sampled_tokens[mask_idx];
                        }
                    } else {
                        conf_candidates.clear();
                        for (size_t i = 0; i < confidences.size(); i++) {
                            float conf_logit = confidences[i].first / params.alg_temp;
                            conf_candidates.emplace_back(llama_token_data{ (int32_t) i, conf_logit, 0.0f });
                        }

                        llama_token_data_array conf_array = {
                            conf_candidates.data(),
                            conf_candidates.size(),
                            -1,
                            false,
                        };

                        for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
                            llama_sampler_apply(dist_sampler, &conf_array);
                            int32_t selected_idx = conf_array.selected;
                            int32_t mask_idx     = selected_idx;
                            int32_t pos          = mask_positions[mask_idx];
                            output_tokens[pos]   = sampled_tokens[mask_idx];

                            conf_candidates[selected_idx].p = 0.0f;
                            conf_array.selected             = -1;
                        }
                    }
                }
            }

            int64_t time_end_sampling = ggml_time_us();
            total_sampling_time += time_end_sampling - time_start_sampling;
        }
    }

    int64_t time_end = ggml_time_us();
    total_time += time_end - time_start;

    LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
            total_time / 1000.0,
            total_time / 1000.0 / params.steps,
            total_sampling_time / 1000.0 / params.steps);

    llama_batch_free(batch);
    llama_sampler_free(sampler);
    llama_sampler_free(dist_sampler);

    n_generated = params.max_length;
}

static std::string format_input_text(const std::string & prompt, const std::string & system_prompt, bool use_chat_template, llama_model * model) {
    if (!use_chat_template) {
        return prompt;
    }

    auto chat_templates = common_chat_templates_init(model, "");
    common_chat_templates_inputs inputs;
    common_chat_msg system_msg;

    if (!system_prompt.empty()) {
        system_msg.role = "system";
        system_msg.content = system_prompt;
        inputs.messages.push_back(system_msg);
    }

    common_chat_msg user_msg;
    user_msg.role = "user";
    user_msg.content = prompt;

    inputs.messages.push_back(user_msg);
    inputs.add_generation_prompt = true;

    auto result = common_chat_templates_apply(chat_templates.get(), inputs);

    return result.prompt;
}

int main(int argc, char ** argv) {
    ggml_time_init();

    common_params params;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DIFFUSION)) {
        return 1;
    }

    common_init();
    llama_backend_init();

    llama_model_params model_params = llama_model_default_params();
    model_params.n_gpu_layers       = params.n_gpu_layers;
    model_params.devices            = params.devices.data();
    model_params.use_mmap           = params.use_mmap;
    model_params.use_mlock          = params.use_mlock;
    model_params.check_tensors      = params.check_tensors;

    llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
    if (!model) {
        LOG_ERR("error: failed to load model '%s'\n", params.model.path.c_str());
        return 1;
    }

    if (!llama_model_is_diffusion(model)) {
        LOG_ERR("error: unsupported model for diffusion");
        llama_model_free(model);
        return 1;
    }

    llama_context_params ctx_params = llama_context_default_params();
    ctx_params.n_ctx                = params.n_ctx;
    ctx_params.n_batch              = params.n_batch;
    ctx_params.n_ubatch             = params.n_ubatch;
    ctx_params.flash_attn_type      = params.flash_attn_type;
    ctx_params.no_perf              = params.no_perf;
    ctx_params.type_k               = params.cache_type_k;
    ctx_params.type_v               = params.cache_type_v;

    llama_context * ctx = llama_init_from_model(model, ctx_params);
    if (!ctx) {
        LOG_ERR("error: failed to create context\n");
        llama_model_free(model);
        return 1;
    }

    llama_set_n_threads(ctx, params.cpuparams.n_threads, params.cpuparams_batch.n_threads);

    const llama_vocab * vocab            = llama_model_get_vocab(model);

    std::string         formatted_prompt = format_input_text(params.prompt, params.system_prompt, params.enable_chat_template, model);

    std::vector<llama_token> input_tokens = common_tokenize(vocab,
                                                            formatted_prompt,
                                                            /*add special tokens*/ true,
                                                            /*parse special*/ true);

    int n_input = input_tokens.size();

    if (n_input >= params.n_ctx) {
        LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
        llama_free(ctx);
        llama_model_free(model);
        return 1;
    }

    llama_token mask_token_id = llama_vocab_mask(vocab);

    GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);

    bool visual_mode = params.diffusion.visual_mode;

    int32_t                  n_generated = 0;
    std::vector<llama_token> output_tokens(params.n_ubatch);

    struct diffusion_params diff_params;

    char shift_logits_str[8];
    if (llama_model_meta_val_str(model, "diffusion.shift_logits", shift_logits_str, sizeof(shift_logits_str)) >= 0) {
        diff_params.shift_logits = (strcmp(shift_logits_str, "true") == 0);
    } else {
        diff_params.shift_logits = true;
    }

    //Use either eps or block length, but not both
    GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0));

    if (params.diffusion.eps) {
        diff_params.schedule = TIMESTEP_BASED;
        diff_params.eps      = params.diffusion.eps;
    } else if (params.diffusion.block_length) {
        diff_params.schedule     = BLOCK_BASED;
        diff_params.block_length = params.diffusion.block_length;
    }

    diff_params.mask_token_id    = mask_token_id;
    diff_params.seed             = params.sampling.seed;
    diff_params.temperature      = params.sampling.temp;
    diff_params.steps            = params.diffusion.steps;
    diff_params.algorithm        = static_cast<diffusion_algorithm>(params.diffusion.algorithm);
    diff_params.max_length       = params.n_ubatch;
    diff_params.top_p            = params.sampling.top_p;
    diff_params.top_k            = params.sampling.top_k;
    diff_params.visual_mode      = params.diffusion.visual_mode;
    diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise;

    diff_params.step_callback           = diffusion_step_callback;
    callback_data cb_data               = { &diff_params, vocab, n_input };
    diff_params.step_callback_user_data = &cb_data;

    const char * alg_names[]   = { "ORIGIN", "ENTROPY_BASED", "MARGIN_BASED", "RANDOM", "CONFIDENCE_BASED" };
    const char * sched_names[] = { "TIMESTEP_BASED", "BLOCK_BASED" };
    const char * alg_name =
        (diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN";
    const char * sched_name =
        (diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN";

    LOG_INF("diffusion_params: - %-25s llama_token      = %d\n", "mask_token_id", mask_token_id);
    LOG_INF("diffusion_params: - %-25s u32              = %d\n", "steps", diff_params.steps);
    LOG_INF("diffusion_params: - %-25s u32              = %d\n", "max_length", diff_params.max_length);
    LOG_INF("diffusion_params: - %-25s enum             = %d (%s)\n", "algorithm", diff_params.algorithm, alg_name);
    LOG_INF("diffusion_params: - %-25s enum             = %d (%s)\n", "schedule", diff_params.schedule, sched_name);
    LOG_INF("diffusion_params: - %-25s f32              = %.3f\n", "temperature", diff_params.temperature);
    if (diff_params.schedule == TIMESTEP_BASED) {
        LOG_INF("diffusion_params: - %-25s f32              = %.6f\n", "eps", diff_params.eps);
        LOG_INF("diffusion_params: - %-25s f32              = %.3f\n", "alg_temp", diff_params.alg_temp);
    }
    if (diff_params.schedule == BLOCK_BASED) {
        LOG_INF("diffusion_params: - %-25s u32              = %d\n", "block_length", diff_params.block_length);
        LOG_INF("diffusion_params: - %-25s f32              = %.3f\n", "cfg_scale", diff_params.cfg_scale);
    }

    diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, diff_params, n_generated);

    if (n_generated > 0) {
        if (visual_mode) {
            //clear screen and move cursor to top-left
            LOG_INF("\033[2J\033[H");
        }

        output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
        std::string output_data = common_detokenize(vocab, output_tokens, false);
        LOG_INF("\n%s\n", output_data.c_str());
    } else {
        LOG_INF("Error: diffusion generation failed\n");
    }

    llama_free(ctx);
    llama_model_free(model);
    llama_backend_free();

    return 0;
}