1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#!/usr/bin/env python3
import argparse
import os
import numpy as np
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
args = parser.parse_args()
def read_prompt_from_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read().strip()
except FileNotFoundError:
print(f"Error: Prompts file '{file_path}' not found")
exit(1)
except Exception as e:
print(f"Error reading prompts file: {e}")
exit(1)
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
# and compare it with the converted .gguf model.
if hasattr(config, 'sliding_window'):
original_sliding_window = config.sliding_window
#original_sliding_window = 6
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
print(f"Using unreleased model: {unreleased_model_name}")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path, config=config)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModel.from_pretrained(model_path, config=config)
print(f"Model class: {type(model)}")
print(f"Model file: {type(model).__module__}")
# Verify the model is using the correct sliding window
if hasattr(model.config, 'sliding_window'):
print(f"Model's sliding_window: {model.config.sliding_window}")
else:
print("Model config does not have sliding_window attribute")
model_name = os.path.basename(model_path)
if args.prompts_file:
prompt_text = read_prompt_from_file(args.prompts_file)
texts = [prompt_text]
else:
texts = ["Hello world today"]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
with torch.no_grad():
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
# Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
# Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
n_embd = all_embeddings.shape[1]
n_embd_count = all_embeddings.shape[0]
print() # Empty line to match C++ output
for j in range(n_embd_count):
embedding = all_embeddings[j]
print(f"embedding {j}: ", end="")
# Print first 3 values
for i in range(min(3, n_embd)):
print(f"{embedding[i]:9.6f} ", end="")
print(" ... ", end="")
# Print last 3 values
for i in range(n_embd - 3, n_embd):
print(f"{embedding[i]:9.6f} ", end="")
print() # New line
print() # Final empty line to match C++ output
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
# Save all embeddings flattened (matching what embedding.cpp would save if it did)
flattened_embeddings = all_embeddings.flatten()
flattened_embeddings.astype(np.float32).tofile(bin_filename)
with open(txt_filename, "w") as f:
f.write(f"# Model class: {model_name}\n")
f.write(f"# Tokens: {token_strings}\n")
f.write(f"# Shape: {all_embeddings.shape}\n")
f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
for j in range(n_embd_count):
f.write(f"# Token {j} ({token_strings[j]}):\n")
for i, value in enumerate(all_embeddings[j]):
f.write(f"{j}_{i}: {value:.6f}\n")
f.write("\n")
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
print("")
print(f"Saved bin embeddings to: {bin_filename}")
print(f"Saved txt embeddings to: {txt_filename}")
|