1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
|
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "clip-impl.h"
#include "ggml.h"
#include "ggml-cpp.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
#include <array>
#include <numeric>
#include <functional>
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
enum ffn_op_type {
FFN_GELU,
FFN_GELU_ERF,
FFN_SILU,
FFN_GELU_QUICK,
};
enum norm_type {
NORM_TYPE_NORMAL,
NORM_TYPE_RMS,
};
//#define CLIP_DEBUG_FUNCTIONS
#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
return;
}
// PPM header: P6 format, width, height, and max color value
file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
// Write pixel data
for (size_t i = 0; i < img.buf.size(); i += 3) {
// PPM expects binary data in RGB format, which matches our image buffer
file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
}
file.close();
}
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
return;
}
int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
int bytesPerPixel = 3;
int widthInBytes = img.nx * bytesPerPixel;
int paddingAmount = (4 - (widthInBytes % 4)) % 4;
int stride = widthInBytes + paddingAmount;
// Bitmap file header
unsigned char fileHeader[14] = {
'B','M', // Signature
0,0,0,0, // Image file size in bytes
0,0,0,0, // Reserved
54,0,0,0 // Start of pixel array
};
// Total file size
fileSize = 54 + (stride * img.ny);
fileHeader[2] = (unsigned char)(fileSize);
fileHeader[3] = (unsigned char)(fileSize >> 8);
fileHeader[4] = (unsigned char)(fileSize >> 16);
fileHeader[5] = (unsigned char)(fileSize >> 24);
// Bitmap information header (BITMAPINFOHEADER)
unsigned char infoHeader[40] = {
40,0,0,0, // Size of this header (40 bytes)
0,0,0,0, // Image width
0,0,0,0, // Image height
1,0, // Number of color planes
24,0, // Bits per pixel
0,0,0,0, // No compression
0,0,0,0, // Image size (can be 0 for no compression)
0,0,0,0, // X pixels per meter (not specified)
0,0,0,0, // Y pixels per meter (not specified)
0,0,0,0, // Total colors (color table not used)
0,0,0,0 // Important colors (all are important)
};
// Width and height in the information header
infoHeader[4] = (unsigned char)(img.nx);
infoHeader[5] = (unsigned char)(img.nx >> 8);
infoHeader[6] = (unsigned char)(img.nx >> 16);
infoHeader[7] = (unsigned char)(img.nx >> 24);
infoHeader[8] = (unsigned char)(img.ny);
infoHeader[9] = (unsigned char)(img.ny >> 8);
infoHeader[10] = (unsigned char)(img.ny >> 16);
infoHeader[11] = (unsigned char)(img.ny >> 24);
// Write file headers
file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
// Pixel data
std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
for (int x = 0; x < img.nx; ++x) {
// Each pixel
size_t pixelIndex = (y * img.nx + x) * 3;
unsigned char pixel[3] = {
img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
img.buf[pixelIndex + 1],
img.buf[pixelIndex]
};
file.write(reinterpret_cast<char*>(pixel), 3);
}
// Write padding for the row
file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
}
file.close();
}
// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(3 * src.nx * src.ny);
for (size_t i = 0; i < src.buf.size(); ++i) {
dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
}
}
#endif
//
// clip layers
//
enum patch_merge_type {
PATCH_MERGE_FLAT,
PATCH_MERGE_SPATIAL_UNPAD,
};
struct clip_hparams {
int32_t image_size;
int32_t patch_size;
int32_t n_embd;
int32_t n_ff;
int32_t projection_dim;
int32_t n_head;
int32_t n_layer;
int32_t proj_scale_factor = 0; // idefics3
float image_mean[3];
float image_std[3];
// for models using dynamic image size, we need to have a smaller image size to warmup
// otherwise, user will get OOM everytime they load the model
int32_t warmup_image_size = 0;
int32_t warmup_audio_size = 3000;
ffn_op_type ffn_op = FFN_GELU;
patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
float eps = 1e-6;
float rope_theta = 0.0;
std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
int32_t image_crop_resolution;
std::unordered_set<int32_t> vision_feature_layer;
int32_t attn_window_size = 0;
int32_t n_wa_pattern = 0;
int32_t spatial_merge_size = 0;
// audio
int32_t n_mel_bins = 0; // whisper preprocessor
int32_t proj_stack_factor = 0; // ultravox
// legacy
bool has_llava_projector = false;
int minicpmv_version = 0;
int32_t minicpmv_query_num = 0; // MiniCPM-V query number
};
struct clip_layer {
// attention
ggml_tensor * k_w = nullptr;
ggml_tensor * k_b = nullptr;
ggml_tensor * q_w = nullptr;
ggml_tensor * q_b = nullptr;
ggml_tensor * v_w = nullptr;
ggml_tensor * v_b = nullptr;
ggml_tensor * o_w = nullptr;
ggml_tensor * o_b = nullptr;
ggml_tensor * k_norm = nullptr;
ggml_tensor * q_norm = nullptr;
// layernorm 1
ggml_tensor * ln_1_w = nullptr;
ggml_tensor * ln_1_b = nullptr;
ggml_tensor * ff_up_w = nullptr;
ggml_tensor * ff_up_b = nullptr;
ggml_tensor * ff_gate_w = nullptr;
ggml_tensor * ff_gate_b = nullptr;
ggml_tensor * ff_down_w = nullptr;
ggml_tensor * ff_down_b = nullptr;
// layernorm 2
ggml_tensor * ln_2_w = nullptr;
ggml_tensor * ln_2_b = nullptr;
// layer scale (no bias)
ggml_tensor * ls_1_w = nullptr;
ggml_tensor * ls_2_w = nullptr;
};
struct clip_model {
clip_modality modality = CLIP_MODALITY_VISION;
projector_type proj_type = PROJECTOR_TYPE_MLP;
clip_hparams hparams;
// embeddings
ggml_tensor * class_embedding = nullptr;
ggml_tensor * patch_embeddings_0 = nullptr;
ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
ggml_tensor * patch_bias = nullptr;
ggml_tensor * position_embeddings = nullptr;
ggml_tensor * pre_ln_w = nullptr;
ggml_tensor * pre_ln_b = nullptr;
std::vector<clip_layer> layers;
ggml_tensor * post_ln_w;
ggml_tensor * post_ln_b;
ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
ggml_tensor * mm_fc_w;
ggml_tensor * mm_fc_b;
// LLaVA projection
ggml_tensor * mm_input_norm_w = nullptr;
ggml_tensor * mm_input_norm_b = nullptr;
ggml_tensor * mm_0_w = nullptr;
ggml_tensor * mm_0_b = nullptr;
ggml_tensor * mm_2_w = nullptr;
ggml_tensor * mm_2_b = nullptr;
ggml_tensor * image_newline = nullptr;
// Yi type models with mlp+normalization projection
ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
ggml_tensor * mm_1_b = nullptr;
ggml_tensor * mm_3_w = nullptr;
ggml_tensor * mm_3_b = nullptr;
ggml_tensor * mm_4_w = nullptr;
ggml_tensor * mm_4_b = nullptr;
// GLMV-Edge projection
ggml_tensor * mm_model_adapter_conv_w = nullptr;
ggml_tensor * mm_model_adapter_conv_b = nullptr;
ggml_tensor * mm_glm_tok_boi = nullptr;
ggml_tensor * mm_glm_tok_eoi = nullptr;
// MobileVLM projection
ggml_tensor * mm_model_mlp_1_w = nullptr;
ggml_tensor * mm_model_mlp_1_b = nullptr;
ggml_tensor * mm_model_mlp_3_w = nullptr;
ggml_tensor * mm_model_mlp_3_b = nullptr;
ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
// MobileVLM_V2 projection
ggml_tensor * mm_model_mlp_0_w = nullptr;
ggml_tensor * mm_model_mlp_0_b = nullptr;
ggml_tensor * mm_model_mlp_2_w = nullptr;
ggml_tensor * mm_model_mlp_2_b = nullptr;
ggml_tensor * mm_model_peg_0_w = nullptr;
ggml_tensor * mm_model_peg_0_b = nullptr;
// MINICPMV projection
ggml_tensor * mm_model_pos_embed_k = nullptr;
ggml_tensor * mm_model_query = nullptr;
ggml_tensor * mm_model_proj = nullptr;
ggml_tensor * mm_model_kv_proj = nullptr;
ggml_tensor * mm_model_attn_q_w = nullptr;
ggml_tensor * mm_model_attn_q_b = nullptr;
ggml_tensor * mm_model_attn_k_w = nullptr;
ggml_tensor * mm_model_attn_k_b = nullptr;
ggml_tensor * mm_model_attn_v_w = nullptr;
ggml_tensor * mm_model_attn_v_b = nullptr;
ggml_tensor * mm_model_attn_o_w = nullptr;
ggml_tensor * mm_model_attn_o_b = nullptr;
ggml_tensor * mm_model_ln_q_w = nullptr;
ggml_tensor * mm_model_ln_q_b = nullptr;
ggml_tensor * mm_model_ln_kv_w = nullptr;
ggml_tensor * mm_model_ln_kv_b = nullptr;
ggml_tensor * mm_model_ln_post_w = nullptr;
ggml_tensor * mm_model_ln_post_b = nullptr;
// gemma3
ggml_tensor * mm_input_proj_w = nullptr;
ggml_tensor * mm_soft_emb_norm_w = nullptr;
// pixtral
ggml_tensor * token_embd_img_break = nullptr;
ggml_tensor * mm_patch_merger_w = nullptr;
// ultravox / whisper encoder
ggml_tensor * conv1d_1_w = nullptr;
ggml_tensor * conv1d_1_b = nullptr;
ggml_tensor * conv1d_2_w = nullptr;
ggml_tensor * conv1d_2_b = nullptr;
ggml_tensor * mm_norm_pre_w = nullptr;
ggml_tensor * mm_norm_mid_w = nullptr;
bool audio_has_avgpool() const {
return proj_type == PROJECTOR_TYPE_QWEN2A
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
}
bool audio_has_stack_frames() const {
return proj_type == PROJECTOR_TYPE_ULTRAVOX
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
}
};
struct clip_ctx {
clip_model model;
gguf_context_ptr ctx_gguf;
ggml_context_ptr ctx_data;
std::vector<uint8_t> buf_compute_meta;
std::vector<ggml_backend_t> backend_ptrs;
std::vector<ggml_backend_buffer_type_t> backend_buft;
ggml_backend_t backend = nullptr;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_buffer_ptr buf;
int max_nodes = 8192;
ggml_backend_sched_ptr sched;
// for debugging
bool debug_graph = false;
std::vector<ggml_tensor *> debug_print_tensors;
clip_ctx(clip_context_params & ctx_params) {
debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
if (!backend_cpu) {
throw std::runtime_error("failed to initialize CPU backend");
}
if (ctx_params.use_gpu) {
auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
if (backend_name != nullptr) {
backend = ggml_backend_init_by_name(backend_name, nullptr);
if (!backend) {
LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
}
}
if (!backend) {
backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
}
}
if (backend) {
LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
backend_ptrs.push_back(backend);
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
} else {
backend = backend_cpu;
LOG_INF("%s: CLIP using CPU backend\n", __func__);
}
backend_ptrs.push_back(backend_cpu);
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
sched.reset(
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
);
}
~clip_ctx() {
ggml_backend_free(backend);
if (backend != backend_cpu) {
ggml_backend_free(backend_cpu);
}
}
// this function is added so that we don't change too much of the existing code
projector_type proj_type() const {
return model.proj_type;
}
};
struct clip_graph {
clip_ctx * ctx;
const clip_model & model;
const clip_hparams & hparams;
// we only support single image per batch
const clip_image_f32 & img;
const int patch_size;
const int n_patches_x;
const int n_patches_y;
const int n_patches;
const int n_embd;
const int n_head;
const int d_head;
const int n_layer;
const float eps;
const float kq_scale;
ggml_context_ptr ctx0_ptr;
ggml_context * ctx0;
ggml_cgraph * gf;
clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
ctx(ctx),
model(ctx->model),
hparams(model.hparams),
img(img),
patch_size(hparams.patch_size),
n_patches_x(img.nx / patch_size),
n_patches_y(img.ny / patch_size),
n_patches(n_patches_x * n_patches_y),
n_embd(hparams.n_embd),
n_head(hparams.n_head),
d_head(n_embd / n_head),
n_layer(hparams.n_layer),
eps(hparams.eps),
kq_scale(1.0f / sqrtf((float)d_head)) {
struct ggml_init_params params = {
/*.mem_size =*/ ctx->buf_compute_meta.size(),
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
ctx0_ptr.reset(ggml_init(params));
ctx0 = ctx0_ptr.get();
gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
}
ggml_cgraph * build_siglip() {
ggml_tensor * inp = build_inp();
ggml_tensor * learned_pos_embd = model.position_embeddings;
if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
learned_pos_embd = resize_position_embeddings();
}
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
nullptr);
if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
const int batch_size = 1;
GGML_ASSERT(n_patches_x == n_patches_y);
const int patches_per_image = n_patches_x;
const int kernel_size = hparams.proj_scale_factor;
cur = ggml_transpose(ctx0, cur);
cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
// doing a pool2d to reduce the number of output tokens
cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
// apply norm before projection
cur = ggml_rms_norm(ctx0, cur, eps);
cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
// apply projection
cur = ggml_mul_mat(ctx0,
ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
cur);
} else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
// pixel_shuffle
// https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
const int scale_factor = model.hparams.proj_scale_factor;
cur = build_patch_merge_permute(cur, scale_factor);
cur = ggml_mul_mat(ctx0, model.projection, cur);
} else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
// pixel unshuffle block
const int scale_factor = model.hparams.proj_scale_factor;
cur = build_patch_merge_permute(cur, scale_factor);
// projection
cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
cur = ggml_add(ctx0, cur, model.mm_1_b);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
cur = ggml_add(ctx0, cur, model.mm_2_b);
} else {
GGML_ABORT("SigLIP: Unsupported projector type");
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
ggml_cgraph * build_pixtral() {
const int n_merge = hparams.spatial_merge_size;
// 2D input positions
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
};
ggml_tensor * inp = build_inp();
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_RMS,
hparams.ffn_op,
nullptr, // no learned pos embd
add_pos);
// mistral small 3.1 patch merger
// ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
if (model.mm_patch_merger_w) {
GGML_ASSERT(hparams.spatial_merge_size > 0);
cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
// reshape image tokens to 2D grid
cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
cur = ggml_cont(ctx0, cur);
// torch.nn.functional.unfold is just an im2col under the hood
// we just need a dummy kernel to make it work
ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
// project to n_embd
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
}
// LlavaMultiModalProjector (always using GELU activation)
{
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
if (model.mm_1_b) {
cur = ggml_add(ctx0, cur, model.mm_1_b);
}
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
if (model.mm_2_b) {
cur = ggml_add(ctx0, cur, model.mm_2_b);
}
}
// arrangement of the [IMG_BREAK] token
{
// not efficient, but works
// the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
// and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
// after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
const int p_total = p_x * p_y;
const int n_embd_text = cur->ne[0];
const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
tok = ggml_add(ctx0, tok, model.token_embd_img_break);
tmp = ggml_concat(ctx0, tmp, tok, 1);
cur = ggml_view_2d(ctx0, tmp,
n_embd_text, n_tokens_output,
ggml_row_size(tmp->type, n_embd_text), 0);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
// Qwen2VL and Qwen2.5VL use M-RoPE
ggml_cgraph * build_qwen2vl() {
GGML_ASSERT(model.patch_bias == nullptr);
GGML_ASSERT(model.class_embedding == nullptr);
const int batch_size = 1;
const bool use_window_attn = hparams.n_wa_pattern > 0;
const int n_wa_pattern = hparams.n_wa_pattern;
const int n_pos = n_patches;
const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
? NORM_TYPE_RMS // qwen 2.5 vl
: NORM_TYPE_NORMAL; // qwen 2 vl
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
GGML_ASSERT(img.nx % (patch_size * 2) == 0);
GGML_ASSERT(img.ny % (patch_size * 2) == 0);
// second conv dimension
{
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_cont_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
inp = ggml_cont_3d(
ctx0, inp,
n_embd, n_patches_x * n_patches_y, batch_size);
}
ggml_tensor * inpL = inp;
ggml_tensor * window_mask = nullptr;
ggml_tensor * window_idx = nullptr;
ggml_tensor * inv_window_idx = nullptr;
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
}
if (use_window_attn) {
// handle window attention inputs
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
ggml_set_name(inv_window_idx, "inv_window_idx");
ggml_set_input(inv_window_idx);
// mask for window attention
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
ggml_set_name(window_mask, "window_mask");
ggml_set_input(window_mask);
// inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
GGML_ASSERT(batch_size == 1);
inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
}
// loop over layers
for (int il = 0; il < n_layer; il++) {
auto & layer = model.layers[il];
const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
cb(cur, "ln1", il);
// self-attention
{
ggml_tensor * Qcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
ggml_tensor * Kcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
ggml_tensor * Vcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// apply M-RoPE
Qcur = ggml_rope_multi(
ctx0, Qcur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
Kcur = ggml_rope_multi(
ctx0, Kcur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
cb(Qcur, "Qcur_rope", il);
cb(Kcur, "Kcur_rope", il);
ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
cb(cur, "attn_out", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
}
// multimodal projection
ggml_tensor * embeddings = inpL;
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
if (use_window_attn) {
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
ggml_set_name(window_idx, "window_idx");
ggml_set_input(window_idx);
// embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
ggml_cgraph * build_minicpmv() {
const int batch_size = 1;
GGML_ASSERT(model.class_embedding == nullptr);
const int n_pos = n_patches;
// position embeddings for the projector (not for ViT)
int n_output_dim = clip_n_mmproj_embd(ctx);
ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
ggml_set_name(pos_embed, "pos_embed");
ggml_set_input(pos_embed);
// for selecting learned pos embd, used by ViT
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
ggml_tensor * inp = build_inp();
ggml_tensor * embeddings = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
nullptr);
// resampler projector (it is just another transformer)
ggml_tensor * q = model.mm_model_query;
ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
// norm
q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
// k = v + pos_embed
ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
// attention
{
int n_embd = clip_n_mmproj_embd(ctx);
const int d_head = 128;
int n_head = n_embd/d_head;
// Use actual config value if available, otherwise fall back to hardcoded values
int num_query = ctx->model.hparams.minicpmv_query_num;
ggml_tensor * Q = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
model.mm_model_attn_q_b);
ggml_tensor * K = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
model.mm_model_attn_k_b);
ggml_tensor * V = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
model.mm_model_attn_v_b);
Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
cb(Q, "resampler_Q", -1);
cb(K, "resampler_K", -1);
cb(V, "resampler_V", -1);
embeddings = build_attn(
model.mm_model_attn_o_w,
model.mm_model_attn_o_b,
Q, K, V, nullptr, kq_scale, -1);
cb(embeddings, "resampler_attn_out", -1);
}
// layernorm
embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
// projection
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
ggml_cgraph * build_internvl() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1;
ggml_tensor * inp = build_inp();
// add CLS token
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
// The larger models use a different ViT, which uses RMS norm instead of layer norm
// ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
: NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
ggml_tensor * cur = build_vit(
inp, n_pos,
norm_t,
hparams.ffn_op,
model.position_embeddings,
nullptr);
// remove CLS token
cur = ggml_view_2d(ctx0, cur,
n_embd, n_patches,
ggml_row_size(cur->type, n_embd), 0);
// pixel shuffle
{
const int scale_factor = model.hparams.proj_scale_factor;
const int bsz = 1; // batch size, always 1 for now since we don't support batching
const int height = n_patches_y;
const int width = n_patches_x;
GGML_ASSERT(scale_factor > 0);
cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont_4d(ctx0, cur,
n_embd * scale_factor * scale_factor,
height / scale_factor,
width / scale_factor,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// flatten to 2D
cur = ggml_cont_2d(ctx0, cur,
n_embd * scale_factor * scale_factor,
cur->ne[1] * cur->ne[2]);
}
// projector (always using GELU activation)
{
// projector LayerNorm uses pytorch's default eps = 1e-5
// ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
cur = ggml_add(ctx0, cur, model.mm_1_b);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
cur = ggml_add(ctx0, cur, model.mm_3_b);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
ggml_cgraph * build_llama4() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1; // +1 for [CLS]
// 2D input positions
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
ggml_tensor * inp = build_inp_raw();
// Llama4UnfoldConvolution
{
ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
patch_size, patch_size, 3, n_embd);
inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
cb(inp, "patch_conv", -1);
}
// add CLS token
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
// build ViT with 2D position embeddings
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
// first half is X axis and second half is Y axis
// ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
// ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
};
ggml_tensor * cur = build_vit(
inp, n_pos,
NORM_TYPE_NORMAL,
hparams.ffn_op,
model.position_embeddings,
add_pos);
// remove CLS token
cur = ggml_view_2d(ctx0, cur,
n_embd, n_patches,
ggml_row_size(cur->type, n_embd), 0);
// pixel shuffle
// based on Llama4VisionPixelShuffleMLP
// https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
{
const int scale_factor = model.hparams.proj_scale_factor;
const int bsz = 1; // batch size, always 1 for now since we don't support batching
GGML_ASSERT(scale_factor > 0);
GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
cur = ggml_reshape_4d(ctx0, cur,
n_embd * scale_factor,
n_patches_x / scale_factor,
n_patches_y,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont_4d(ctx0, cur,
n_embd * scale_factor * scale_factor,
n_patches_x / scale_factor,
n_patches_y / scale_factor,
bsz);
//cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// flatten to 2D
cur = ggml_cont_2d(ctx0, cur,
n_embd * scale_factor * scale_factor,
n_patches / scale_factor / scale_factor);
cb(cur, "pixel_shuffle", -1);
}
// based on Llama4VisionMLP2 (always uses GELU activation, no bias)
{
cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
cur = ggml_gelu(ctx0, cur);
cb(cur, "adapter_mlp", -1);
}
// Llama4MultiModalProjector
cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
cb(cur, "projected", -1);
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
ggml_cgraph * build_kimivl() {
// 2D input positions
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
ggml_tensor * learned_pos_embd = resize_position_embeddings();
// build ViT with 2D position embeddings
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
// first half is X axis and second half is Y axis
return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
};
ggml_tensor * inp = build_inp();
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
add_pos);
cb(cur, "vit_out", -1);
{
// patch_merger
const int scale_factor = model.hparams.proj_scale_factor;
cur = build_patch_merge_permute(cur, scale_factor);
// projection norm
int proj_inp_dim = cur->ne[0];
cur = ggml_view_2d(ctx0, cur,
n_embd, cur->ne[1] * scale_factor * scale_factor,
ggml_row_size(cur->type, n_embd), 0);
cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
cur = ggml_view_2d(ctx0, cur,
proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
ggml_row_size(cur->type, proj_inp_dim), 0);
cb(cur, "proj_inp_normed", -1);
// projection mlp
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
cur = ggml_add(ctx0, cur, model.mm_1_b);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
cur = ggml_add(ctx0, cur, model.mm_2_b);
cb(cur, "proj_out", -1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
// this graph is used by llava, granite and glm
// due to having embedding_stack (used by granite), we cannot reuse build_vit
ggml_cgraph * build_llava() {
const int batch_size = 1;
const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
// Calculate the deepest feature layer based on hparams and projector type
int max_feature_layer = n_layer;
{
// Get the index of the second to last layer; this is the default for models that have a llava projector
int il_last = hparams.n_layer - 1;
int deepest_feature_layer = -1;
if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
il_last += 1;
}
// If we set explicit vision feature layers, only go up to the deepest one
// NOTE: only used by granite-vision models for now
for (const auto & feature_layer : hparams.vision_feature_layer) {
if (feature_layer > deepest_feature_layer) {
deepest_feature_layer = feature_layer;
}
}
max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
}
ggml_tensor * inp = build_inp();
// concat class_embeddings and patch_embeddings
if (model.class_embedding) {
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
}
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
ggml_tensor * inpL = inp;
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
cb(inpL, "pre_ln", -1);
}
std::vector<ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers
for (int il = 0; il < max_feature_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(cur);
}
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "layer_inp_normed", il);
// self-attention
{
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b) {
Qcur = ggml_add(ctx0, Qcur, layer.q_b);
}
ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b) {
Kcur = ggml_add(ctx0, Kcur, layer.k_b);
}
ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b) {
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
}
ggml_tensor * embeddings = inpL;
// process vision feature layers (used by granite)
{
// final layer is a vision feature layer
if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(inpL);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
}
// llava projector (also used by granite)
if (ctx->model.hparams.has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(patches, "patches");
ggml_set_input(patches);
// shape [1, 576, 1024]
// ne is whcn, ne = [1024, 576, 1, 1]
embeddings = ggml_get_rows(ctx0, embeddings, patches);
// print_tensor_info(embeddings, "embeddings");
// llava projector
if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
if (model.mm_2_w) {
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
}
}
else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
// First LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
model.mm_1_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
// Second LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
model.mm_4_b);
}
else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
// MobileVLM projector
int n_patch = 24;
ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
mlp_1 = ggml_gelu(ctx0, mlp_1);
ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
// mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
// block 1
ggml_tensor * block_1 = nullptr;
{
// transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
// stride = 1, padding = 1, bias is nullptr
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
// layer norm
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// hardswish
ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// residual
block_1 = ggml_add(ctx0, mlp_3, block_1);
}
// block_2
{
// stride = 2
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// layer norm
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// hardswish
ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
// not sure the parameters is right for globalAvgPooling
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
// block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
}
embeddings = block_1;
}
else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
{
int n_patch = 24;
ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
mlp_0 = ggml_gelu(ctx0, mlp_0);
ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
// mlp_2 ne = [2048, 576, 1, 1]
// // AVG Pool Layer 2*2, strides = 2
mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
// mlp_2 ne = [576, 2048, 1, 1]
mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
// mlp_2 ne [24, 24, 2048, 1]
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
// weight ne = [3, 3, 2048, 1]
ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
embeddings = peg_0;
}
else {
GGML_ABORT("fatal error");
}
}
// glm projector
else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
// GLU
{
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
embeddings = ggml_gelu_inplace(ctx0, embeddings);
ggml_tensor * x = embeddings;
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
embeddings = ggml_swiglu_split(ctx0, embeddings, x);
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
// arrangement of BOI/EOI token embeddings
// note: these embeddings are not present in text model, hence we cannot process them as text tokens
// see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
{
embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
}
}
else {
GGML_ABORT("llava: unknown projector type");
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
// whisper encoder with custom projector
ggml_cgraph * build_whisper_enc() {
const int n_frames = img.nx;
const int n_pos = n_frames / 2;
GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
ggml_tensor * inp = build_inp_raw(1);
// conv1d block
{
// convolution + gelu
ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
cur = ggml_add(ctx0, cur, model.conv1d_1_b);
cur = ggml_gelu_erf(ctx0, cur);
cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
cur = ggml_add(ctx0, cur, model.conv1d_2_b);
cur = ggml_gelu_erf(ctx0, cur);
// transpose
inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
cb(inp, "after_conv1d", -1);
}
// sanity check (only check one layer, but it should be the same for all)
GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
GGML_ASSERT(model.layers[0].q_b);
GGML_ASSERT(model.layers[0].v_b);
GGML_ASSERT(!model.layers[0].k_b); // no bias for k
GGML_ASSERT(model.post_ln_w && model.post_ln_b);
ggml_tensor * pos_embd_selected = ggml_view_2d(
ctx0, model.position_embeddings,
model.position_embeddings->ne[0], n_pos,
model.position_embeddings->nb[1], 0
);
ggml_tensor * cur = build_vit(
inp, n_pos,
NORM_TYPE_NORMAL,
hparams.ffn_op,
pos_embd_selected,
nullptr);
cb(cur, "after_transformer", -1);
if (model.audio_has_stack_frames()) {
// StackAudioFrames
// https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
int64_t stride = n_embd * hparams.proj_stack_factor;
int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
int64_t pad = padded_len - ggml_nelements(cur);
if (pad > 0) {
cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
}
cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
ggml_row_size(cur->type, stride), 0);
cb(cur, "after_stacked", -1);
}
if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
// UltravoxProjector
// pre-norm
cur = ggml_rms_norm(ctx0, cur, 1e-6);
cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
// ffn in
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
// swiglu
// see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
cur = ggml_swiglu_swapped(ctx0, cur);
// mid-norm
cur = ggml_rms_norm(ctx0, cur, 1e-6);
cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
// ffn out
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
} else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
// projector
cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
cur = ggml_add(ctx0, cur, model.mm_fc_b);
} else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
// projector
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
cur = ggml_gelu_erf(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
} else {
GGML_ABORT("%s: unknown projector type", __func__);
}
cb(cur, "projected", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
private:
//
// utility functions
//
void cb(ggml_tensor * cur0, const char * name, int il) const {
if (ctx->debug_graph) {
ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
ggml_set_name(cur, cur_name.c_str());
ggml_set_output(cur);
ggml_build_forward_expand(gf, cur);
ctx->debug_print_tensors.push_back(cur);
}
}
// siglip2 naflex
ggml_tensor * resize_position_embeddings() {
ggml_tensor * pos_embd = model.position_embeddings;
const int height = img.ny / patch_size;
const int width = img.nx / patch_size;
const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
GGML_ASSERT(pos_embd);
if (height == n_per_side && width == n_per_side) {
return pos_embd;
}
pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
return pos_embd;
}
// build vision transformer (ViT) cgraph
// this function should cover most of the models
// if your model has specific features, you should probably duplicate this function
ggml_tensor * build_vit(
ggml_tensor * inp,
int64_t n_pos,
norm_type norm_t,
ffn_op_type ffn_t,
ggml_tensor * learned_pos_embd,
std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
) {
if (learned_pos_embd) {
inp = ggml_add(ctx0, inp, learned_pos_embd);
cb(inp, "pos_embed", -1);
}
ggml_tensor * inpL = inp;
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
cb(inpL, "pre_ln", -1);
}
// loop over layers
for (int il = 0; il < n_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
cb(cur, "layer_inp_normed", il);
// self-attention
{
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b) {
Qcur = ggml_add(ctx0, Qcur, layer.q_b);
}
ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b) {
Kcur = ggml_add(ctx0, Kcur, layer.k_b);
}
ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b) {
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
}
if (layer.q_norm) {
Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
cb(Qcur, "Qcur_norm", il);
}
if (layer.k_norm) {
Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
cb(Kcur, "Kcur_norm", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (add_pos) {
Qcur = add_pos(Qcur, layer);
Kcur = add_pos(Kcur, layer);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
}
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (layer.ls_1_w) {
cur = ggml_mul(ctx0, cur, layer.ls_1_w);
cb(cur, "attn_out_scaled", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
ffn_t, il);
cb(cur, "ffn_out", il);
if (layer.ls_2_w) {
cur = ggml_mul(ctx0, cur, layer.ls_2_w);
cb(cur, "ffn_out_scaled", il);
}
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
if (ctx->model.audio_has_avgpool()) {
ggml_tensor * cur = inpL;
cur = ggml_transpose(ctx0, cur);
cur = ggml_cont(ctx0, cur);
cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
cur = ggml_transpose(ctx0, cur);
cur = ggml_cont(ctx0, cur);
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
}
return inpL;
}
// build the input after conv2d (inp_raw --> patches)
// returns tensor with shape [n_embd, n_patches]
ggml_tensor * build_inp() {
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
if (model.patch_bias) {
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
}
return inp;
}
ggml_tensor * build_inp_raw(int channels = 3) {
ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
return inp_raw;
}
ggml_tensor * build_norm(
ggml_tensor * cur,
ggml_tensor * mw,
ggml_tensor * mb,
norm_type type,
float norm_eps,
int il) const {
cur = type == NORM_TYPE_RMS
? ggml_rms_norm(ctx0, cur, norm_eps)
: ggml_norm(ctx0, cur, norm_eps);
if (mw || mb) {
cb(cur, "norm", il);
}
if (mw) {
cur = ggml_mul(ctx0, cur, mw);
if (mb) {
cb(cur, "norm_w", il);
}
}
if (mb) {
cur = ggml_add(ctx0, cur, mb);
}
return cur;
}
ggml_tensor * build_ffn(
ggml_tensor * cur,
ggml_tensor * up,
ggml_tensor * up_b,
ggml_tensor * gate,
ggml_tensor * gate_b,
ggml_tensor * down,
ggml_tensor * down_b,
ffn_op_type type_op,
int il) const {
ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
cb(tmp, "ffn_up", il);
if (up_b) {
tmp = ggml_add(ctx0, tmp, up_b);
cb(tmp, "ffn_up_b", il);
}
if (gate) {
cur = ggml_mul_mat(ctx0, gate, cur);
cb(cur, "ffn_gate", il);
if (gate_b) {
cur = ggml_add(ctx0, cur, gate_b);
cb(cur, "ffn_gate_b", il);
}
} else {
cur = tmp;
}
// we only support parallel ffn for now
switch (type_op) {
case FFN_SILU:
if (gate) {
cur = ggml_swiglu_split(ctx0, cur, tmp);
cb(cur, "ffn_swiglu", il);
} else {
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_silu", il);
} break;
case FFN_GELU:
if (gate) {
cur = ggml_geglu_split(ctx0, cur, tmp);
cb(cur, "ffn_geglu", il);
} else {
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_gelu", il);
} break;
case FFN_GELU_ERF:
if (gate) {
cur = ggml_geglu_erf_split(ctx0, cur, tmp);
cb(cur, "ffn_geglu_erf", il);
} else {
cur = ggml_gelu_erf(ctx0, cur);
cb(cur, "ffn_gelu_erf", il);
} break;
case FFN_GELU_QUICK:
if (gate) {
cur = ggml_geglu_quick_split(ctx0, cur, tmp);
cb(cur, "ffn_geglu_quick", il);
} else {
cur = ggml_gelu_quick(ctx0, cur);
cb(cur, "ffn_gelu_quick", il);
} break;
}
if (down) {
cur = ggml_mul_mat(ctx0, down, cur);
}
if (down_b) {
cb(cur, "ffn_down", il);
}
if (down_b) {
cur = ggml_add(ctx0, cur, down_b);
}
return cur;
}
ggml_tensor * build_attn(
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_mask,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
//cb(q, "q", il);
ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
//cb(k, "k", il);
ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
v = ggml_cont(ctx0, v);
//cb(k, "v", il);
ggml_tensor * cur;
// TODO @ngxson : support flash attention
{
const auto n_tokens = q->ne[1];
const auto n_head = q->ne[2];
// const auto n_kv = k->ne[1]; // for flash attention
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
// F32 may not needed for vision encoders?
// ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
}
cb(cur, "kqv_out", il);
if (wo) {
cur = ggml_mul_mat(ctx0, wo, cur);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
// implementation of the 2D RoPE without adding a new op in ggml
// this is not efficient (use double the memory), but works on all backends
// TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
static ggml_tensor * build_rope_2d(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * pos_a, // first half
ggml_tensor * pos_b, // second half
const float freq_base,
const bool interleave_freq
) {
const int64_t n_dim = cur->ne[0];
const int64_t n_head = cur->ne[1];
const int64_t n_pos = cur->ne[2];
// for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
// we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
// first half of cur will use 1e-0, 1e-2 (even)
// second half of cur will use 1e-1, 1e-3 (odd)
// the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
// ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
// then for the second half, we use freq_scale to shift the inv_freq
// ^ why? replace (2i) with (2i+1) in the above equation
const float freq_scale_odd = interleave_freq
? std::pow(freq_base, (float)-2/n_dim)
: 1.0;
// first half
ggml_tensor * first;
{
first = ggml_view_3d(ctx0, cur,
n_dim/2, n_head, n_pos,
ggml_row_size(cur->type, n_dim),
ggml_row_size(cur->type, n_dim*n_head),
0);
first = ggml_rope_ext(
ctx0,
first,
pos_a, // positions
nullptr, // freq factors
n_dim/2, // n_dims
0, 0, freq_base,
1.0f, 0.0f, 1.0f, 0.0f, 0.0f
);
}
// second half
ggml_tensor * second;
{
second = ggml_view_3d(ctx0, cur,
n_dim/2, n_head, n_pos,
ggml_row_size(cur->type, n_dim),
ggml_row_size(cur->type, n_dim*n_head),
n_dim/2 * ggml_element_size(cur));
second = ggml_rope_ext(
ctx0,
second,
pos_b, // positions
nullptr, // freq factors
n_dim/2, // n_dims
0, 0, freq_base,
freq_scale_odd,
0.0f, 1.0f, 0.0f, 0.0f
);
}
cur = ggml_concat(ctx0, first, second, 0);
return cur;
}
// aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
// support dynamic resolution
ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
GGML_ASSERT(scale_factor > 1);
const int n_embd = cur->ne[0];
int width = img.nx / patch_size;
int height = img.ny / patch_size;
// pad width and height to factor
const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
if (pad_width || pad_height) {
cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
width += pad_width;
height += pad_height;
}
// unshuffle h
cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// unshuffle w
cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
cb(cur, "pixel_shuffle", -1);
return cur;
}
};
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
clip_graph graph(ctx, *imgs.entries[0]);
ggml_cgraph * res;
switch (ctx->proj_type()) {
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_LFM2:
{
res = graph.build_siglip();
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
res = graph.build_pixtral();
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
{
res = graph.build_qwen2vl();
} break;
case PROJECTOR_TYPE_MINICPMV:
{
res = graph.build_minicpmv();
} break;
case PROJECTOR_TYPE_INTERNVL:
{
res = graph.build_internvl();
} break;
case PROJECTOR_TYPE_LLAMA4:
{
res = graph.build_llama4();
} break;
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_VOXTRAL:
case PROJECTOR_TYPE_QWEN2A:
{
res = graph.build_whisper_enc();
} break;
case PROJECTOR_TYPE_KIMIVL:
{
res = graph.build_kimivl();
} break;
default:
{
res = graph.build_llava();
} break;
}
return res;
}
struct clip_model_loader {
ggml_context_ptr ctx_meta;
gguf_context_ptr ctx_gguf;
std::string fname;
size_t model_size = 0; // in bytes
bool has_vision = false;
bool has_audio = false;
// TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
clip_model_loader(const char * fname) : fname(fname) {
struct ggml_context * meta = nullptr;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &meta,
};
ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
if (!ctx_gguf.get()) {
throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
}
ctx_meta.reset(meta);
const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
// print gguf info
{
std::string name;
get_string(KEY_NAME, name, false);
std::string description;
get_string(KEY_DESCRIPTION, description, false);
LOG_INF("%s: model name: %s\n", __func__, name.c_str());
LOG_INF("%s: description: %s\n", __func__, description.c_str());
LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
LOG_INF("\n");
}
// modalities
{
get_bool(KEY_HAS_VISION_ENC, has_vision, false);
get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
if (has_vision) {
LOG_INF("%s: has vision encoder\n", __func__);
}
if (has_audio) {
LOG_INF("%s: has audio encoder\n", __func__);
}
}
// tensors
{
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
ggml_tensor * cur = ggml_get_tensor(meta, name);
size_t tensor_size = ggml_nbytes(cur);
model_size += tensor_size;
LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
}
}
}
void load_hparams(clip_model & model, clip_modality modality) {
auto & hparams = model.hparams;
std::string log_ffn_op; // for logging
// sanity check
if (modality == CLIP_MODALITY_VISION) {
GGML_ASSERT(has_vision);
} else if (modality == CLIP_MODALITY_AUDIO) {
GGML_ASSERT(has_audio);
}
model.modality = modality;
// projector type
std::string proj_type;
{
get_string(KEY_PROJ_TYPE, proj_type, false);
if (!proj_type.empty()) {
model.proj_type = clip_projector_type_from_string(proj_type);
}
if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
}
// correct arch for multimodal models
if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
model.proj_type = modality == CLIP_MODALITY_VISION
? PROJECTOR_TYPE_QWEN25VL
: PROJECTOR_TYPE_QWEN2A;
}
}
const bool is_vision = model.modality == CLIP_MODALITY_VISION;
const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
// other hparams
{
const char * prefix = is_vision ? "vision" : "audio";
get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
if (is_vision) {
get_u32(KEY_IMAGE_SIZE, hparams.image_size);
get_u32(KEY_PATCH_SIZE, hparams.patch_size);
get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
if (hparams.minicpmv_query_num == 0) {
// Fallback to hardcoded values for legacy models
if (hparams.minicpmv_version == 3) {
hparams.minicpmv_query_num = 64;
} else if (hparams.minicpmv_version == 4) {
hparams.minicpmv_query_num = 64;
} else if (hparams.minicpmv_version == 5) {
hparams.minicpmv_query_num = 64;
} else if (hparams.minicpmv_version == 6) {
hparams.minicpmv_query_num = 64;
} else {
hparams.minicpmv_query_num = 96;
}
}
} else if (is_audio) {
get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
} else {
GGML_ASSERT(false && "unknown modality");
}
// for pinpoints, we need to convert it into a list of resolution candidates
{
std::vector<int> pinpoints;
get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
if (!pinpoints.empty()) {
for (size_t i = 0; i < pinpoints.size(); i += 2) {
hparams.image_res_candidates.push_back({
pinpoints[i],
pinpoints[i+1],
});
}
}
}
// default warmup value
hparams.warmup_image_size = hparams.image_size;
hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
|| model.proj_type == PROJECTOR_TYPE_MLP_NORM
|| model.proj_type == PROJECTOR_TYPE_LDP
|| model.proj_type == PROJECTOR_TYPE_LDPV2;
{
bool use_gelu = false;
bool use_silu = false;
get_bool(KEY_USE_GELU, use_gelu, false);
get_bool(KEY_USE_SILU, use_silu, false);
if (use_gelu && use_silu) {
throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
}
if (use_gelu) {
hparams.ffn_op = FFN_GELU;
log_ffn_op = "gelu";
} else if (use_silu) {
hparams.ffn_op = FFN_SILU;
log_ffn_op = "silu";
} else {
hparams.ffn_op = FFN_GELU_QUICK;
log_ffn_op = "gelu_quick";
}
}
{
std::string mm_patch_merge_type;
get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
if (mm_patch_merge_type == "spatial_unpad") {
hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
}
}
if (is_vision) {
int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
GGML_ASSERT(idx_std >= 0 && "image_std not found");
const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
for (int i = 0; i < 3; ++i) {
hparams.image_mean[i] = mean_data[i];
hparams.image_std[i] = std_data[i];
}
}
// Load the vision feature layer indices if they are explicitly provided;
// if multiple vision feature layers are present, the values will be concatenated
// to form the final visual features.
// NOTE: gguf conversions should standardize the values of the vision feature layer to
// be non-negative, since we use -1 to mark values as unset here.
std::vector<int> vision_feature_layer;
get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
// convert std::vector to std::unordered_set
for (auto & layer : vision_feature_layer) {
hparams.vision_feature_layer.insert(layer);
}
// model-specific params
switch (model.proj_type) {
case PROJECTOR_TYPE_MINICPMV:
{
if (hparams.minicpmv_version == 0) {
hparams.minicpmv_version = 2; // default to 2 if not set
}
} break;
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_INTERNVL:
{
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
hparams.rope_theta = 10000.0f;
hparams.warmup_image_size = hparams.patch_size * 8;
// Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
// ref: https://github.com/ggml-org/llama.cpp/issues/14310
hparams.image_size = 1024;
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
} break;
case PROJECTOR_TYPE_KIMIVL:
{
hparams.rope_theta = 10000.0f;
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_GEMMA3:
{
// default value (used by all model sizes in gemma 3 family)
// number of patches for each **side** is reduced by a factor of 4
hparams.proj_scale_factor = 4;
// test model (tinygemma3) has a different value, we optionally read it
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_QWEN2VL:
{
// max image size = sqrt(max_pixels) = 3584
// ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
// however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
// ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
hparams.image_size = 1024;
hparams.warmup_image_size = hparams.patch_size * 8;
} break;
case PROJECTOR_TYPE_QWEN25VL:
{
// max image size = sqrt(max_pixels)
// https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
// however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
// ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
hparams.image_size = 1024;
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
} break;
case PROJECTOR_TYPE_LLAMA4:
{
hparams.rope_theta = 10000.0f;
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
set_llava_uhd_res_candidates(model, 3);
} break;
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_QWEN2A:
case PROJECTOR_TYPE_VOXTRAL:
{
bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
model.proj_type == PROJECTOR_TYPE_VOXTRAL;
get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
if (hparams.n_mel_bins != 128) {
throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
}
hparams.ffn_op = FFN_GELU_ERF;
log_ffn_op = "gelu_erf"; // temporary solution for logging
} break;
default:
break;
}
LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
if (is_vision) {
LOG_INF("\n--- vision hparams ---\n");
LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
} else if (is_audio) {
LOG_INF("\n--- audio hparams ---\n");
LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
}
LOG_INF("\n");
LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
}
}
void load_tensors(clip_ctx & ctx_clip) {
auto & model = ctx_clip.model;
auto & hparams = model.hparams;
std::map<std::string, size_t> tensor_offset;
std::vector<ggml_tensor *> tensors_to_load;
// TODO @ngxson : support both audio and video in the future
const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
// get offsets
for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
}
// create data context
struct ggml_init_params params = {
/*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_clip.ctx_data.reset(ggml_init(params));
if (!ctx_clip.ctx_data) {
throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
}
// helper function
auto get_tensor = [&](const std::string & name, bool required = true) {
ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
if (!cur && required) {
throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
}
if (cur) {
tensors_to_load.push_back(cur);
// add tensors to context
ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
ggml_set_name(data_tensor, cur->name);
cur = data_tensor;
}
return cur;
};
model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
// layers
model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) {
auto & layer = model.layers[il];
layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
// ffn
layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
// some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
// note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
bool is_ffn_swapped = (
// only old models need this fix
model.proj_type == PROJECTOR_TYPE_MLP
|| model.proj_type == PROJECTOR_TYPE_MLP_NORM
|| model.proj_type == PROJECTOR_TYPE_LDP
|| model.proj_type == PROJECTOR_TYPE_LDPV2
|| model.proj_type == PROJECTOR_TYPE_QWEN2VL
|| model.proj_type == PROJECTOR_TYPE_QWEN25VL
|| model.proj_type == PROJECTOR_TYPE_GLM_EDGE
|| model.proj_type == PROJECTOR_TYPE_GEMMA3
|| model.proj_type == PROJECTOR_TYPE_IDEFICS3
|| model.proj_type == PROJECTOR_TYPE_MINICPMV
) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
if (is_ffn_swapped) {
// swap up and down weights
ggml_tensor * tmp = layer.ff_up_w;
layer.ff_up_w = layer.ff_down_w;
layer.ff_down_w = tmp;
// swap up and down biases
tmp = layer.ff_up_b;
layer.ff_up_b = layer.ff_down_b;
layer.ff_down_b = tmp;
if (il == 0) {
LOG_WRN("%s: ffn up/down are swapped\n", __func__);
}
}
}
switch (model.proj_type) {
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_MLP_NORM:
{
// LLaVA projection
model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
// Yi-type llava
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
// missing in Yi-type llava
model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
// Yi-type llava
model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
if (model.mm_3_w) {
// TODO: this is a hack to support Yi-type llava
model.proj_type = PROJECTOR_TYPE_MLP_NORM;
}
model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
} break;
case PROJECTOR_TYPE_LDP:
{
// MobileVLM projection
model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
} break;
case PROJECTOR_TYPE_LDPV2:
{
// MobilVLM_V2 projection
model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
} break;
case PROJECTOR_TYPE_MINICPMV:
{
// model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
} break;
case PROJECTOR_TYPE_GLM_EDGE:
{
model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
{
model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_GEMMA3:
{
model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
} break;
case PROJECTOR_TYPE_IDEFICS3:
{
model.projection = get_tensor(TN_MM_PROJECTOR);
} break;
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_KIMIVL:
{
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
// [IMG_BREAK] token embedding
model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
// for mistral small 3.1
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
} break;
case PROJECTOR_TYPE_ULTRAVOX:
{
model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
} break;
case PROJECTOR_TYPE_QWEN2A:
{
model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
} break;
case PROJECTOR_TYPE_VOXTRAL:
{
model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
} break;
case PROJECTOR_TYPE_INTERNVL:
{
model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
} break;
case PROJECTOR_TYPE_LLAMA4:
{
model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
} break;
default:
GGML_ASSERT(false && "unknown projector type");
}
// load data
{
std::vector<uint8_t> read_buf;
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
}
// alloc memory and offload data
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
for (auto & t : tensors_to_load) {
ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
const size_t offset = tensor_offset[t->name];
fin.seekg(offset, std::ios::beg);
if (!fin) {
throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
}
size_t num_bytes = ggml_nbytes(cur);
if (ggml_backend_buft_is_host(buft)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
fin.close();
LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
}
}
void alloc_compute_meta(clip_ctx & ctx_clip) {
const auto & hparams = ctx_clip.model.hparams;
ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
// create a fake batch
clip_image_f32_batch batch;
clip_image_f32_ptr img(clip_image_f32_init());
if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
img->nx = hparams.warmup_image_size;
img->ny = hparams.warmup_image_size;
} else {
img->nx = hparams.warmup_audio_size;
img->ny = hparams.n_mel_bins;
}
batch.entries.push_back(std::move(img));
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
ggml_backend_t backend = ctx_clip.backend_ptrs[i];
ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
if (size > 1) {
LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
}
}
}
void get_bool(const std::string & key, bool & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_bool(ctx_gguf.get(), i);
}
void get_i32(const std::string & key, int & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_i32(ctx_gguf.get(), i);
}
void get_u32(const std::string & key, int & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_u32(ctx_gguf.get(), i);
}
void get_f32(const std::string & key, float & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_f32(ctx_gguf.get(), i);
}
void get_string(const std::string & key, std::string & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
}
void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
int n = gguf_get_arr_n(ctx_gguf.get(), i);
output.resize(n);
const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
for (int i = 0; i < n; ++i) {
output[i] = values[i];
}
}
void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
auto & hparams = model.hparams;
for (int x = 1; x <= max_patches_per_side; x++) {
for (int y = 1; y <= max_patches_per_side; y++) {
if (x == 1 && y == 1) {
continue; // skip the first point
}
hparams.image_res_candidates.push_back(clip_image_size{
x*hparams.image_size,
y*hparams.image_size,
});
}
}
}
};
struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
g_logger_state.verbosity_thold = ctx_params.verbosity;
clip_ctx * ctx_vision = nullptr;
clip_ctx * ctx_audio = nullptr;
try {
clip_model_loader loader(fname);
if (loader.has_vision) {
ctx_vision = new clip_ctx(ctx_params);
loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
loader.load_tensors(*ctx_vision);
loader.alloc_compute_meta(*ctx_vision);
}
if (loader.has_audio) {
ctx_audio = new clip_ctx(ctx_params);
loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
loader.load_tensors(*ctx_audio);
loader.alloc_compute_meta(*ctx_audio);
}
} catch (const std::exception & e) {
LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
if (ctx_vision) {
delete ctx_vision;
}
if (ctx_audio) {
delete ctx_audio;
}
return {nullptr, nullptr};
}
return {ctx_vision, ctx_audio};
}
struct clip_image_size * clip_image_size_init() {
struct clip_image_size * load_image_size = new struct clip_image_size();
load_image_size->width = 448;
load_image_size->height = 448;
return load_image_size;
}
struct clip_image_u8 * clip_image_u8_init() {
return new clip_image_u8();
}
struct clip_image_f32 * clip_image_f32_init() {
return new clip_image_f32();
}
struct clip_image_f32_batch * clip_image_f32_batch_init() {
return new clip_image_f32_batch();
}
unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
if (nx) *nx = img->nx;
if (ny) *ny = img->ny;
return img->buf.data();
}
void clip_image_size_free(struct clip_image_size * load_image_size) {
if (load_image_size == nullptr) {
return;
}
delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
return batch->entries.size();
}
size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return 0;
}
return batch->entries[idx]->nx;
}
size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return 0;
}
return batch->entries[idx]->ny;
}
clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return nullptr;
}
return batch->entries[idx].get();
}
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->buf.resize(3 * nx * ny);
memcpy(img->buf.data(), rgb_pixels, img->buf.size());
}
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(src.buf.size());
// TODO @ngxson : seems like this could be done more efficiently on cgraph
for (size_t i = 0; i < src.buf.size(); ++i) {
int c = i % 3; // rgb
dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
}
}
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
// Bilinear resize function
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float x_ratio = static_cast<float>(src.nx - 1) / target_width;
float y_ratio = static_cast<float>(src.ny - 1) / target_height;
for (int y = 0; y < target_height; y++) {
for (int x = 0; x < target_width; x++) {
float px = x_ratio * x;
float py = y_ratio * y;
int x_floor = static_cast<int>(px);
int y_floor = static_cast<int>(py);
float x_lerp = px - x_floor;
float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) {
float top = lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp
);
float bottom = lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp
);
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
}
}
}
}
// Bicubic resize function
// part of image will be cropped if the aspect ratio is different
static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float Cc;
float C[5] = {};
float d0, d2, d3, a0, a1, a2, a3;
int i, j, k, jj;
int x, y;
float dx, dy;
float tx, ty;
tx = (float)nx / (float)target_width;
ty = (float)ny / (float)target_height;
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
for (i = 0; i < target_height; i++) {
for (j = 0; j < target_width; j++) {
x = (int)(tx * j);
y = (int)(ty * i);
dx = tx * j - x;
dy = ty * i - y;
for (k = 0; k < 3; k++) {
for (jj = 0; jj <= 3; jj++) {
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
d0 = C[0] - C[1];
d2 = C[2] - C[1];
d3 = C[3] - C[1];
a0 = C[1];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
}
}
}
}
return true;
}
// llava-1.6 type of resize_and_pad
// if the ratio is not 1:1, padding with pad_color will be applied
// pad_color is single channel, default is 0 (black)
static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
int target_width = target_resolution.width;
int target_height = target_resolution.height;
float scale_w = static_cast<float>(target_width) / image.nx;
float scale_h = static_cast<float>(target_height) / image.ny;
int new_width, new_height;
if (scale_w < scale_h) {
new_width = target_width;
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
} else {
new_height = target_height;
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
}
clip_image_u8 resized_image;
bicubic_resize(image, resized_image, new_width, new_height);
clip_image_u8 padded_image;
padded_image.nx = target_width;
padded_image.ny = target_height;
padded_image.buf.resize(3 * target_width * target_height);
// Fill the padded image with the fill color
for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
padded_image.buf[i] = pad_color[0];
padded_image.buf[i + 1] = pad_color[1];
padded_image.buf[i + 2] = pad_color[2];
}
// Calculate padding offsets
int pad_x = (target_width - new_width) / 2;
int pad_y = (target_height - new_height) / 2;
// Copy the resized image into the center of the padded buffer
for (int y = 0; y < new_height; ++y) {
for (int x = 0; x < new_width; ++x) {
for (int c = 0; c < 3; ++c) {
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
}
}
}
dst = std::move(padded_image);
}
static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
dst.nx = w;
dst.ny = h;
dst.buf.resize(3 * w * h);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int src_idx = 3 * ((y + i)*image.nx + (x + j));
int dst_idx = 3 * (i*w + j);
dst.buf[dst_idx] = image.buf[src_idx];
dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
}
}
}
// calculate the size of the **resized** image, while preserving the aspect ratio
// the calculated size will be aligned to the nearest multiple of align_size
// if H or W size is larger than max_dimension, it will be resized to max_dimension
static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
return {0, 0};
}
float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
static_cast<float>(max_dimension) / inp_size.height));
float target_width_f = static_cast<float>(inp_size.width) * scale;
float target_height_f = static_cast<float>(inp_size.height) * scale;
int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
return {aligned_width, aligned_height};
}
private:
static inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
// Linear interpolation between two points
static inline float lerp(float s, float e, float t) {
return s + (e - s) * t;
}
};
/**
* implementation of LLaVA-UHD:
* - https://arxiv.org/pdf/2403.11703
* - https://github.com/thunlp/LLaVA-UHD
* - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
*
* overview:
* - an image always have a single overview (downscaled image)
* - an image can have 0 or multiple slices, depending on the image size
* - each slice can then be considered as a separate image
*
* for example:
*
* [overview] --> [slice 1] --> [slice 2]
* | |
* +--> [slice 3] --> [slice 4]
*/
struct llava_uhd {
struct slice_coordinates {
int x;
int y;
clip_image_size size;
};
struct slice_instructions {
clip_image_size overview_size; // size of downscaled image
clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
std::vector<slice_coordinates> slices;
bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
};
static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
slice_instructions res;
const int patch_size = clip_get_patch_size(ctx);
const int slice_size = clip_get_image_size(ctx);
const int original_width = original_size.width;
const int original_height = original_size.height;
const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
if (!has_slices) {
// skip slicing logic
res.overview_size = clip_image_size{slice_size, slice_size};
res.refined_size = clip_image_size{0, 0};
res.grid_size = clip_image_size{0, 0};
return res;
}
if (has_pinpoints) {
// has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
auto refine_size = llava_uhd::select_best_resolution(
original_size,
ctx->model.hparams.image_res_candidates);
res.overview_size = clip_image_size{slice_size, slice_size};
res.refined_size = refine_size;
res.grid_size = clip_image_size{0, 0};
res.padding_refined = true;
LOG_DBG("%s: using pinpoints for slicing\n", __func__);
LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
__func__, original_width, original_height,
res.overview_size.width, res.overview_size.height,
res.refined_size.width, res.refined_size.height);
for (int y = 0; y < refine_size.height; y += slice_size) {
for (int x = 0; x < refine_size.width; x += slice_size) {
slice_coordinates slice;
slice.x = x;
slice.y = y;
slice.size.width = std::min(slice_size, refine_size.width - x);
slice.size.height = std::min(slice_size, refine_size.height - y);
res.slices.push_back(slice);
LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
__func__, (int)res.slices.size() - 1,
slice.x, slice.y, slice.size.width, slice.size.height);
}
}
res.grid_size.height = refine_size.height / slice_size;
res.grid_size.width = refine_size.width / slice_size;
LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
return res;
}
// no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
res.overview_size = best_size;
{
const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
const float log_ratio = log((float)original_width / original_height);
const float ratio = (float)original_width * original_height / (slice_size * slice_size);
const int multiple = fmin(ceil(ratio), max_slice_nums);
auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
res.grid_size = best_grid;
res.refined_size = refine_size;
LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
__func__, original_width, original_height,
res.overview_size.width, res.overview_size.height,
res.refined_size.width, res.refined_size.height,
res.grid_size.width, res.grid_size.height);
int width = refine_size.width;
int height = refine_size.height;
int grid_x = int(width / best_grid.width);
int grid_y = int(height / best_grid.height);
for (int patches_y = 0, ic = 0;
patches_y < refine_size.height && ic < best_grid.height;
patches_y += grid_y, ic += 1) {
for (int patches_x = 0, jc = 0;
patches_x < refine_size.width && jc < best_grid.width;
patches_x += grid_x, jc += 1) {
slice_coordinates slice;
slice.x = patches_x;
slice.y = patches_y;
slice.size.width = grid_x;
slice.size.height = grid_y;
res.slices.push_back(slice);
LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
__func__, (int)res.slices.size() - 1,
slice.x, slice.y, slice.size.width, slice.size.height);
}
}
}
return res;
}
static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
std::vector<clip_image_u8_ptr> output;
// resize to overview size
clip_image_u8_ptr resized_img(clip_image_u8_init());
image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
output.push_back(std::move(resized_img));
if (inst.slices.empty()) {
// no slices, just return the resized image
return output;
}
// resize to refined size
clip_image_u8_ptr refined_img(clip_image_u8_init());
if (inst.padding_refined) {
image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
} else {
image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
}
// create slices
for (const auto & slice : inst.slices) {
int x = slice.x;
int y = slice.y;
int w = slice.size.width;
int h = slice.size.height;
clip_image_u8_ptr img_slice(clip_image_u8_init());
image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
output.push_back(std::move(img_slice));
}
return output;
}
private:
static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
clip_image_size res;
res.width = ensure_divide(width, patch_size);
res.height = ensure_divide(height, patch_size);
return res;
}
static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
float scale_width = static_cast<float>(target_max.width) / orig.width;
float scale_height = static_cast<float>(target_max.height) / orig.height;
float scale = std::min(scale_width, scale_height);
return clip_image_size{
static_cast<int>(orig.width * scale),
static_cast<int>(orig.height * scale),
};
}
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
* For example, when given a list of resolutions:
* - 100x100
* - 200x100
* - 100x200
* - 200x200
*
* And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
*
* @param original_size The original size of the image
* @param possible_resolutions A list of possible resolutions
* @return The best fit resolution
*/
static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
clip_image_size best_fit;
int min_wasted_area = std::numeric_limits<int>::max();
int max_effective_resolution = 0;
for (const clip_image_size & candidate : possible_resolutions) {
auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
int effective_resolution = std::min(
target_size.width * target_size.height,
original_size.width * original_size.height);
int wasted_area = (candidate.width * candidate.height) - effective_resolution;
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
max_effective_resolution = effective_resolution;
min_wasted_area = wasted_area;
best_fit = candidate;
}
LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
}
return best_fit;
}
static int ensure_divide(int length, int patch_size) {
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}
static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
int grid_x = grid.width;
int grid_y = grid.height;
int refine_width = ensure_divide(width, grid_x);
int refine_height = ensure_divide(height, grid_y);
clip_image_size grid_size;
grid_size.width = refine_width / grid_x;
grid_size.height = refine_height / grid_y;
auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
int best_grid_width = best_grid_size.width;
int best_grid_height = best_grid_size.height;
clip_image_size refine_size;
refine_size.width = best_grid_width * grid_x;
refine_size.height = best_grid_height * grid_y;
return refine_size;
}
static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {
if (i == 1 || i > max_slice_nums) {
continue;
}
candidate_split_grids_nums.push_back(i);
}
std::vector<clip_image_size> candidate_grids;
for (int split_grids_nums : candidate_split_grids_nums) {
int m = 1;
while (m <= split_grids_nums) {
if (split_grids_nums % m == 0) {
candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
}
++m;
}
}
clip_image_size best_grid{1, 1};
float min_error = std::numeric_limits<float>::infinity();
for (const auto& grid : candidate_grids) {
float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
if (error < min_error) {
best_grid = grid;
min_error = error;
}
}
return best_grid;
}
};
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
clip_image_size original_size{img->nx, img->ny};
bool pad_to_square = true;
auto & params = ctx->model.hparams;
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
pad_to_square = false;
}
if (clip_is_minicpmv(ctx)) {
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
}
res_imgs->grid_x = inst.grid_size.width;
res_imgs->grid_y = inst.grid_size.height;
return true;
} else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
clip_image_u8 resized;
auto patch_size = params.patch_size * 2;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
clip_image_f32_ptr img_f32(clip_image_f32_init());
// clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
// res_imgs->data[0] = *res;
res_imgs->entries.push_back(std::move(img_f32));
return true;
}
else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
|| ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
|| ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
|| ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
) {
clip_image_u8 resized_image;
int sz = params.image_size;
image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
clip_image_f32_ptr img_f32(clip_image_f32_init());
//clip_image_save_to_bmp(resized_image, "resized.bmp");
normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(img_f32));
return true;
} else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
clip_image_u8 resized_image;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
clip_image_f32_ptr img_f32(clip_image_f32_init());
normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(img_f32));
return true;
} else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
GGML_ASSERT(!params.image_res_candidates.empty());
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
}
res_imgs->grid_x = inst.grid_size.width;
res_imgs->grid_y = inst.grid_size.height;
return true;
} else if ( ctx->proj_type() == PROJECTOR_TYPE_LFM2
|| ctx->proj_type() == PROJECTOR_TYPE_KIMIVL
) {
GGML_ASSERT(params.proj_scale_factor);
// smart resize
const int width = img->nx;
const int height = img->ny;
const int total_factor = params.patch_size * params.proj_scale_factor;
constexpr int min_image_tokens = 64;
constexpr int max_image_tokens = 1024;
const float min_pixels = min_image_tokens * total_factor * total_factor;
const float max_pixels = max_image_tokens * total_factor * total_factor;
auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
auto ceil_by_factor = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
int h_bar = std::max(total_factor, round_by_factor(height));
int w_bar = std::max(total_factor, round_by_factor(width));
if (h_bar * w_bar > max_pixels) {
const auto beta = std::sqrt((height * width) / max_pixels);
h_bar = std::max(total_factor, floor_by_factor(height / beta));
w_bar = std::max(total_factor, floor_by_factor(width / beta));
} else if (h_bar * w_bar < min_pixels) {
const auto beta = std::sqrt(min_pixels / (height * width));
h_bar = ceil_by_factor(height * beta);
w_bar = ceil_by_factor(width * beta);
}
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
clip_image_u8 resized_img;
image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
return true;
}
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
if (pad_to_square) {
// for llava-1.5, we resize image to a square, and pad the shorter side with a background color
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
const int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
temp->ny = longer_side;
temp->buf.resize(3 * longer_side * longer_side);
// background color in RGB from LLaVA (this is the mean rgb color * 255)
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
// resize the image to the target_size
image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
return true;
} else if (!params.image_res_candidates.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
}
return true;
} else {
GGML_ABORT("Unknown image preprocessing type");
}
}
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
return ctx->model.image_newline;
}
void clip_free(clip_ctx * ctx) {
if (ctx == nullptr) {
return;
}
delete ctx;
}
// deprecated
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
const int32_t nx = ctx->model.hparams.image_size;
const int32_t ny = ctx->model.hparams.image_size;
return clip_embd_nbytes_by_img(ctx, nx, ny);
}
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
clip_image_f32 img;
img.nx = img_w;
img.ny = img_h;
return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
}
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
return ctx->model.hparams.image_size;
}
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
return ctx->model.hparams.patch_size;
}
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
return ctx->model.hparams.n_embd;
}
const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
}
int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->model.hparams;
const int n_total = clip_n_output_tokens(ctx, img);
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
}
return n_total;
}
int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->model.hparams;
if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
}
return 1;
}
int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->model.hparams;
// for models with fixed size image, the input image is already pre-processed and resized to square
int patch_size = params.patch_size;
int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
projector_type proj = ctx->proj_type();
switch (proj) {
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_MLP_NORM:
{
// do nothing
} break;
case PROJECTOR_TYPE_LDP:
case PROJECTOR_TYPE_LDPV2:
case PROJECTOR_TYPE_GLM_EDGE:
{
n_patches /= 4;
if (ctx->model.mm_glm_tok_boi) {
n_patches += 2; // for BOI and EOI token embeddings
}
} break;
case PROJECTOR_TYPE_MINICPMV:
{
// Use actual config value if available, otherwise fall back to hardcoded values
if (params.minicpmv_query_num > 0) {
n_patches = params.minicpmv_query_num;
} else {
// Fallback to hardcoded values for legacy models
if (params.minicpmv_version == 2) {
n_patches = 96;
} else if (params.minicpmv_version == 3) {
n_patches = 64;
} else if (params.minicpmv_version == 4) {
n_patches = 64;
} else if (params.minicpmv_version == 5) {
// MiniCPM-V 4.0
n_patches = 64;
} else if (params.minicpmv_version == 6) {
// MiniCPM-V 4.5
n_patches = 64;
} else {
GGML_ABORT("Unknown minicpmv version");
}
}
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
{
// dynamic size (2 conv, so double patch size)
int patch_size = params.patch_size * 2;
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
n_patches = x_patch * y_patch;
} break;
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_INTERNVL:
case PROJECTOR_TYPE_LLAMA4:
{
// both X and Y are downscaled by the scale factor
int scale_factor = ctx->model.hparams.proj_scale_factor;
n_patches /= (scale_factor * scale_factor);
} break;
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_KIMIVL:
{
// dynamic size
int scale_factor = ctx->model.hparams.proj_scale_factor;
int out_patch_size = params.patch_size * scale_factor;
int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
n_patches = x_patch * y_patch;
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
// dynamic size
int n_merge = params.spatial_merge_size;
int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
} break;
case PROJECTOR_TYPE_VOXTRAL:
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_QWEN2A:
{
n_patches = img->nx;
const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
if (ctx->model.audio_has_stack_frames()) {
GGML_ASSERT(proj_stack_factor > 0);
const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
n_patches = n_len / proj_stack_factor;
}
// whisper downscales input token by half after conv1d
n_patches /= 2;
if (ctx->model.audio_has_avgpool()) {
// divide by 2 because of nn.AvgPool1d(2, stride=2)
n_patches /= 2;
}
} break;
default:
GGML_ABORT("unsupported projector type");
}
return n_patches;
}
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
assert(embed_dim % 2 == 0);
int H = pos.size();
int W = pos[0].size();
std::vector<float> omega(embed_dim / 2);
for (int i = 0; i < embed_dim / 2; ++i) {
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
}
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
float out_value = pos[h][w] * omega[d];
emb[h][w][d] = sin(out_value);
emb[h][w][d + embed_dim / 2] = cos(out_value);
}
}
}
return emb;
}
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
assert(embed_dim % 2 == 0);
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
int H = emb_h.size();
int W = emb_h[0].size();
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
emb[h][w][d] = emb_h[h][w][d];
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
}
}
}
return emb;
}
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
int grid_h_size = image_size.first;
int grid_w_size = image_size.second;
std::vector<float> grid_h(grid_h_size);
std::vector<float> grid_w(grid_w_size);
for (int i = 0; i < grid_h_size; ++i) {
grid_h[i] = static_cast<float>(i);
}
for (int i = 0; i < grid_w_size; ++i) {
grid_w[i] = static_cast<float>(i);
}
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid[h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid_2d[0][h][w] = grid_h[h];
grid_2d[1][h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
int H = image_size.first;
int W = image_size.second;
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
}
}
return pos_embed_2d;
}
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
clip_image_f32_batch imgs;
clip_image_f32_ptr img_copy(clip_image_f32_init());
*img_copy = *img;
imgs.entries.push_back(std::move(img_copy));
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
const clip_image_f32_batch & imgs = *imgs_c_ptr;
int batch_size = imgs.entries.size();
// TODO @ngxson : implement batch size > 1 as a loop
// we don't need true batching support because the cgraph will gonna be big anyway
if (batch_size != 1) {
return false; // only support batch size of 1
}
// build the inference graph
ctx->debug_print_tensors.clear();
ggml_backend_sched_reset(ctx->sched.get());
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
// set inputs
const auto & model = ctx->model;
const auto & hparams = model.hparams;
const int image_size_width = imgs.entries[0]->nx;
const int image_size_height = imgs.entries[0]->ny;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
const int pos_w = image_size_width / patch_size;
const int pos_h = image_size_height / patch_size;
const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
auto get_inp_tensor = [&gf](const char * name) {
ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
if (inp == nullptr) {
GGML_ABORT("Failed to get tensor %s", name);
}
if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
GGML_ABORT("Tensor %s is not an input tensor", name);
}
return inp;
};
auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
ggml_tensor * cur = get_inp_tensor(name);
GGML_ASSERT(cur->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
};
auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
ggml_tensor * cur = get_inp_tensor(name);
GGML_ASSERT(cur->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
};
// set input pixel values
if (!imgs.is_audio) {
size_t nelem = 0;
for (const auto & img : imgs.entries) {
nelem += img->nx * img->ny * 3;
}
std::vector<float> inp_raw(nelem);
// layout of data (note: the channel dim is unrolled to better visualize the layout):
//
// ┌──W──┐
// │ H │ channel = R
// ├─────┤ │
// │ H │ channel = G
// ├─────┤ │
// │ H │ channel = B
// └─────┘ │
// ──────┘ x B
for (size_t i = 0; i < imgs.entries.size(); i++) {
const int nx = imgs.entries[i]->nx;
const int ny = imgs.entries[i]->ny;
const int n = nx * ny;
for (int b = 0; b < batch_size; b++) {
float * batch_entry = inp_raw.data() + b * (3*n);
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
size_t base_src = 3*(y * nx + x); // idx of the first channel
size_t base_dst = y * nx + x; // idx of the first channel
batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
}
}
}
}
set_input_f32("inp_raw", inp_raw);
} else {
// audio input
GGML_ASSERT(imgs.entries.size() == 1);
const auto & mel_inp = imgs.entries[0];
const int n_step = mel_inp->nx;
const int n_mel = mel_inp->ny;
std::vector<float> inp_raw(n_step * n_mel);
std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
set_input_f32("inp_raw", inp_raw);
}
// set input per projector
switch (ctx->model.proj_type) {
case PROJECTOR_TYPE_MINICPMV:
{
// inspired from siglip:
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
std::vector<int32_t> positions(pos_h * pos_w);
int bucket_coords_h[1024];
int bucket_coords_w[1024];
for (int i = 0; i < pos_h; i++){
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
}
for (int i = 0; i < pos_w; i++){
bucket_coords_w[i] = std::floor(70.0*i/pos_w);
}
for (int i = 0, id = 0; i < pos_h; i++){
for (int j = 0; j < pos_w; j++){
positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
}
}
set_input_i32("positions", positions);
// inspired from resampler of Qwen-VL:
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
int embed_dim = clip_n_mmproj_embd(ctx);
// TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
for(int i = 0; i < pos_w * pos_h; ++i){
for(int j = 0; j < embed_dim; ++j){
pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
}
}
set_input_f32("pos_embed", pos_embed);
} break;
case PROJECTOR_TYPE_QWEN2VL:
{
const int merge_ratio = 2;
const int pw = image_size_width / patch_size;
const int ph = image_size_height / patch_size;
std::vector<int> positions(n_pos * 4);
int ptr = 0;
for (int y = 0; y < ph; y += merge_ratio) {
for (int x = 0; x < pw; x += merge_ratio) {
for (int dy = 0; dy < 2; dy++) {
for (int dx = 0; dx < 2; dx++) {
positions[ ptr] = y + dy;
positions[ num_patches + ptr] = x + dx;
positions[2 * num_patches + ptr] = y + dy;
positions[3 * num_patches + ptr] = x + dx;
ptr++;
}
}
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_QWEN25VL:
{
// pw * ph = number of tokens output by ViT after apply patch merger
// ipw * ipw = number of vision token been processed inside ViT
const int merge_ratio = 2;
const int pw = image_size_width / patch_size / merge_ratio;
const int ph = image_size_height / patch_size / merge_ratio;
const int ipw = image_size_width / patch_size;
const int iph = image_size_height / patch_size;
std::vector<int> idx (ph * pw);
std::vector<int> inv_idx(ph * pw);
if (use_window_attn) {
const int attn_window_size = 112;
const int grid_window = attn_window_size / patch_size / merge_ratio;
int dst = 0;
// [num_vision_tokens, num_vision_tokens] attention mask tensor
std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
int mask_row = 0;
for (int y = 0; y < ph; y += grid_window) {
for (int x = 0; x < pw; x += grid_window) {
const int win_h = std::min(grid_window, ph - y);
const int win_w = std::min(grid_window, pw - x);
const int dst_0 = dst;
// group all tokens belong to the same window togather (to a continue range)
for (int dy = 0; dy < win_h; dy++) {
for (int dx = 0; dx < win_w; dx++) {
const int src = (y + dy) * pw + (x + dx);
GGML_ASSERT(src < (int)idx.size());
GGML_ASSERT(dst < (int)inv_idx.size());
idx [src] = dst;
inv_idx[dst] = src;
dst++;
}
}
for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
int row_offset = mask_row * (ipw * iph);
std::fill(
mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
0.0);
mask_row++;
}
}
}
set_input_i32("window_idx", idx);
set_input_i32("inv_window_idx", inv_idx);
set_input_f32("window_mask", mask);
} else {
for (int i = 0; i < ph * pw; i++) {
idx[i] = i;
}
}
const int mpow = merge_ratio * merge_ratio;
std::vector<int> positions(n_pos * 4);
int ptr = 0;
for (int y = 0; y < iph; y += merge_ratio) {
for (int x = 0; x < ipw; x += merge_ratio) {
for (int dy = 0; dy < 2; dy++) {
for (int dx = 0; dx < 2; dx++) {
auto remap = idx[ptr / mpow];
remap = (remap * mpow) + (ptr % mpow);
positions[ remap] = y + dy;
positions[ num_patches + remap] = x + dx;
positions[2 * num_patches + remap] = y + dy;
positions[3 * num_patches + remap] = x + dx;
ptr++;
}
}
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_KIMIVL:
{
// set the 2D positions
int n_patches_per_col = image_size_width / patch_size;
std::vector<int> pos_data(n_pos);
// dimension H
for (int i = 0; i < n_pos; i++) {
pos_data[i] = i / n_patches_per_col;
}
set_input_i32("pos_h", pos_data);
// dimension W
for (int i = 0; i < n_pos; i++) {
pos_data[i] = i % n_patches_per_col;
}
set_input_i32("pos_w", pos_data);
} break;
case PROJECTOR_TYPE_GLM_EDGE:
{
// llava and other models
std::vector<int32_t> positions(n_pos);
for (int i = 0; i < n_pos; i++) {
positions[i] = i;
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_MLP_NORM:
case PROJECTOR_TYPE_LDP:
case PROJECTOR_TYPE_LDPV2:
{
// llava and other models
std::vector<int32_t> positions(n_pos);
for (int i = 0; i < n_pos; i++) {
positions[i] = i;
}
set_input_i32("positions", positions);
// The patches vector is used to get rows to index into the embeds with;
// we should skip dim 0 only if we have CLS to avoid going out of bounds
// when retrieving the rows.
int patch_offset = model.class_embedding ? 1 : 0;
std::vector<int32_t> patches(num_patches);
for (int i = 0; i < num_patches; i++) {
patches[i] = i + patch_offset;
}
set_input_i32("patches", patches);
} break;
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_INTERNVL:
case PROJECTOR_TYPE_QWEN2A:
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_VOXTRAL:
{
// do nothing
} break;
case PROJECTOR_TYPE_LLAMA4:
{
// set the 2D positions
int n_patches_per_col = image_size_width / patch_size;
std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
// last pos is always kept 0, it's for CLS
// dimension H
for (int i = 0; i < num_patches; i++) {
pos_data[i] = (i / n_patches_per_col) + 1;
}
set_input_i32("pos_h", pos_data);
// dimension W
for (int i = 0; i < num_patches; i++) {
pos_data[i] = (i % n_patches_per_col) + 1;
}
set_input_i32("pos_w", pos_data);
} break;
default:
GGML_ABORT("Unknown projector type");
}
// ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
if (reg) {
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
if (ggml_backend_set_n_threads_fn) {
ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
}
}
auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
if (status != GGML_STATUS_SUCCESS) {
LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
return false;
}
// print debug nodes
if (ctx->debug_graph) {
LOG_INF("\n\n---\n\n");
LOG_INF("\n\nDebug graph:\n\n");
for (ggml_tensor * t : ctx->debug_print_tensors) {
std::vector<uint8_t> data(ggml_nbytes(t));
ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
print_tensor_shape(t);
print_tensor_data(t, data.data(), 3);
}
}
// the last node is the embedding tensor
ggml_tensor * embeddings = ggml_graph_node(gf, -1);
// sanity check (only support batch size of 1 for now)
const int n_tokens_out = embeddings->ne[1];
const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
if (n_tokens_out != expected_n_tokens_out) {
LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
GGML_ABORT("Invalid number of output tokens");
}
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
switch (ctx->model.proj_type) {
case PROJECTOR_TYPE_LDP:
return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
case PROJECTOR_TYPE_LDPV2:
return ctx->model.mm_model_peg_0_b->ne[0];
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_PIXTRAL:
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_MLP_NORM:
return ctx->model.mm_3_b->ne[0];
case PROJECTOR_TYPE_MINICPMV:
return ctx->model.mm_model_proj->ne[0];
case PROJECTOR_TYPE_GLM_EDGE:
return ctx->model.mm_model_mlp_3_w->ne[1];
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
return ctx->model.mm_1_b->ne[0];
case PROJECTOR_TYPE_GEMMA3:
return ctx->model.mm_input_proj_w->ne[0];
case PROJECTOR_TYPE_IDEFICS3:
return ctx->model.projection->ne[1];
case PROJECTOR_TYPE_ULTRAVOX:
case PROJECTOR_TYPE_VOXTRAL:
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_INTERNVL:
return ctx->model.mm_3_w->ne[1];
case PROJECTOR_TYPE_LLAMA4:
return ctx->model.mm_model_proj->ne[1];
case PROJECTOR_TYPE_QWEN2A:
return ctx->model.mm_fc_w->ne[1];
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_KIMIVL:
return ctx->model.mm_2_w->ne[1];
default:
GGML_ABORT("Unknown projector type");
}
}
int clip_is_minicpmv(const struct clip_ctx * ctx) {
if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
return ctx->model.hparams.minicpmv_version;
}
return 0;
}
bool clip_is_glm(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
}
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
}
bool clip_is_llava(const struct clip_ctx * ctx) {
return ctx->model.hparams.has_llava_projector;
}
bool clip_is_gemma3(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
}
bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
return ctx->model.modality == CLIP_MODALITY_VISION;
}
bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
return ctx->model.modality == CLIP_MODALITY_AUDIO;
}
bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
|| ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
|| ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
clip_image_f32 clip_img;
clip_img.buf.resize(h * w * 3);
for (int i = 0; i < h*w*3; i++)
{
clip_img.buf[i] = img[i];
}
clip_img.nx = w;
clip_img.ny = h;
clip_image_encode(ctx, n_threads, &clip_img, vec);
return true;
}
//
// API used internally with mtmd
//
projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
return ctx->proj_type();
}
void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
clip_image_f32 * audio = new clip_image_f32;
audio->nx = n_frames;
audio->ny = n_mel;
audio->buf.resize(n_frames * n_mel);
std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
batch->entries.push_back(clip_image_f32_ptr(audio));
batch->is_audio = true;
}
|