File: run-original-model.py

package info (click to toggle)
llama.cpp 6641%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 43,824 kB
  • sloc: cpp: 218,020; ansic: 117,624; python: 29,020; lisp: 9,094; sh: 5,776; objc: 1,045; javascript: 828; xml: 259; makefile: 219
file content (148 lines) | stat: -rwxr-xr-x 5,467 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python3

import argparse
import os
import numpy as np
import importlib
from pathlib import Path

from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch

unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')

parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
args = parser.parse_args()

def read_prompt_from_file(file_path):
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read().strip()
    except FileNotFoundError:
        print(f"Error: Prompts file '{file_path}' not found")
        exit(1)
    except Exception as e:
        print(f"Error reading prompts file: {e}")
        exit(1)

model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
    parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")

tokenizer = AutoTokenizer.from_pretrained(model_path)

config = AutoConfig.from_pretrained(model_path)

# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
# and compare it with the converted .gguf model.
if hasattr(config, 'sliding_window'):
    original_sliding_window = config.sliding_window
    #original_sliding_window = 6
    print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")

print(f"Using unreleased model: {unreleased_model_name}")
if unreleased_model_name:
    model_name_lower = unreleased_model_name.lower()
    unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
    class_name = f"{unreleased_model_name}Model"
    print(f"Importing unreleased model module: {unreleased_module_path}")

    try:
        model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
        model = model_class.from_pretrained(model_path, config=config)
    except (ImportError, AttributeError) as e:
        print(f"Failed to import or load model: {e}")
        exit(1)
else:
    model = AutoModel.from_pretrained(model_path, config=config)
print(f"Model class: {type(model)}")
print(f"Model file: {type(model).__module__}")

# Verify the model is using the correct sliding window
if hasattr(model.config, 'sliding_window'):
    print(f"Model's sliding_window: {model.config.sliding_window}")
else:
    print("Model config does not have sliding_window attribute")

model_name = os.path.basename(model_path)

if args.prompts_file:
    prompt_text = read_prompt_from_file(args.prompts_file)
    texts = [prompt_text]
else:
    texts = ["Hello world today"]

encoded = tokenizer(
    texts,
    padding=True,
    truncation=True,
    return_tensors="pt"
)

tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
    print(f"{token_id:6d} -> '{token_str}'")

with torch.no_grad():
    outputs = model(**encoded)
    hidden_states = outputs.last_hidden_state  # Shape: [batch_size, seq_len, hidden_size]

    # Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
    all_embeddings = hidden_states[0].cpu().numpy()  # Shape: [seq_len, hidden_size]

    print(f"Hidden states shape: {hidden_states.shape}")
    print(f"All embeddings shape: {all_embeddings.shape}")
    print(f"Embedding dimension: {all_embeddings.shape[1]}")

    # Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
    n_embd = all_embeddings.shape[1]
    n_embd_count = all_embeddings.shape[0]

    print()  # Empty line to match C++ output

    for j in range(n_embd_count):
        embedding = all_embeddings[j]
        print(f"embedding {j}: ", end="")

        # Print first 3 values
        for i in range(min(3, n_embd)):
            print(f"{embedding[i]:9.6f} ", end="")

        print(" ... ", end="")

        # Print last 3 values
        for i in range(n_embd - 3, n_embd):
            print(f"{embedding[i]:9.6f} ", end="")

        print()  # New line

    print()  # Final empty line to match C++ output

    data_dir = Path("data")
    data_dir.mkdir(exist_ok=True)
    bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
    txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"

    # Save all embeddings flattened (matching what embedding.cpp would save if it did)
    flattened_embeddings = all_embeddings.flatten()
    flattened_embeddings.astype(np.float32).tofile(bin_filename)

    with open(txt_filename, "w") as f:
        f.write(f"# Model class: {model_name}\n")
        f.write(f"# Tokens: {token_strings}\n")
        f.write(f"# Shape: {all_embeddings.shape}\n")
        f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")

        for j in range(n_embd_count):
            f.write(f"# Token {j} ({token_strings[j]}):\n")
            for i, value in enumerate(all_embeddings[j]):
                f.write(f"{j}_{i}: {value:.6f}\n")
            f.write("\n")
    print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
    print("")
    print(f"Saved bin embeddings to: {bin_filename}")
    print(f"Saved txt embeddings to: {txt_filename}")