File: Makefile

package info (click to toggle)
llama.cpp 6641%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 43,824 kB
  • sloc: cpp: 218,020; ansic: 117,624; python: 29,020; lisp: 9,094; sh: 5,776; objc: 1,045; javascript: 828; xml: 259; makefile: 219
file content (211 lines) | stat: -rw-r--r-- 7,799 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
MAKEFLAGS += --no-print-directory

define validate_model_path
	@if [ -z "$(MODEL_PATH)" ]; then \
		echo "Error: MODEL_PATH must be provided either as:"; \
		echo "  1. Environment variable: export MODEL_PATH=/path/to/model"; \
		echo "  2. Command line argument: make $(1) MODEL_PATH=/path/to/model"; \
		exit 1; \
	fi
endef

define validate_embedding_model_path
	@if [ -z "$(EMBEDDING_MODEL_PATH)" ]; then \
		echo "Error: EMBEDDING_MODEL_PATH must be provided either as:"; \
		echo "  1. Environment variable: export EMBEDDING_MODEL_PATH=/path/to/model"; \
		echo "  2. Command line argument: make $(1) EMBEDDING_MODEL_PATH=/path/to/model"; \
		exit 1; \
	fi
endef

define quantize_model
	@CONVERTED_MODEL="$(1)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" \
	TOKEN_EMBD_TYPE="$(TOKEN_EMBD_TYPE)" OUTPUT_TYPE="$(OUTPUT_TYPE)" \
	./scripts/utils/quantize.sh "$(1)" "$(QUANTIZED_TYPE)" "$(TOKEN_EMBD_TYPE)" "$(OUTPUT_TYPE)"
	@echo "Export the quantized model path to $(2) variable in your environment"
endef

###
### Casual Model targets/recipes
###
causal-convert-model-bf16: OUTTYPE=bf16
causal-convert-model-bf16: causal-convert-model

causal-convert-model:
	$(call validate_model_path,causal-convert-model)
	@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
	METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
	./scripts/causal/convert-model.sh

causal-convert-mm-model-bf16: OUTTYPE=bf16
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
causal-convert-mm-model-bf16: causal-convert-mm-model

causal-convert-mm-model:
	$(call validate_model_path,causal-convert-mm-model)
	@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
	METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
	./scripts/causal/convert-model.sh

	@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(MM_OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
	METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
	./scripts/causal/convert-model.sh --mmproj

causal-run-original-model:
	$(call validate_model_path,causal-run-original-model)
	@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py

causal-run-converted-model:
	@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh

causal-verify-logits: causal-run-original-model causal-run-converted-model
	@./scripts/causal/compare-logits.py
	@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}

causal-run-original-embeddings:
	@./scripts/causal/run-casual-gen-embeddings-org.py

causal-run-converted-embeddings:
	@./scripts/causal/run-converted-model-embeddings-logits.sh

causal-verify-embeddings: causal-run-original-embeddings causal-run-converted-embeddings
	@./scripts/causal/compare-embeddings-logits.sh

causal-inspect-original-model:
	@./scripts/utils/inspect-org-model.py

causal-inspect-converted-model:
	@./scripts/utils/inspect-converted-model.sh

causal-start-embedding-server:
	@./scripts/utils/run-embedding-server.sh ${CONVERTED_MODEL}

causal-curl-embedding-endpoint: causal-run-original-embeddings
	@./scripts/utils/curl-embedding-server.sh | ./scripts/causal/compare-embeddings-logits.sh

causal-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
causal-quantize-Q8_0: causal-quantize-model

causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
causal-quantize-Q4_0: causal-quantize-model

# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
# token embedding and output types to Q8_0 instead of the default Q6_K.
causal-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
causal-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
causal-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
causal-quantize-qat-Q4_0: causal-quantize-model

causal-quantize-model:
	$(call quantize_model,$(CONVERTED_MODEL),QUANTIZED_MODEL)

causal-run-quantized-model:
	@QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL}


###
### Embedding Model targets/recipes
###

embedding-convert-model-bf16: OUTTYPE=bf16
embedding-convert-model-bf16: embedding-convert-model

embedding-convert-model:
	$(call validate_embedding_model_path,embedding-convert-model)
	@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
	METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
	./scripts/embedding/convert-model.sh

embedding-run-original-model:
	$(call validate_embedding_model_path,embedding-run-original-model)
	@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
	./scripts/embedding/run-original-model.py \
	$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")

embedding-run-converted-model:
	@./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \
	$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")

embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
	@./scripts/embedding/compare-embeddings-logits.sh \
	$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")

embedding-inspect-original-model:
	$(call validate_embedding_model_path,embedding-inspect-original-model)
	@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/utils/inspect-org-model.py -m ${EMBEDDING_MODEL_PATH}

embedding-inspect-converted-model:
	@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/utils/inspect-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}

embedding-start-embedding-server:
	@./scripts/utils/run-embedding-server.sh ${CONVERTED_EMBEDDING_MODEL}

embedding-curl-embedding-endpoint:
	@./scripts/utils/curl-embedding-server.sh | ./scripts/embedding/compare-embeddings-logits.sh

embedding-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
embedding-quantize-Q8_0: embedding-quantize-model

embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
embedding-quantize-Q4_0: embedding-quantize-model

# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
# token embedding and output types to Q8_0 instead of the default Q6_K.
embedding-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
embedding-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
embedding-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
embedding-quantize-qat-Q4_0: embedding-quantize-model

embedding-quantize-model:
	$(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)

embedding-run-quantized-model:
	@./scripts/embedding/run-converted-model.sh $(QUANTIZED_EMBEDDING_MODEL) \
	$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")

###
### Perplexity targets/recipes
###
perplexity-data-gen:
	CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/utils/perplexity-gen.sh

perplexity-run-full:
	QUANTIZED_MODEL="$(QUANTIZED_MODEL)" LOOGITS_FILE="$(LOGITS_FILE)" \
	./scripts/utils/perplexity-run.sh

perplexity-run:
	QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/utils/perplexity-run-simple.sh

###
### HuggingFace targets/recipes
###

hf-create-model:
	@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}"

hf-create-model-dry-run:
	@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -d

hf-create-model-embedding:
	@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e

hf-create-model-embedding-dry-run:
	@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e -d

hf-create-model-private:
	@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -p

hf-upload-gguf-to-model:
	@./scripts/utils/hf-upload-gguf-model.py -m "${MODEL_PATH}" -r "${REPO_ID}" -o "${NAME_IN_REPO}"

hf-create-collection:
	@./scripts/utils/hf-create-collection.py -n "${NAME}" -d "${DESCRIPTION}" -ns "${NAMESPACE}"

hf-add-model-to-collection:
	@./scripts/utils/hf-add-model-to-collection.py -c "${COLLECTION}" -m "${MODEL}"


.PHONY: clean
clean:
	@${RM} -rf data .converted_embedding_model.txt .converted_model.txt .embedding_model_name.txt .model_name.txt