File: check-nmse.py

package info (click to toggle)
llama.cpp 6641%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 43,824 kB
  • sloc: cpp: 218,020; ansic: 117,624; python: 29,020; lisp: 9,094; sh: 5,776; objc: 1,045; javascript: 828; xml: 259; makefile: 219
file content (174 lines) | stat: -rwxr-xr-x 6,021 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python3

import numpy as np
import sys
import os
import argparse
from pathlib import Path

def calculate_nmse(reference, test):
    mse = np.mean((test - reference) ** 2)
    ref_var = np.var(reference)
    if ref_var == 0:
        nmse = float('inf') if mse > 0 else 0.0
        return mse, mse, ref_var

    nmse = mse / ref_var

    return nmse, mse, ref_var

def load_logits(file_path):
    if not os.path.exists(file_path):
        raise FileNotFoundError(f"File not found: {file_path}")

    if file_path.suffix == '.npy':
        return np.load(file_path)
    elif file_path.suffix == '.bin':
        return np.fromfile(file_path, dtype=np.float32)
    else:
        # Try to load as text file
        try:
            # If it has index format "0: value", extract just values
            data = []
            with open(file_path, 'r') as f:
                for line in f:
                    if ':' in line:
                        # Format: "index: value"
                        value = float(line.split(':')[1].strip())
                    else:
                        # Just the value
                        value = float(line.strip())
                    data.append(value)
            return np.array(data, dtype=np.float32)
        except:
            return np.loadtxt(file_path, dtype=np.float32)

def interpret_nmse(nmse):
    """Provide interpretation of NMSE value"""
    if nmse == 0:
        return "Perfect match", "šŸŽ‰"
    elif nmse < 1e-6:
        return "Essentially identical", "āœ…"
    elif nmse < 1e-4:
        return "Excellent match", "āœ…"
    elif nmse < 1e-3:
        return "Very good match", "šŸ‘"
    elif nmse < 1e-2:
        return "Good match", "šŸ‘"
    elif nmse < 0.1:
        return "Acceptable match", "āš ļø"
    elif nmse < 1.0:
        return "Poor match", "āŒ"
    else:
        return "Very poor match (worse than noise)", "āŒ"

def main():
    parser = argparse.ArgumentParser(description='Validate model logits')
    parser.add_argument('-m', '--model-path', required=True,  help='Path to the model directory')
    args = parser.parse_args()

    model_name = os.path.basename(args.model_path)
    data_dir = Path("data")

    pytorch_file = data_dir / f"pytorch-{model_name}.bin"
    llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"

    print(f"Model name: {model_name}")
    print(f"PyTorch logits file: {pytorch_file}")
    print(f"llama.cpp logits file: {llamacpp_file}")

    reference_file = pytorch_file
    test_file = llamacpp_file

    print("šŸ“Š NMSE Check for Model Comparison")
    print("=" * 50)
    print(f"Reference (ground truth): {reference_file}")
    print(f"Test (to evaluate):       {test_file}")
    print()

    try:
        print("Loading reference logits...")
        reference = load_logits(reference_file)
        print(f"  Shape: {reference.shape}, Type: {reference.dtype}")

        print("Loading test logits...")
        test = load_logits(test_file)
        print(f"  Shape: {test.shape}, Type: {test.dtype}")

        # Check shapes match
        if reference.shape != test.shape:
            print(f"\nāŒ Error: Shape mismatch!")
            print(f"  Reference: {reference.shape}")
            print(f"  Test: {test.shape}")
            sys.exit(1)

        print(f"\nāœ… Shapes match: {reference.shape}")

        nmse, mse, ref_var = calculate_nmse(reference, test)

        # Additional metrics
        max_abs_error = np.max(np.abs(test - reference))
        mean_abs_error = np.mean(np.abs(test - reference))

        # Results
        print(f"\nšŸ“ˆ METRICS")
        print("=" * 30)
        print(f"MSE (Mean Squared Error):     {mse:.6e}")
        print(f"Reference Variance:           {ref_var:.6e}")
        print(f"NMSE:                         {nmse:.6e}")
        print(f"Max Absolute Error:           {max_abs_error:.6f}")
        print(f"Mean Absolute Error:          {mean_abs_error:.6f}")

        # NMSE in dB (common in signal processing)
        if nmse > 0:
            nmse_db = 10 * np.log10(nmse)
            print(f"NMSE (dB):                    {nmse_db:.2f} dB")

        # Interpretation
        interpretation, emoji = interpret_nmse(nmse)
        print(f"\nšŸŽÆ INTERPRETATION")
        print("=" * 30)
        print(f"{emoji} {interpretation}")

        # Detailed guidance
        print(f"\nšŸ“‹ GUIDANCE")
        print("=" * 30)
        if nmse < 1e-3:
            print("āœ… EXCELLENT: Your GGML conversion is working very well!")
            print("   The differences are negligible for practical use.")
        elif nmse < 1e-2:
            print("šŸ‘ GOOD: Your GGML conversion is working well.")
            print("   Small differences are likely due to precision/quantization.")
        elif nmse < 0.1:
            print("āš ļø  ACCEPTABLE: Conversion is working but with some differences.")
            print("   Check if you're using quantization (Q4, Q8, etc.)")
            print("   Test generation quality to see if it's acceptable.")
        else:
            print("āŒ PROBLEMATIC: Large differences detected.")
            print("   Check your conversion process for potential issues.")
            print("   Verify you're using the same model weights.")

        # NMSE benchmarks
        print(f"\nšŸ“š NMSE BENCHMARKS")
        print("=" * 30)
        print("< 1e-6:  Essentially identical")
        print("< 1e-4:  Excellent (typical for good conversions)")
        print("< 1e-3:  Very good")
        print("< 1e-2:  Good (acceptable for most use cases)")
        print("< 0.1:   Acceptable (may need verification)")
        print("> 1.0:   Poor (worse than random)")

        # Exit code based on NMSE
        if nmse < 1e-2:
            print(f"\nāœ… RESULT: PASS (NMSE = {nmse:.2e})")
            sys.exit(0)
        else:
            print(f"\nāŒ RESULT: NEEDS REVIEW (NMSE = {nmse:.2e})")
            sys.exit(1)

    except Exception as e:
        print(f"āŒ Error: {e}")
        sys.exit(1)

if __name__ == "__main__":
    main()