1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
|
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include "gguf.h"
#include <algorithm>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <thread>
#include <mutex>
#include <vector>
#include <fstream>
#include <unordered_map>
#include <map>
#include <regex>
#include <numeric>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static void print_usage(int, char ** argv) {
LOG("\nexample usage:\n");
LOG("\n %s \\\n"
" -m model.gguf -f some-text.txt [-o imatrix.gguf] [--output-format {gguf,dat}] [--no-ppl] \\\n"
" [--process-output] [--chunk 123] [--save-frequency 0] [--output-frequency 10] \\\n"
" [--in-file imatrix-prev-0.gguf --in-file imatrix-prev-1.gguf ...] [--parse-special] \\\n"
" [--show-statistics] [...]\n" , argv[0]);
LOG("\n");
}
static const char * const LLM_KV_IMATRIX_DATASETS = "imatrix.datasets";
static const char * const LLM_KV_IMATRIX_CHUNK_COUNT = "imatrix.chunk_count";
static const char * const LLM_KV_IMATRIX_CHUNK_SIZE = "imatrix.chunk_size";
struct Stats {
std::vector<float> values;
std::vector<int64_t> counts;
};
struct tensor_statistics {
std::string tensor;
Stats stats;
float total_sqract = 0.0f;
float mean_sqract = 0.0f;
float max_sqract = 0.0f;
float min_sqract = 0.0f;
int elements = 0;
float stddev = 0.0f;
float active = 0.0f;
float entropy = 0.0f;
float zd = 0.0f;
float cossim = 0.0f;
};
class IMatrixCollector {
public:
IMatrixCollector() = default;
void set_params(common_params params) { m_params = std::move(params); }
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
void save_imatrix_legacy(int32_t ncall = -1) const;
void save_imatrix(int32_t n_chunk = -1) const;
bool load_imatrix_legacy(const char * fname);
bool load_imatrix(const char * file_name);
const std::unordered_map<std::string, Stats> & get_mstats() const { return m_stats; }
private:
std::unordered_map<std::string, Stats> m_stats;
common_params m_params;
std::mutex m_mutex;
std::vector<std::string> m_datasets;
int32_t m_last_chunk = 0;
std::vector<char> m_src1_data;
std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
};
// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
static std::string filter_tensor_name(const char * name) {
std::string wname;
const char * p = strchr(name, '#');
if (p != NULL) {
p = p + 1;
const char * q = strchr(p, '#');
if (q != NULL) {
wname = std::string(p, q - p);
} else {
wname = p;
}
} else {
wname = name;
}
return wname;
}
static void process_tensor_name(const std::string & input, std::string & layer, std::string & tensor) {
std::vector<std::string> name;
std::istringstream stream(input);
std::string item;
while (std::getline(stream, item, '.')) {
name.push_back(item);
}
for (size_t i = 0; i < name.size(); ++i) {
if (name[i] == "blk" && i + 1 < name.size()) {
layer = name[i + 1];
break;
}
}
for (size_t i = 0; i < name.size(); ++i) {
if (name[i] == "weight" && i > 0) {
tensor = name[i - 1];
break;
}
}
if (tensor.empty()) {
tensor = input;
}
if (layer.empty()) {
layer = "-";
}
}
static void compute_statistics(std::vector<tensor_statistics> & tstats, const std::string & name, const Stats & e) {
if (e.values.size() % e.counts.size() != 0) {
LOG_ERR("%s: activation size mismatch for tensor %s (%zu vs %zu)\n", __func__, name.c_str(), e.counts.size(), e.values.size());
return;
}
if (e.counts.empty()) {
LOG_ERR("%s: there are no activations for tensor %s. The imatrix may be suboptimal\n", __func__, name.c_str());
return;
}
const int n_mat = e.counts.size();
const int row_size = e.values.size() / n_mat;
std::vector<float> activations;
activations.reserve(e.values.size());
for (int i = 0; i < n_mat; ++i) {
for (int j = 0; j < row_size; ++j) {
activations.push_back(e.values[i*row_size + j] / e.counts[i]);
}
}
const float act_total = std::accumulate(activations.begin(), activations.end(), 0.0f);
const float act_max = *std::max_element(activations.begin(), activations.end());
const float act_min = *std::min_element(activations.begin(), activations.end());
const float act_mean = act_total / activations.size();
const float act_sqr_total = std::inner_product(activations.begin(), activations.end(), activations.begin(), 0.0f);
const float act_var = (act_sqr_total / activations.size()) - (act_mean * act_mean);
const float act_dev = std::sqrt(std::max(0.0f, act_var));
float threshold = 1e-5f;
const int inactive_count = std::count_if(activations.begin(), activations.end(),
[threshold](const float v) { return fabsf(v) <= threshold; });
const float active_ratio = 1 - static_cast<float>(inactive_count) / activations.size();
float entropy = 0;
if (act_total > 0) {
for (const auto act : activations) {
if (const float p = act / act_total; p > 0) {
entropy -= p * std::log2(p);
}
}
}
int z_score = 0;
if (act_dev > 0.0f) {
for (const auto act : activations) {
if (const float p = (act - act_mean) / act_dev; p > 1) {
z_score++;
}
}
}
auto & ts = tstats.emplace_back();
ts.tensor = name;
ts.stats = e;
ts.total_sqract = act_total;
ts.mean_sqract = act_mean;
ts.max_sqract = act_max;
ts.min_sqract = act_min;
ts.elements = static_cast<int>(activations.size());
ts.stddev = act_dev;
ts.active = active_ratio;
ts.entropy = entropy;
ts.zd = static_cast<float>(z_score) / ts.elements;
}
static void compute_cossim(std::vector<tensor_statistics> & tstats) {
static const std::regex pattern(R"(blk\.(\d+)\.)");
for (auto & ts : tstats) {
if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) {
const int blk = std::stoi(match[1]);
std::string tname(ts.tensor);
tname.replace(match.position(1), match.length(1), std::to_string(blk-1));
auto prev = std::find_if(tstats.begin(), tstats.end(),
[tname](const tensor_statistics & t) { return t.tensor == tname; });
if (prev != tstats.end()) {
const float dp = std::inner_product(ts.stats.values.begin(), ts.stats.values.end(),
prev->stats.values.begin(), 0.0f);
const float curr_mag = std::sqrt(std::inner_product(ts.stats.values.begin(), ts.stats.values.end(),
ts.stats.values.begin(), 0.0f));
const float prev_mag = std::sqrt(std::inner_product(prev->stats.values.begin(), prev->stats.values.end(),
prev->stats.values.begin(), 0.0f));
const float cs = dp / (curr_mag * prev_mag);
ts.cossim = cs;
}
} else {
ts.cossim = 0;
}
}
}
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
GGML_UNUSED(user_data);
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
std::string wname = filter_tensor_name(src0->name);
const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
if (ask) {
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
if (t->op != GGML_OP_MUL_MAT) return false;
// why are small batches ignored (<16 tokens)?
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
return true;
}
std::lock_guard<std::mutex> lock(m_mutex);
// copy the data from the GPU memory if needed
const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
if (!is_host) {
const size_t src1_nbytes = ggml_nbytes(src1);
m_src1_data.resize(src1_nbytes);
ggml_backend_tensor_get(src1, m_src1_data.data(), 0, src1_nbytes);
}
const char * data = is_host ? (const char *) src1->data : m_src1_data.data();
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
// this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggml-org/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) {
// ids -> [n_experts_used, n_tokens]
// src1 -> [cols, n_expert_used, n_tokens]
const ggml_tensor * ids = t->src[2];
const int64_t n_as = src0->ne[2];
const int64_t n_ids = ids->ne[0];
// the top-k selected expert ids are stored in the ids tensor
// for simplicity, always copy ids to host, because it is small
// take into account that ids is not contiguous!
GGML_ASSERT(ids->ne[1] == src1->ne[2]);
// the extra dimension would need to be stored somewhere to be reflected in the imatrix file
if (ggml_nrows(src1) != src1->ne[1] * src1->ne[2]) {
LOG_ERR("%s: tensor has more than 3 dimensions: %s", __func__, wname.c_str());
GGML_ASSERT(false);
}
m_ids.resize(ggml_nbytes(ids));
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
auto & e = m_stats[wname];
if (e.counts.size() == 1 && n_as > 1) {
// broadcast, when loading an old imatrix
e.counts.resize(n_as, e.counts[0]);
}
if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
e.counts.resize(n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0]*n_as));
exit(1); //GGML_ABORT("fatal error");
}
else if (e.counts.size() != (size_t)n_as) {
LOG_ERR("%s: inconsistent expert count for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.counts.size(), (int)n_as);
exit(1); //GGML_ABORT("fatal error");
}
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
// loop over all possible experts, regardless if they are used or not in the batch
for (int64_t ex = 0; ex < n_as; ++ex) {
size_t e_start = ex*src1->ne[0];
for (int64_t idx = 0; idx < n_ids; ++idx) {
for (int64_t row = 0; row < src1->ne[2]; ++row) {
const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
if (excur != ex) continue;
const int64_t i11 = idx % src1->ne[1];
const int64_t i12 = row;
const float * x = (const float *)(data + i11*src1->nb[1] + i12*src1->nb[2]);
e.counts[ex]++;
for (int64_t j = 0; j < src1->ne[0]; ++j) {
e.values[e_start + j] += x[j] * x[j];
if (!std::isfinite((float)e.values[e_start + j])) {
LOG_ERR("%f detected in %s\n", (float)e.values[e_start + j], wname.c_str());
exit(1);
}
}
}
}
const int32_t n_chunk = e.counts[ex] / chunk_size;
if (n_chunk > m_last_chunk) {
const int32_t chunk_step = n_chunk - m_last_chunk;
m_last_chunk = n_chunk;
if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
save_imatrix();
}
if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
save_imatrix(m_last_chunk);
}
}
}
} else {
auto & e = m_stats[wname];
const int64_t n_mat = src0->ne[2] * src0->ne[3];
// use a single count per dense tensor
// (necessary when merging older GGUF-imatrix files with 3d tensors)
if (e.counts.size() > 1) {
bool all_equal = true;
for (size_t i = 1; i < e.counts.size(); ++i) {
if (e.counts[0] != e.counts[i]) {
all_equal = false;
break;
}
}
if (all_equal) {
e.counts.resize(1);
}
}
if (e.values.empty()) {
e.values.resize(src1->ne[0] * n_mat, 0);
e.counts.resize(1, 0);
}
else if (e.values.size() != (size_t)(src1->ne[0] * n_mat)) {
LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)(src1->ne[0] * n_mat));
exit(1); //GGML_ABORT("fatal error");
}
LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d x %5d, %d\n", __func__, m_last_chunk, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->ne[2], (int)src1->type);
for (int64_t i3 = 0; i3 < src1->ne[3]; ++i3) {
for (int64_t i2 = 0; i2 < src1->ne[2]; ++i2) {
// handle 3D+ tensors, but flatten 3D+ activations when model tensor is 2D
const int64_t mat_id = (i3 % src0->ne[3]) * src0->ne[2] + (i2 % src0->ne[2]);
const int64_t mat_start = mat_id * src1->ne[0];
for (int64_t row = 0; row < src1->ne[1]; ++row) {
const float * x = (const float *) (data + row * src1->nb[1] + i2 * src1->nb[2] + i3 * src1->nb[3]);
for (int64_t j = 0; j < src1->ne[0]; ++j) {
e.values[mat_start + j] += x[j] * x[j];
if (!std::isfinite((float)e.values[j])) {
LOG_ERR("%f detected in %s\n", (float)e.values[j], wname.c_str());
exit(1);
}
}
}
}
}
// only 1 count in practice, except when a tensor is used for both MUL_MAT_ID and MUL_MAT
for (size_t i = 0; i < e.counts.size(); ++i) {
e.counts[i] += ggml_nrows(src1) / n_mat;
const int32_t n_chunk = e.counts[i] / chunk_size;
if (n_chunk > m_last_chunk) {
const int32_t chunk_step = n_chunk - m_last_chunk;
m_last_chunk = n_chunk;
if ((m_last_chunk % m_params.n_out_freq) / chunk_step == 0) {
save_imatrix();
}
if (m_params.n_save_freq > 0 && (m_last_chunk % m_params.n_save_freq) / chunk_step == 0) {
save_imatrix(m_last_chunk);
}
}
}
}
return true;
}
void IMatrixCollector::save_imatrix_legacy(int32_t ncall) const {
auto fname = m_params.out_file;
if (ncall > 0) {
fname += ".at_";
fname += std::to_string(ncall);
}
// warn when writing imatrix entries that do not have full data
// this can happen with MoE models where some of the experts end up not being exercised by the provided training data
int n_entries = 0;
std::vector<std::string> to_store;
bool is_first = true; // for printing
for (const auto & kv : m_stats) {
const int n_all = kv.second.counts.size();
if (n_all == 0) {
continue;
}
int n_zeros = 0;
for (const int c : kv.second.counts) {
if (c == 0) {
n_zeros++;
}
}
if (n_zeros != 0 && is_first) {
LOG_INF("\n");
is_first = false;
}
if (n_zeros == n_all) {
LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
continue;
}
if (n_zeros > 0) {
LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
}
n_entries++;
to_store.push_back(kv.first);
}
if (to_store.size() < m_stats.size()) {
LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
}
// deterministic tensor name order
std::sort(to_store.begin(), to_store.end());
const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
std::ofstream out(fname, std::ios::binary);
out.write((const char *) &n_entries, sizeof(n_entries));
for (const auto & name : to_store) {
const auto & stat = m_stats.at(name);
const int32_t len = name.size();
out.write((const char *) &len, sizeof(len));
out.write(name.c_str(), len);
// ceiling division to avoid accidental zeros
const int32_t ncall = (*std::max_element(stat.counts.begin(), stat.counts.end()) + (chunk_size - 1)) / chunk_size;
out.write((const char *) &ncall, sizeof(ncall));
const int32_t nval = stat.values.size();
const int32_t nmat = stat.counts.size();
out.write((const char *) &nval, sizeof(nval));
if (nval > 0 && nmat > 0) {
std::vector<float> tmp(nval);
for (int32_t i = 0; i < nval; i++) {
float count = static_cast<float>(stat.counts[i / (nval / nmat)]);
float value = stat.values[i];
if (count == 0.0f) {
// store 1 for partial data
value = 1.0f;
count = 1.0f;
}
tmp[i] = (value / count) * static_cast<float>(ncall);
}
out.write((const char *) tmp.data(), nval * sizeof(float));
}
}
// Write the number of call the matrix was computed with
out.write((const char *) &m_last_chunk, sizeof(m_last_chunk));
// Write the input filename at the end of the file to later on specify it in quantize
{
const char * dataset_file = m_params.prompt_file.c_str();
int32_t len = m_params.prompt_file.size();
// When there is no prompt but there were other imatrix files loaded, use the last dataset
if (m_params.prompt_file.empty() && !m_datasets.empty()) {
const std::string & dataset_str = m_datasets[m_datasets.size() - 1];
dataset_file = dataset_str.c_str();
len = dataset_str.size();
}
out.write((const char *) &len, sizeof(len));
out.write(dataset_file, len);
}
LOGV(1, "\n");
LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
}
void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
auto fname = m_params.out_file;
int8_t use_legacy_format = m_params.imat_dat;
if (use_legacy_format > 0) {
this->save_imatrix_legacy(n_chunk);
return;
}
// only warn when `--output-format gguf` is not specified
if (use_legacy_format == 0 && !string_ends_with(fname, ".gguf")) {
LOG_WRN("\n%s: saving imatrix using GGUF format with a different suffix than .gguf\n", __func__);
LOG_WRN("%s: if you want the previous imatrix format, use --output-format dat\n", __func__);
}
if (n_chunk > 0) {
fname += ".at_";
fname += std::to_string(n_chunk);
}
// write imatrix entries even if they don't have full data. (can be corrected when reading)
// this can happen with MoE models where some of the experts end up not being exercised by the provided training data
std::vector<std::string> to_store;
size_t data_size = 0;
bool is_first = true; // for printing
for (const auto & kv : m_stats) {
const int n_all = kv.second.counts.size();
int n_zeros = 0;
for (const auto c : kv.second.counts) {
if (c == 0) {
n_zeros++;
}
}
if (n_zeros != 0 && is_first) {
LOG_INF("\n");
is_first = false;
}
if (n_zeros > 0) {
LOG_WRN("%s: entry '%40s' has partial data (%.2f%%)\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
}
to_store.push_back(kv.first);
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN);
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN);
}
// deterministic tensor name order
std::sort(to_store.begin(), to_store.end());
struct ggml_init_params params = {
/* .mem_size = */ data_size,
/* .mem_buffer = */ NULL,
/* .no_alloc = */ false,
};
struct ggml_context * ctx = ggml_init(params);
struct gguf_context * ctx_gguf = gguf_init_empty();
{
std::vector<const char *> datasets;
datasets.reserve(m_datasets.size() + 1);
for (size_t i = 0; i < m_datasets.size(); ++i) {
datasets.push_back(m_datasets[i].c_str());
}
if (!m_params.prompt_file.empty()) {
datasets.push_back(m_params.prompt_file.c_str());
}
gguf_set_val_str(ctx_gguf, "general.type", "imatrix");
// Write the dataset paths
gguf_set_arr_str(ctx_gguf, LLM_KV_IMATRIX_DATASETS, datasets.data(), datasets.size());
// Write the number of chunks the matrix was computed with
gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_COUNT, m_last_chunk);
gguf_set_val_u32(ctx_gguf, LLM_KV_IMATRIX_CHUNK_SIZE, m_params.n_ctx / m_params.n_parallel);
}
for (const auto & name : to_store) {
const auto & stat = m_stats.at(name);
const int32_t nval = (int32_t) stat.values.size();
const int32_t nmat = (int32_t) stat.counts.size();
if (nval > 0 && nmat > 0) {
struct ggml_tensor * in_sum2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nval / nmat, nmat);
struct ggml_tensor * counts = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, nmat);
ggml_format_name(in_sum2, "%s.in_sum2", name.c_str());
ggml_format_name(counts, "%s.counts", name.c_str());
for (int32_t j = 0; j < nval; ++j) {
((float *) in_sum2->data)[j] = (float) stat.values[j];
}
for (int32_t j = 0; j < nmat; ++j) {
((float *) counts->data)[j] = (float) stat.counts[j];
}
gguf_add_tensor(ctx_gguf, in_sum2);
gguf_add_tensor(ctx_gguf, counts);
}
}
gguf_write_to_file(ctx_gguf, fname.c_str(), false);
LOGV(1, "\n");
LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_chunk, fname.c_str());
gguf_free(ctx_gguf);
ggml_free(ctx);
}
bool IMatrixCollector::load_imatrix_legacy(const char * fname) {
std::ifstream in(fname, std::ios::binary);
if (!in) {
LOG_ERR("%s: failed to open %s\n", __func__, fname);
return false;
}
int n_entries;
in.read((char *) &n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) {
LOG_ERR("%s: no data in file %s\n", __func__, fname);
return false;
}
// Guess the chunk size because it's not stored in the file
const int32_t chunk_size = m_params.n_ctx / m_params.n_parallel;
for (int i = 0; i < n_entries; ++i) {
int32_t len = 0;
in.read((char *) &len, sizeof(len));
std::vector<char> name_as_vec(len + 1);
in.read((char *) name_as_vec.data(), len);
if (in.fail()) {
LOG_ERR("%s: failed reading name for entry %d from %s\n", __func__, i + 1, fname);
return false;
}
name_as_vec[len] = 0;
std::string name{ name_as_vec.data() };
auto & e = m_stats[std::move(name)];
int32_t ncall = 0;
in.read((char *) &ncall, sizeof(ncall));
int32_t nval = 0;
in.read((char *) &nval, sizeof(nval));
if (in.fail() || nval < 1) {
LOG_ERR("%s: failed reading number of values for entry %d\n", __func__, i);
m_stats = {};
return false;
}
if (e.values.empty()) {
e.values.resize(nval, 0.0f);
e.counts.resize(1, 0);
}
std::vector<float> tmp(nval);
in.read((char *) tmp.data(), nval * sizeof(float));
if (in.fail()) {
LOG_ERR("%s: failed reading data for entry %d\n", __func__, i);
m_stats = {};
return false;
}
// Recreate the state as expected by save_imatrix(), and correct for weighted sum.
for (int i = 0; i < nval; i++) {
e.values[i] += tmp[i] * chunk_size;
}
// The legacy format doesn't distinguish the counts for different experts
for (size_t j = 0; j < e.counts.size(); ++j) {
e.counts[j] += ncall * chunk_size;
}
}
{
// TODO: extract into its own method; this is also used by the GGUF-based format
// Calculate the last chunk count
int64_t max_count = 0;
for (const auto & stats : m_stats) {
for (int64_t count : stats.second.counts) {
if (count > max_count) {
max_count = count;
}
}
}
m_last_chunk = max_count / (chunk_size);
}
{
// Read the number of calls the matrix was computed with
int32_t n_calls;
in.read((char *) &n_calls, sizeof(n_calls));
// ignore it because it's not important
}
// Read the dataset path to include it when writing to GGUF
if (!in.fail()){
int32_t len = 0;
in.read((char *) &len, sizeof(len));
if (!in.fail()) {
std::vector<char> dataset;
dataset.resize(len + 1, 0);
in.read(dataset.data(), len);
if (!in.fail()) {
m_datasets.push_back(dataset.data());
}
}
}
return true;
}
// Using GGUF as the file format, for greater extensibility
bool IMatrixCollector::load_imatrix(const char * file_name) {
struct ggml_context * ctx = nullptr;
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ false, // the data is needed
/* .ctx = */ &ctx,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(file_name, meta_gguf_params);
if (!ctx_gguf) {
return this->load_imatrix_legacy(file_name);
}
const int32_t n_entries = gguf_get_n_tensors(ctx_gguf);
if (n_entries < 1) {
LOG_ERR("%s: no data in file %s\n", __func__, file_name);
gguf_free(ctx_gguf);
ggml_free(ctx);
return false;
}
const int64_t datasets_key = gguf_find_key(ctx_gguf, LLM_KV_IMATRIX_DATASETS);
if (datasets_key != -1 && gguf_get_arr_type(ctx_gguf, datasets_key) == GGUF_TYPE_STRING) {
const int64_t n = gguf_get_arr_n(ctx_gguf, datasets_key);
m_datasets.reserve(m_datasets.size() + n);
for (int64_t i = 0; i < n; ++i) {
m_datasets.push_back(gguf_get_arr_str(ctx_gguf, datasets_key, i));
}
}
const std::string in_sum2_suffix{ ".in_sum2" };
const std::string counts_suffix{ ".counts" };
// Could re-use m_stats instead, but this allows
// checking for completeness of *each* loaded imatrix file
// and also makes it easier to re-use a similar implementation in quantize.cpp
// Using an ordered map to get a deterministic iteration order.
std::map<std::string, std::pair<struct ggml_tensor *, struct ggml_tensor *>> sums_counts_for;
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
std::string name = cur->name;
if (name.empty()) { continue; }
if (string_remove_suffix(name, in_sum2_suffix)) {
// in_sum2
sums_counts_for[std::move(name)].first = cur;
} else if (string_remove_suffix(name, counts_suffix)) {
// counts
sums_counts_for[std::move(name)].second = cur;
} else {
// ignore other tensors
}
}
for (const auto & sc : sums_counts_for) {
const std::string & name = sc.first;
const struct ggml_tensor * in_sum2 = sc.second.first;
const struct ggml_tensor * counts = sc.second.second;
if (!in_sum2 || !counts) {
LOG_ERR("%s: mismatched sums and counts for %s\n", __func__, name.c_str());
gguf_free(ctx_gguf);
ggml_free(ctx);
return false;
}
auto & e = m_stats[name];
int64_t nval = ggml_nelements(in_sum2);
if (e.values.empty()) {
e.values.resize(nval, 0.0f);
} else if ((size_t) nval != e.values.size()) {
LOG_ERR("%s: mismatched sums size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) nval, e.values.size());
gguf_free(ctx_gguf);
ggml_free(ctx);
return false;
}
int64_t ncounts = ggml_nelements(counts);
if (e.counts.empty()) {
e.counts.resize(ncounts, 0);
} else if (e.counts.size() == 1 && ncounts > 1) {
// broadcast, when loading an old imatrix
e.counts.resize(ncounts, e.counts[0]);
} else if ((size_t) ncounts != e.counts.size()) {
LOG_ERR("%s: mismatched counts size for %s: %zu != %zu\n", __func__, name.c_str(), (size_t) ncounts, e.counts.size());
gguf_free(ctx_gguf);
ggml_free(ctx);
return false;
}
// Recreate the state as expected by save_imatrix()
for (int64_t j = 0; j < nval; j++) {
e.values[j] += ((const float *) in_sum2->data)[j];
}
for (int64_t j = 0; j < ncounts; j++) {
e.counts[j] += std::lround(((const float *) counts->data)[j]);
}
}
// TODO: extract into its own method; this is also used by the legacy format
// Calculate the last chunk count
int64_t max_count = 0;
for (const auto & stats : m_stats) {
for (int64_t count : stats.second.counts) {
if (count > max_count) {
max_count = count;
}
}
}
m_last_chunk = max_count / (m_params.n_ctx / m_params.n_parallel);
gguf_free(ctx_gguf);
ggml_free(ctx);
return true;
}
static IMatrixCollector g_collector;
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
return g_collector.collect_imatrix(t, ask, user_data);
}
struct results_log_softmax {
double log_softmax;
float logit;
float prob;
};
static std::vector<float> softmax(const std::vector<float> & logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) {
max_logit = std::max(max_logit, v);
}
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
const float logit = logits[i] - max_logit;
const float exp_logit = expf(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) {
probs[i] /= sum_exp;
}
return probs;
}
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
float max_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) {
max_logit = std::max(max_logit, logits[i]);
}
double sum_exp = 0.0;
for (int i = 0; i < n_vocab; ++i) {
sum_exp += expf(logits[i] - max_logit);
}
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}
static void process_logits(
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
double & nll, double & nll2, float * logit_history, float * prob_history) {
std::mutex mutex;
int counter = 0;
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
double local_nll = 0;
double local_nll2 = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int i = counter++;
if (i >= n_token) {
nll += local_nll; nll2 += local_nll2;
break;
}
lock.unlock();
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
const double v = -results.log_softmax;
local_nll += v;
local_nll2 += v*v;
logit_history[i] = results.logit;
prob_history[i] = results.prob;
}
};
for (auto & w : workers) {
w = std::thread(compute);
}
compute();
for (auto & w : workers) {
w.join();
}
}
static bool compute_imatrix(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
auto tim1 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenizing the input ..\n", __func__);
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true, params.parse_special);
auto tim2 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
if (params.i_chunk > 0) {
if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
return false;
}
LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
}
if (int(tokens.size()) < 2*n_ctx) {
LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
return false;
}
std::vector<float> logit_history;
std::vector<float> prob_history;
if (params.compute_ppl) {
logit_history.resize(tokens.size());
prob_history.resize(tokens.size());
}
const int n_chunk_max = tokens.size() / n_ctx;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_vocab_n_tokens(vocab);
const int n_batch = params.n_batch;
int count = 0;
double nll = 0.0;
double nll2 = 0.0;
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
const int n_seq = std::max(1, n_batch / n_ctx);
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
std::vector<float> logits;
if (params.compute_ppl && num_batches > 1) {
logits.reserve((size_t)n_ctx * n_vocab);
}
LOG_INF("%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
for (int i = 0; i < n_chunk; i += n_seq) {
const int start = i * n_ctx;
const int end = start + n_ctx;
const int n_seq_batch = std::min(n_seq, n_chunk - i);
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_memory_clear(llama_get_memory(ctx), true);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
// clear the batch
common_batch_clear(batch);
for (int seq = 0; seq < n_seq_batch; seq++) {
int seq_start = batch_start + seq*n_ctx;
// save original token and restore it after eval
const auto token_org = tokens[seq_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[seq_start] = llama_vocab_bos(vocab);
}
for (int k = 0; k < batch_size; ++k) {
// NOTE: specifying all logits to get activations for the output.weight tensor
// and also for the perplexity calculation.
// TODO: only get outputs when (params.process_output || params.compute_ppl)
// (not possible when this skips FFN computation of the last layer)
common_batch_add(batch, tokens[seq_start + k], j*n_batch + k, { seq }, true);
}
// restore the original token in case it was set to BOS
tokens[seq_start] = token_org;
}
if (llama_decode(ctx, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return false;
}
if (params.compute_ppl && num_batches > 1) {
const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
}
}
if (i == 0) {
llama_synchronize(ctx);
const auto t_end = std::chrono::high_resolution_clock::now();
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total * n_chunk / n_seq);
if (total_seconds >= 60*60) {
LOG("%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
LOG("%.2f minutes\n", total_seconds / 60.0);
}
if (params.compute_ppl) {
const int first = n_ctx/2;
for (int seq = 0; seq < n_seq_batch; seq++) {
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx);
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
process_logits(n_vocab, all_logits + first*n_vocab,
tokens_data, n_ctx - 1 - first,
workers, nll, nll2,
logit_history.data() + start + seq*n_ctx + first,
prob_history.data() + start + seq*n_ctx + first);
count += n_ctx - first - 1;
LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
}
fflush(stdout);
logits.clear();
}
}
LOG("\n");
if (params.compute_ppl) {
nll2 /= count;
nll /= count;
const double ppl = exp(nll);
nll2 -= nll * nll;
if (nll2 > 0) {
nll2 = sqrt(nll2/(count-1));
LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
} else {
LOG("Unexpected negative standard deviation of log(prob)\n");
}
}
llama_batch_free(batch);
return true;
}
static bool show_statistics(const common_params & params) {
std::vector<tensor_statistics> ts;
if (params.in_files.empty() || params.in_files.size() > 1) {
LOG_ERR("\nError: a single imatrix file is required to compute tensor statistics\n\n");
return false;
}
if (g_collector.load_imatrix(params.in_files[0].c_str())) {
for (const auto & [name, stats] :g_collector.get_mstats()) {
compute_statistics(ts, name, stats);
}
} else {
LOG_ERR("\nError: %s is not a valid imatrix file\n\n", params.in_files[0].c_str());
return false;
}
if (!ts.empty()) {
compute_cossim(ts);
} else {
LOG_ERR("Error: cannot compute statistics for %s\n\n", params.in_files[0].c_str());
return false;
}
struct tensor_comparer {
bool operator()(const tensor_statistics & a, const tensor_statistics & b) const {
std::string layer, name_a, name_b;
;
process_tensor_name(a.tensor, layer, name_a);
process_tensor_name(b.tensor, layer, name_b);
return name_a < name_b || (name_a == name_b && a.total_sqract > b.total_sqract);
}
};
std::sort(ts.begin(), ts.end(), tensor_comparer());
struct weighted_stats {
float weighted_bias = 0.0f;
float weighted_zd = 0.0f;
float weighted_cossim = 0.0f;
int total_elements = 0;
};
std::map<int, weighted_stats> ws;
LOG_INF("\nComputing statistics for %s (%d tensors)\n", params.in_files[0].c_str(), static_cast<int>(ts.size()));
LOG_INF("\n%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n", " Layer", " Tensor", " Σ(Act²)",
" Min", " Max", " μ", " σ", " % Active", "N", " Entropy", "E (norm)", "ZD",
" CosSim");
LOG_INF(
"=============================================================================================================="
"===========================================================\n");
for (const auto & tstat : ts) {
std::string layer, name;
process_tensor_name(tstat.tensor, layer, name);
int blk;
try {
blk = std::stoi(layer);
} catch (const std::exception & e) {
blk = -1; // not a block layer
}
LOG_INF("%5s\t%-20s\t%10.2f\t%8.4f\t%11.4f\t%6.2f\t%6.2f\t%8.2f%%\t%6d\t%10.4f\t%6.2f%%\t%10.2f%%\t%8.4f\n",
layer.c_str(), name.c_str(), tstat.total_sqract, tstat.min_sqract, tstat.max_sqract, tstat.mean_sqract,
tstat.stddev, tstat.active * 100.0f, tstat.elements, tstat.entropy,
100.0f * (tstat.entropy / std::log2(tstat.elements)), 100.0f * tstat.zd, tstat.cossim);
const float weighted_bias = tstat.elements * tstat.total_sqract;
const float weighted_zd = tstat.elements * tstat.zd;
const float weighted_cossim = tstat.elements * tstat.cossim;
if (ws.find(blk) != ws.end()) {
ws[blk].weighted_bias += weighted_bias;
ws[blk].weighted_zd += weighted_zd;
ws[blk].weighted_cossim += weighted_cossim;
ws[blk].total_elements += tstat.elements;
} else {
weighted_stats temp_ws;
temp_ws.weighted_bias = weighted_bias;
temp_ws.weighted_zd = weighted_zd;
temp_ws.weighted_cossim = weighted_cossim;
temp_ws.total_elements = tstat.elements;
ws[blk] = temp_ws;
}
}
const int layers = std::count_if(ws.begin(), ws.end(), [](const auto & kv) { return kv.first >= 0; });
LOG_INF("\nComputing weighted average statistics per layer (%d layers)\n", layers);
LOG_INF("\n%s\t%s\t%s\t%s\n", " Layer", " μΣ(Act²)", " μZD", "μCosSim");
LOG_INF("================================================\n");
for (const auto & [first, second] : ws) {
const auto & layer = first;
const auto & stats = second;
if (stats.total_elements == 0) {
continue;
}
if (layer >= 0) {
const float bias = stats.weighted_bias / stats.total_elements;
const float zd = stats.weighted_zd / stats.total_elements;
const float cossim = stats.weighted_cossim / stats.total_elements;
LOG_INF("%5d\t%14.2f\t%10.4f%%\t%6.4f\n", layer, bias, 100.0f * zd, cossim);
}
}
LOG_INF("\n");
return true;
}
int main(int argc, char ** argv) {
common_params params;
params.out_file = "imatrix.gguf";
params.n_ctx = 512;
params.escape = false;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
return 1;
}
if (params.show_statistics) {
if (!show_statistics(params)) {
return 1;
}
return 0;
}
common_init();
const int32_t n_ctx = params.n_ctx;
if (n_ctx <= 0) {
LOG_ERR("%s: imatrix tool requires '--ctx-size' > 0\n", __func__);
return 1;
}
{
const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
const int32_t n_kv = n_seq * n_ctx;
params.n_parallel = n_seq;
params.n_ctx = n_kv;
params.n_batch = std::min(params.n_batch, n_kv);
}
g_collector.set_params(params);
for (const auto & in_file : params.in_files) {
LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
if (!g_collector.load_imatrix(in_file.c_str())) {
LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
return 1;
}
}
if (params.prompt.empty()) {
LOG_INF("No prompt provided; combining precomputed matrices only.\n");
if (params.in_files.empty()) {
LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
return 1;
}
if (params.in_files.size() == 1) {
LOG_INF("%s : saving imatrix to '%s'\n", __func__, params.out_file.c_str());
} else if (params.in_files.size() > 1) {
LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
}
g_collector.save_imatrix();
return 0;
}
llama_backend_init();
llama_numa_init(params.numa);
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = ik_collect_imatrix;
params.cb_eval_user_data = NULL;
params.warmup = false;
// init
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);
return 1;
}
const int n_ctx_train = llama_model_n_ctx_train(model);
if (params.n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
if (!compute_imatrix(ctx, params, n_ctx)) {
return 1;
}
g_collector.save_imatrix();
LOG("\n");
llama_perf_context_print(ctx);
llama_backend_free();
return 0;
}
|