1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
#include "arg.h"
#include "chat.h"
#include "common.h"
#include "llama.h"
#include "log.h"
#include <limits.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
#include <random>
#include <string>
#include <vector>
enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 };
// Unified transfer scheduling methods
enum transfer_schedule {
TIMESTEP_BASED = 0, // Dream-style: (1.0 - s/t) * remaining
BLOCK_BASED = 1, // LLaDA-style: process in blocks with get_num_transfer_tokens
};
typedef bool (*diffusion_step_callback_t)(int32_t step,
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data);
struct diffusion_params {
int32_t steps = 0;
float temperature = 0;
llama_token mask_token_id = LLAMA_TOKEN_NULL;
diffusion_step_callback_t step_callback = nullptr;
void * step_callback_user_data = nullptr;
int32_t seed = 0;
bool visual_mode = false;
bool shift_logits = false; // Shift logits by -1 after decode
float top_p = 0.;
int32_t top_k = 0.;
diffusion_algorithm algorithm = CONFIDENCE_BASED;
transfer_schedule schedule = TIMESTEP_BASED;
float cfg_scale = 0.; // Config scale for classifier-free guidance
float eps = 0.; // Timestep scheduling
int32_t block_length = 0; // Block size (for block scheduling)
float alg_temp = 0; // algorithm temperature (0.0 = deterministic)
bool add_gumbel_noise = false; // Add gumbel noise to the logits if temp > 0.0
int32_t max_length = 0; // Maximum sequence length
};
struct callback_data {
diffusion_params * diff_params;
const llama_vocab * vocab;
int32_t n_input;
};
static float calculate_confidence(const llama_token_data_array & cur_p,
diffusion_algorithm algorithm,
std::mt19937 & rng) {
switch (algorithm) {
case CONFIDENCE_BASED:
return cur_p.data[cur_p.selected].p; // Selected token probability
case ENTROPY_BASED:
{
float entropy = 0.0f;
const float epsilon = 1e-10f;
for (size_t i = 0; i < cur_p.size; i++) {
float prob = cur_p.data[i].p;
entropy += prob * logf(prob + epsilon);
}
return -entropy; // Higher entropy = lower confidence
}
case MARGIN_BASED:
return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p;
case RANDOM:
{
std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
return uniform(rng); // Random confidence
}
case ORIGIN:
return cur_p.data[cur_p.selected].p;
default:
return 0.0f;
}
}
// Unified transfer count calculation function
static int32_t calculate_transfer_count(int32_t step,
int32_t total_steps,
int32_t remaining_masked,
transfer_schedule schedule,
float eps,
const std::vector<int32_t> & num_transfer_tokens = {}) {
switch (schedule) {
case TIMESTEP_BASED:
{
float t = 1.0f - (float) step / total_steps * (1.0f - eps);
float s = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps);
float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f;
return (int32_t) (remaining_masked * p_transfer);
}
case BLOCK_BASED:
if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) {
return num_transfer_tokens[step];
}
return remaining_masked / (total_steps - step); // Fallback
default:
return remaining_masked / (total_steps - step);
}
}
static bool diffusion_step_callback(int32_t step,
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data) {
(void) user_data;
callback_data * data = static_cast<callback_data *>(user_data);
auto print_progress_bar = [](int32_t step, int32_t total_steps) {
int progress_percent = (step * 100) / total_steps;
int progress_bars = (step * 50) / total_steps;
LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
step,
total_steps,
std::string(progress_bars, '=').c_str(),
std::string(50 - progress_bars, ' ').c_str(),
progress_percent);
};
if (data->diff_params->visual_mode) {
// Visual mode: clear
LOG_INF("\033[2J\033[H"); // Clear screen and move cursor to top-left
print_progress_bar(step, total_steps);
LOG_INF("\n");
std::string current_text = " ";
for (int32_t i = data->n_input; i < n_tokens; i++) {
std::string token_str;
if (tokens[i] != llama_vocab_mask(data->vocab)) {
char piece[256];
int n_chars = llama_token_to_piece(data->vocab, tokens[i], piece, sizeof(piece), 0, false);
if (n_chars > 0) {
piece[n_chars] = '\0';
token_str = piece;
}
} else {
token_str = " ";
}
current_text += token_str;
}
LOG_INF("%s\n", current_text.c_str());
} else {
print_progress_bar(step, total_steps);
}
return true;
}
static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) {
if (temperature == 0.0f) {
return;
}
std::uniform_real_distribution<double> uniform(0.0, 1.0);
for (int32_t i = 0; i < n_vocab; i++) {
double noise = uniform(rng);
// Prevent log(0)
noise = std::max(noise, 1e-20);
double gumbel_noise = std::pow(-std::log(noise), temperature);
logits[i] = std::exp(logits[i]) / gumbel_noise;
}
}
static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) {
std::vector<int32_t> num_transfer_tokens(steps);
int32_t base = mask_count / steps;
int32_t remainder = mask_count % steps;
for (int32_t i = 0; i < steps; i++) {
num_transfer_tokens[i] = base + (i < remainder ? 1 : 0);
}
return num_transfer_tokens;
}
static void diffusion_generate(llama_context * ctx,
const llama_token * input_tokens,
llama_token * output_tokens,
int32_t n_input,
const diffusion_params & params,
int32_t & n_generated) {
n_generated = 0;
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) {
return;
}
const llama_model * model = llama_get_model(ctx);
// Initialize with input and pad with mask tokens
std::copy(input_tokens, input_tokens + n_input, output_tokens);
std::fill(output_tokens + n_input, output_tokens + params.max_length, params.mask_token_id);
std::mt19937 rng(params.seed);
llama_set_causal_attn(ctx, false);
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
std::vector<llama_token_data> candidates(n_vocab);
std::vector<llama_token_data> conf_candidates;
conf_candidates.reserve(params.max_length);
std::vector<int32_t> mask_positions;
mask_positions.reserve(params.max_length);
// Setup sampler chain
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
if (params.top_k > 0) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
}
if (params.top_p < 1.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
}
if (params.temperature > 0.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
}
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
llama_batch batch = llama_batch_init(params.max_length, 0, 1);
batch.n_tokens = params.max_length;
// Pre-allocate buffers for CFG if needed
int32_t logits_size = n_vocab * params.max_length;
std::vector<float> cond_logits_buffer;
std::vector<llama_token> un_x_buffer;
if (params.cfg_scale > 0.0f) {
cond_logits_buffer.resize(logits_size);
un_x_buffer.resize(params.max_length);
}
// For block-based processing
std::vector<int32_t> num_transfer_tokens;
int32_t num_blocks = 1;
int32_t steps_per_block = params.steps;
if (params.schedule == BLOCK_BASED) {
GGML_ASSERT(params.max_length % params.block_length == 0);
num_blocks = params.max_length / params.block_length;
GGML_ASSERT(params.steps % num_blocks == 0);
steps_per_block = params.steps / num_blocks;
}
std::vector<float> confidence(params.max_length);
int64_t total_sampling_time = 0;
int64_t total_time = 0;
int64_t time_start = ggml_time_us();
for (int block_num = 0; block_num < num_blocks; block_num++) {
int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0;
int32_t block_end = (params.schedule == BLOCK_BASED) ?
std::min(n_input + (block_num + 1) * params.block_length, params.max_length) :
params.max_length;
// Count masked tokens in current block for block-based processing
if (params.schedule == BLOCK_BASED) {
int32_t block_mask_count = 0;
for (int i = block_start; i < block_end; i++) {
if (output_tokens[i] == params.mask_token_id) {
block_mask_count++;
}
}
num_transfer_tokens = get_num_transfer_tokens(block_mask_count, steps_per_block);
}
for (int32_t step = 0; step < steps_per_block; step++) {
int32_t global_step = block_num * steps_per_block + step;
if (params.step_callback) {
if (!params.step_callback(
global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) {
break;
}
}
// Setup batch
for (int32_t i = 0; i < params.max_length; i++) {
batch.token[i] = output_tokens[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = 1;
}
float * logits = nullptr;
if (params.cfg_scale > 0.0f) {
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("Failed to generate conditional");
break;
}
float * cond_logits_ptr = llama_get_logits(ctx);
std::memcpy(cond_logits_buffer.data(), cond_logits_ptr, logits_size * sizeof(float));
// Unconditional generation (mask input)
std::copy(output_tokens, output_tokens + params.max_length, un_x_buffer.begin());
for (int32_t i = 0; i < n_input; i++) {
un_x_buffer[i] = params.mask_token_id;
}
for (int32_t i = 0; i < params.max_length; i++) {
batch.token[i] = un_x_buffer[i];
}
ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("Failed to generate unconditional");
break;
}
float * uncond_logits = llama_get_logits(ctx);
// Apply CFG
for (int32_t i = 0; i < logits_size; i++) {
cond_logits_buffer[i] =
uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]);
}
logits = cond_logits_buffer.data();
} else {
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, global_step, ret);
break;
}
logits = llama_get_logits(ctx);
}
if (!logits) {
LOG_ERR("%s: failed to get logits at step %d\n", __func__, global_step);
break;
}
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
if (params.shift_logits) {
return pos == 0 ? logits : logits + (pos - 1) * n_vocab;
}
return logits + (pos) *n_vocab;
};
int64_t time_start_sampling = ggml_time_us();
mask_positions.clear();
for (int32_t i = 0; i < params.max_length; i++) {
if (output_tokens[i] == params.mask_token_id) {
// For block-based, only consider current block
if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) {
mask_positions.push_back(i);
}
}
}
if (mask_positions.empty()) {
break;
}
if (params.add_gumbel_noise && params.temperature > 0.0f) {
add_gumbel_noise(logits, n_vocab, params.temperature, rng);
}
if (params.algorithm == ORIGIN) {
int32_t transfer_count = calculate_transfer_count(
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
float p_transfer = (float) transfer_count / mask_positions.size();
for (int32_t pos : mask_positions) {
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].id = token_id;
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
}
llama_token_data_array cur_p = {
candidates.data(),
(size_t) n_vocab,
-1,
false,
};
llama_sampler_apply(sampler, &cur_p);
output_tokens[pos] = cur_p.data[cur_p.selected].id;
}
}
} else {
std::vector<std::pair<float, int32_t>> confidences;
std::vector<llama_token> sampled_tokens(mask_positions.size());
for (size_t i = 0; i < mask_positions.size(); i++) {
int32_t pos = mask_positions[i];
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
candidates[token_id].id = token_id;
}
llama_token_data_array cur_p = {
candidates.data(),
candidates.size(),
-1,
false,
};
llama_sampler_apply(sampler, &cur_p);
llama_token sampled_token = cur_p.data[cur_p.selected].id;
float conf = calculate_confidence(cur_p, params.algorithm, rng);
sampled_tokens[i] = sampled_token;
confidences.emplace_back(conf, i);
}
int32_t transfer_count = calculate_transfer_count(
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
if (transfer_count > 0) {
if (params.alg_temp == 0.0f) {
std::partial_sort(confidences.begin(),
confidences.begin() + std::min(transfer_count, (int32_t) confidences.size()),
confidences.end(),
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
if (a.first != b.first) {
return a.first > b.first;
}
return a.second < b.second;
});
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
int32_t mask_idx = confidences[i].second;
int32_t pos = mask_positions[mask_idx];
output_tokens[pos] = sampled_tokens[mask_idx];
}
} else {
conf_candidates.clear();
for (size_t i = 0; i < confidences.size(); i++) {
float conf_logit = confidences[i].first / params.alg_temp;
conf_candidates.emplace_back(llama_token_data{ (int32_t) i, conf_logit, 0.0f });
}
llama_token_data_array conf_array = {
conf_candidates.data(),
conf_candidates.size(),
-1,
false,
};
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
llama_sampler_apply(dist_sampler, &conf_array);
int32_t selected_idx = conf_array.selected;
int32_t mask_idx = selected_idx;
int32_t pos = mask_positions[mask_idx];
output_tokens[pos] = sampled_tokens[mask_idx];
conf_candidates[selected_idx].p = 0.0f;
conf_array.selected = -1;
}
}
}
}
int64_t time_end_sampling = ggml_time_us();
total_sampling_time += time_end_sampling - time_start_sampling;
}
}
int64_t time_end = ggml_time_us();
total_time += time_end - time_start;
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
total_time / 1000.0,
total_time / 1000.0 / params.steps,
total_sampling_time / 1000.0 / params.steps);
llama_batch_free(batch);
llama_sampler_free(sampler);
llama_sampler_free(dist_sampler);
n_generated = params.max_length;
}
static std::string format_input_text(const std::string & prompt, const std::string & system_prompt, bool use_chat_template, llama_model * model) {
if (!use_chat_template) {
return prompt;
}
auto chat_templates = common_chat_templates_init(model, "");
common_chat_templates_inputs inputs;
common_chat_msg system_msg;
if (!system_prompt.empty()) {
system_msg.role = "system";
system_msg.content = system_prompt;
inputs.messages.push_back(system_msg);
}
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.messages.push_back(user_msg);
inputs.add_generation_prompt = true;
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
return result.prompt;
}
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DIFFUSION)) {
return 1;
}
common_init();
llama_backend_init();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = params.n_gpu_layers;
model_params.devices = params.devices.data();
model_params.use_mmap = params.use_mmap;
model_params.use_mlock = params.use_mlock;
model_params.check_tensors = params.check_tensors;
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (!model) {
LOG_ERR("error: failed to load model '%s'\n", params.model.path.c_str());
return 1;
}
if (!llama_model_is_diffusion(model)) {
LOG_ERR("error: unsupported model for diffusion");
llama_model_free(model);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = params.n_ctx;
ctx_params.n_batch = params.n_batch;
ctx_params.n_ubatch = params.n_ubatch;
ctx_params.flash_attn_type = params.flash_attn_type;
ctx_params.no_perf = params.no_perf;
ctx_params.type_k = params.cache_type_k;
ctx_params.type_v = params.cache_type_v;
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (!ctx) {
LOG_ERR("error: failed to create context\n");
llama_model_free(model);
return 1;
}
llama_set_n_threads(ctx, params.cpuparams.n_threads, params.cpuparams_batch.n_threads);
const llama_vocab * vocab = llama_model_get_vocab(model);
std::string formatted_prompt = format_input_text(params.prompt, params.system_prompt, params.enable_chat_template, model);
std::vector<llama_token> input_tokens = common_tokenize(vocab,
formatted_prompt,
/*add special tokens*/ true,
/*parse special*/ true);
int n_input = input_tokens.size();
if (n_input >= params.n_ctx) {
LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
llama_free(ctx);
llama_model_free(model);
return 1;
}
llama_token mask_token_id = llama_vocab_mask(vocab);
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
bool visual_mode = params.diffusion.visual_mode;
int32_t n_generated = 0;
std::vector<llama_token> output_tokens(params.n_ubatch);
struct diffusion_params diff_params;
char shift_logits_str[8];
if (llama_model_meta_val_str(model, "diffusion.shift_logits", shift_logits_str, sizeof(shift_logits_str)) >= 0) {
diff_params.shift_logits = (strcmp(shift_logits_str, "true") == 0);
} else {
diff_params.shift_logits = true;
}
//Use either eps or block length, but not both
GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0));
if (params.diffusion.eps) {
diff_params.schedule = TIMESTEP_BASED;
diff_params.eps = params.diffusion.eps;
} else if (params.diffusion.block_length) {
diff_params.schedule = BLOCK_BASED;
diff_params.block_length = params.diffusion.block_length;
}
diff_params.mask_token_id = mask_token_id;
diff_params.seed = params.sampling.seed;
diff_params.temperature = params.sampling.temp;
diff_params.steps = params.diffusion.steps;
diff_params.algorithm = static_cast<diffusion_algorithm>(params.diffusion.algorithm);
diff_params.max_length = params.n_ubatch;
diff_params.top_p = params.sampling.top_p;
diff_params.top_k = params.sampling.top_k;
diff_params.visual_mode = params.diffusion.visual_mode;
diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise;
diff_params.step_callback = diffusion_step_callback;
callback_data cb_data = { &diff_params, vocab, n_input };
diff_params.step_callback_user_data = &cb_data;
const char * alg_names[] = { "ORIGIN", "ENTROPY_BASED", "MARGIN_BASED", "RANDOM", "CONFIDENCE_BASED" };
const char * sched_names[] = { "TIMESTEP_BASED", "BLOCK_BASED" };
const char * alg_name =
(diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN";
const char * sched_name =
(diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN";
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", diff_params.steps);
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "max_length", diff_params.max_length);
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "algorithm", diff_params.algorithm, alg_name);
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "schedule", diff_params.schedule, sched_name);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "temperature", diff_params.temperature);
if (diff_params.schedule == TIMESTEP_BASED) {
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", diff_params.eps);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", diff_params.alg_temp);
}
if (diff_params.schedule == BLOCK_BASED) {
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "block_length", diff_params.block_length);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "cfg_scale", diff_params.cfg_scale);
}
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, diff_params, n_generated);
if (n_generated > 0) {
if (visual_mode) {
//clear screen and move cursor to top-left
LOG_INF("\033[2J\033[H");
}
output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
std::string output_data = common_detokenize(vocab, output_tokens, false);
LOG_INF("\n%s\n", output_data.c_str());
} else {
LOG_INF("Error: diffusion generation failed\n");
}
llama_free(ctx);
llama_model_free(model);
llama_backend_free();
return 0;
}
|