File: clip.cpp

package info (click to toggle)
llama.cpp 6641%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 43,824 kB
  • sloc: cpp: 218,020; ansic: 117,624; python: 29,020; lisp: 9,094; sh: 5,776; objc: 1,045; javascript: 828; xml: 259; makefile: 219
file content (4423 lines) | stat: -rw-r--r-- 190,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "clip-impl.h"
#include "ggml.h"
#include "ggml-cpp.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
#include <array>
#include <numeric>
#include <functional>

struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};

enum ffn_op_type {
    FFN_GELU,
    FFN_GELU_ERF,
    FFN_SILU,
    FFN_GELU_QUICK,
};

enum norm_type {
    NORM_TYPE_NORMAL,
    NORM_TYPE_RMS,
};

//#define CLIP_DEBUG_FUNCTIONS

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

struct clip_hparams {
    int32_t image_size;
    int32_t patch_size;
    int32_t n_embd;
    int32_t n_ff;
    int32_t projection_dim;
    int32_t n_head;
    int32_t n_layer;
    int32_t proj_scale_factor = 0; // idefics3

    float image_mean[3];
    float image_std[3];

    // for models using dynamic image size, we need to have a smaller image size to warmup
    // otherwise, user will get OOM everytime they load the model
    int32_t warmup_image_size = 0;
    int32_t warmup_audio_size = 3000;

    ffn_op_type ffn_op = FFN_GELU;

    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;

    float eps = 1e-6;
    float rope_theta = 0.0;

    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
    int32_t image_crop_resolution;
    std::unordered_set<int32_t> vision_feature_layer;
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;
    int32_t spatial_merge_size = 0;

    // audio
    int32_t n_mel_bins = 0; // whisper preprocessor
    int32_t proj_stack_factor = 0; // ultravox

    // legacy
    bool has_llava_projector = false;
    int minicpmv_version = 0;
    int32_t minicpmv_query_num = 0;         // MiniCPM-V query number
};

struct clip_layer {
    // attention
    ggml_tensor * k_w = nullptr;
    ggml_tensor * k_b = nullptr;
    ggml_tensor * q_w = nullptr;
    ggml_tensor * q_b = nullptr;
    ggml_tensor * v_w = nullptr;
    ggml_tensor * v_b = nullptr;

    ggml_tensor * o_w = nullptr;
    ggml_tensor * o_b = nullptr;

    ggml_tensor * k_norm = nullptr;
    ggml_tensor * q_norm = nullptr;

    // layernorm 1
    ggml_tensor * ln_1_w = nullptr;
    ggml_tensor * ln_1_b = nullptr;

    ggml_tensor * ff_up_w = nullptr;
    ggml_tensor * ff_up_b = nullptr;
    ggml_tensor * ff_gate_w = nullptr;
    ggml_tensor * ff_gate_b = nullptr;
    ggml_tensor * ff_down_w = nullptr;
    ggml_tensor * ff_down_b = nullptr;

    // layernorm 2
    ggml_tensor * ln_2_w = nullptr;
    ggml_tensor * ln_2_b = nullptr;

    // layer scale (no bias)
    ggml_tensor * ls_1_w = nullptr;
    ggml_tensor * ls_2_w = nullptr;
};

struct clip_model {
    clip_modality modality = CLIP_MODALITY_VISION;
    projector_type proj_type = PROJECTOR_TYPE_MLP;
    clip_hparams hparams;

    // embeddings
    ggml_tensor * class_embedding = nullptr;
    ggml_tensor * patch_embeddings_0 = nullptr;
    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    ggml_tensor * patch_bias = nullptr;
    ggml_tensor * position_embeddings = nullptr;

    ggml_tensor * pre_ln_w = nullptr;
    ggml_tensor * pre_ln_b = nullptr;

    std::vector<clip_layer> layers;

    ggml_tensor * post_ln_w;
    ggml_tensor * post_ln_b;

    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
    ggml_tensor * mm_fc_w;
    ggml_tensor * mm_fc_b;

    // LLaVA projection
    ggml_tensor * mm_input_norm_w = nullptr;
    ggml_tensor * mm_input_norm_b = nullptr;
    ggml_tensor * mm_0_w = nullptr;
    ggml_tensor * mm_0_b = nullptr;
    ggml_tensor * mm_2_w = nullptr;
    ggml_tensor * mm_2_b = nullptr;

    ggml_tensor * image_newline = nullptr;

    // Yi type models with mlp+normalization projection
    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    ggml_tensor * mm_1_b = nullptr;
    ggml_tensor * mm_3_w = nullptr;
    ggml_tensor * mm_3_b = nullptr;
    ggml_tensor * mm_4_w = nullptr;
    ggml_tensor * mm_4_b = nullptr;

    // GLMV-Edge projection
    ggml_tensor * mm_model_adapter_conv_w = nullptr;
    ggml_tensor * mm_model_adapter_conv_b = nullptr;
    ggml_tensor * mm_glm_tok_boi = nullptr;
    ggml_tensor * mm_glm_tok_eoi = nullptr;

    // MobileVLM projection
    ggml_tensor * mm_model_mlp_1_w = nullptr;
    ggml_tensor * mm_model_mlp_1_b = nullptr;
    ggml_tensor * mm_model_mlp_3_w = nullptr;
    ggml_tensor * mm_model_mlp_3_b = nullptr;
    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;

    // MobileVLM_V2 projection
    ggml_tensor * mm_model_mlp_0_w = nullptr;
    ggml_tensor * mm_model_mlp_0_b = nullptr;
    ggml_tensor * mm_model_mlp_2_w = nullptr;
    ggml_tensor * mm_model_mlp_2_b = nullptr;
    ggml_tensor * mm_model_peg_0_w = nullptr;
    ggml_tensor * mm_model_peg_0_b = nullptr;

    // MINICPMV projection
    ggml_tensor * mm_model_pos_embed_k = nullptr;
    ggml_tensor * mm_model_query = nullptr;
    ggml_tensor * mm_model_proj = nullptr;
    ggml_tensor * mm_model_kv_proj = nullptr;
    ggml_tensor * mm_model_attn_q_w = nullptr;
    ggml_tensor * mm_model_attn_q_b = nullptr;
    ggml_tensor * mm_model_attn_k_w = nullptr;
    ggml_tensor * mm_model_attn_k_b = nullptr;
    ggml_tensor * mm_model_attn_v_w = nullptr;
    ggml_tensor * mm_model_attn_v_b = nullptr;
    ggml_tensor * mm_model_attn_o_w = nullptr;
    ggml_tensor * mm_model_attn_o_b = nullptr;
    ggml_tensor * mm_model_ln_q_w = nullptr;
    ggml_tensor * mm_model_ln_q_b = nullptr;
    ggml_tensor * mm_model_ln_kv_w = nullptr;
    ggml_tensor * mm_model_ln_kv_b = nullptr;
    ggml_tensor * mm_model_ln_post_w = nullptr;
    ggml_tensor * mm_model_ln_post_b = nullptr;

    // gemma3
    ggml_tensor * mm_input_proj_w = nullptr;
    ggml_tensor * mm_soft_emb_norm_w = nullptr;

    // pixtral
    ggml_tensor * token_embd_img_break = nullptr;
    ggml_tensor * mm_patch_merger_w = nullptr;

    // ultravox / whisper encoder
    ggml_tensor * conv1d_1_w = nullptr;
    ggml_tensor * conv1d_1_b = nullptr;
    ggml_tensor * conv1d_2_w = nullptr;
    ggml_tensor * conv1d_2_b = nullptr;
    ggml_tensor * mm_norm_pre_w = nullptr;
    ggml_tensor * mm_norm_mid_w = nullptr;

    bool audio_has_avgpool() const {
        return proj_type == PROJECTOR_TYPE_QWEN2A
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }

    bool audio_has_stack_frames() const {
        return proj_type == PROJECTOR_TYPE_ULTRAVOX
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
};

struct clip_ctx {
    clip_model model;

    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;

    std::vector<uint8_t> buf_compute_meta;

    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

    ggml_backend_t backend = nullptr;
    ggml_backend_t backend_cpu = nullptr;
    ggml_backend_buffer_ptr buf;

    int max_nodes = 8192;
    ggml_backend_sched_ptr sched;

    // for debugging
    bool debug_graph = false;
    std::vector<ggml_tensor *> debug_print_tensors;

    clip_ctx(clip_context_params & ctx_params) {
        debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
        if (!backend_cpu) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
        if (ctx_params.use_gpu) {
            auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
            if (backend_name != nullptr) {
                backend = ggml_backend_init_by_name(backend_name, nullptr);
                if (!backend) {
                    LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
                }
            }
            if (!backend) {
                backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
                backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
            }
        }

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }

    // this function is added so that we don't change too much of the existing code
    projector_type proj_type() const {
        return model.proj_type;
    }
};

struct clip_graph {
    clip_ctx * ctx;
    const clip_model & model;
    const clip_hparams & hparams;

    // we only support single image per batch
    const clip_image_f32 & img;

    const int patch_size;
    const int n_patches_x;
    const int n_patches_y;
    const int n_patches;
    const int n_embd;
    const int n_head;
    const int d_head;
    const int n_layer;
    const float eps;
    const float kq_scale;

    ggml_context_ptr ctx0_ptr;
    ggml_context * ctx0;
    ggml_cgraph * gf;

    clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
            ctx(ctx),
            model(ctx->model),
            hparams(model.hparams),
            img(img),
            patch_size(hparams.patch_size),
            n_patches_x(img.nx / patch_size),
            n_patches_y(img.ny / patch_size),
            n_patches(n_patches_x * n_patches_y),
            n_embd(hparams.n_embd),
            n_head(hparams.n_head),
            d_head(n_embd / n_head),
            n_layer(hparams.n_layer),
            eps(hparams.eps),
            kq_scale(1.0f / sqrtf((float)d_head)) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx->buf_compute_meta.size(),
            /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };
        ctx0_ptr.reset(ggml_init(params));
        ctx0 = ctx0_ptr.get();
        gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
    }

    ggml_cgraph * build_siglip() {
        ggml_tensor * inp = build_inp();

        ggml_tensor * learned_pos_embd = model.position_embeddings;
        if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            learned_pos_embd = resize_position_embeddings();
        }

        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                nullptr);

        if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
            const int batch_size = 1;
            GGML_ASSERT(n_patches_x == n_patches_y);
            const int patches_per_image = n_patches_x;
            const int kernel_size = hparams.proj_scale_factor;

            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);

            // doing a pool2d to reduce the number of output tokens
            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));

            // apply norm before projection
            cur = ggml_rms_norm(ctx0, cur, eps);
            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);

            // apply projection
            cur = ggml_mul_mat(ctx0,
                ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
                cur);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
            // pixel_shuffle
            // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
            const int scale_factor = model.hparams.proj_scale_factor;
            cur = build_patch_merge_permute(cur, scale_factor);
            cur = ggml_mul_mat(ctx0, model.projection, cur);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            // pixel unshuffle block
            const int scale_factor = model.hparams.proj_scale_factor;
            cur = build_patch_merge_permute(cur, scale_factor);

            // projection
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);

            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
        } else {
            GGML_ABORT("SigLIP: Unsupported projector type");
        }

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    ggml_cgraph * build_pixtral() {
        const int n_merge = hparams.spatial_merge_size;

        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
        };

        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_RMS,
                                hparams.ffn_op,
                                nullptr, // no learned pos embd
                                add_pos);

        // mistral small 3.1 patch merger
        // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
        if (model.mm_patch_merger_w) {
            GGML_ASSERT(hparams.spatial_merge_size > 0);

            cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);

            // reshape image tokens to 2D grid
            cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
            cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
            cur = ggml_cont(ctx0, cur);

            // torch.nn.functional.unfold is just an im2col under the hood
            // we just need a dummy kernel to make it work
            ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
            cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);

            // project to n_embd
            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
            cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
        }

        // LlavaMultiModalProjector (always using GELU activation)
        {
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            if (model.mm_1_b) {
                cur = ggml_add(ctx0, cur, model.mm_1_b);
            }

            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            if (model.mm_2_b) {
                cur = ggml_add(ctx0, cur, model.mm_2_b);
            }
        }

        // arrangement of the [IMG_BREAK] token
        {
            // not efficient, but works
            // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
            // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
            // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]

            const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
            const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
            const int p_total         = p_x * p_y;
            const int n_embd_text     = cur->ne[0];
            const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row

            ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
            ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
            tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
            tok = ggml_add(ctx0, tok, model.token_embd_img_break);
            tmp = ggml_concat(ctx0, tmp, tok, 1);
            cur = ggml_view_2d(ctx0, tmp,
                n_embd_text, n_tokens_output,
                ggml_row_size(tmp->type, n_embd_text), 0);
        }

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    // Qwen2VL and Qwen2.5VL use M-RoPE
    ggml_cgraph * build_qwen2vl() {
        GGML_ASSERT(model.patch_bias == nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);

        const int batch_size       = 1;
        const bool use_window_attn = hparams.n_wa_pattern > 0;
        const int n_wa_pattern     = hparams.n_wa_pattern;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position

        norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
            ? NORM_TYPE_RMS // qwen 2.5 vl
            : NORM_TYPE_NORMAL; // qwen 2 vl

        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};

        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);

        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);

        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_cont_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
            inp = ggml_cont_3d(
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        ggml_tensor * inpL           = inp;
        ggml_tensor * window_mask    = nullptr;
        ggml_tensor * window_idx     = nullptr;
        ggml_tensor * inv_window_idx = nullptr;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        if (use_window_attn) {
            // handle window attention inputs
            inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(inv_window_idx, "inv_window_idx");
            ggml_set_input(inv_window_idx);
            // mask for window attention
            window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
            ggml_set_name(window_mask, "window_mask");
            ggml_set_input(window_mask);

            // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
            inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
            inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;

            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
                ggml_tensor * Kcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
                ggml_tensor * Vcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);

                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);

                ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;

                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
                cb(cur, "attn_out", il);
            }

            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);

            inpL = cur; // inpL = residual, cur = hidden_states

            cb(cur, "ffn_inp", il);

            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);

            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);

            cb(cur, "ffn_out", il);

            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);

            inpL = cur;
        }

        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
        }

        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);

        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

        if (use_window_attn) {
            window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(window_idx, "window_idx");
            ggml_set_input(window_idx);

            // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
            embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
            embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
        }

        // build the graph
        ggml_build_forward_expand(gf, embeddings);

        return gf;
    }

    ggml_cgraph * build_minicpmv() {
        const int batch_size = 1;

        GGML_ASSERT(model.class_embedding == nullptr);
        const int n_pos = n_patches;

        // position embeddings for the projector (not for ViT)
        int n_output_dim = clip_n_mmproj_embd(ctx);
        ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
        ggml_set_name(pos_embed, "pos_embed");
        ggml_set_input(pos_embed);

        // for selecting learned pos embd, used by ViT
        struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);

        ggml_tensor * inp = build_inp();
        ggml_tensor * embeddings = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                nullptr);

        // resampler projector (it is just another transformer)

        ggml_tensor * q = model.mm_model_query;
        ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);

        // norm
        q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
        v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);

        // k = v + pos_embed
        ggml_tensor * k = ggml_add(ctx0, v, pos_embed);

        // attention
        {
            int n_embd = clip_n_mmproj_embd(ctx);
            const int d_head = 128;
            int n_head = n_embd/d_head;
            // Use actual config value if available, otherwise fall back to hardcoded values
            int num_query = ctx->model.hparams.minicpmv_query_num;
            ggml_tensor * Q = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
                model.mm_model_attn_q_b);
            ggml_tensor * K = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
                model.mm_model_attn_k_b);
            ggml_tensor * V = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
                model.mm_model_attn_v_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
            K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
            V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);

            cb(Q, "resampler_Q", -1);
            cb(K, "resampler_K", -1);
            cb(V, "resampler_V", -1);

            embeddings = build_attn(
                model.mm_model_attn_o_w,
                model.mm_model_attn_o_b,
                Q, K, V, nullptr, kq_scale, -1);
            cb(embeddings, "resampler_attn_out", -1);
        }
        // layernorm
        embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);

        // projection
        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);

        // build the graph
        ggml_build_forward_expand(gf, embeddings);

        return gf;
    }

    ggml_cgraph * build_internvl() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1;
        ggml_tensor * inp = build_inp();

        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        // The larger models use a different ViT, which uses RMS norm instead of layer norm
        // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
        norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
            ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
            : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)

        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                norm_t,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);

        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);

        // pixel shuffle
        {
            const int scale_factor = model.hparams.proj_scale_factor;
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = n_patches_y;
            const int width  = n_patches_x;
            GGML_ASSERT(scale_factor > 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_cont_4d(ctx0, cur,
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
            cur = ggml_cont_2d(ctx0, cur,
                n_embd * scale_factor * scale_factor,
                cur->ne[1] * cur->ne[2]);
        }

        // projector (always using GELU activation)
        {
            // projector LayerNorm uses pytorch's default eps = 1e-5
            // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
            cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_3_b);
        }

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    ggml_cgraph * build_llama4() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1; // +1 for [CLS]

        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * inp = build_inp_raw();

        // Llama4UnfoldConvolution
        {
            ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
                                                    patch_size, patch_size, 3, n_embd);
            inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
            inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
            inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
            cb(inp, "patch_conv", -1);
        }

        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
            // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                model.position_embeddings,
                                add_pos);

        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);

        // pixel shuffle
        // based on Llama4VisionPixelShuffleMLP
        // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
        {
            const int scale_factor = model.hparams.proj_scale_factor;
            const int bsz = 1; // batch size, always 1 for now since we don't support batching
            GGML_ASSERT(scale_factor > 0);
            GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
            cur = ggml_reshape_4d(ctx0, cur,
                n_embd * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_cont_4d(ctx0, cur,
                n_embd * scale_factor * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y / scale_factor,
                bsz);
            //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
            cur = ggml_cont_2d(ctx0, cur,
                n_embd * scale_factor * scale_factor,
                n_patches / scale_factor / scale_factor);
            cb(cur, "pixel_shuffle", -1);
        }

        // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
        {
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cb(cur, "adapter_mlp", -1);
        }

        // Llama4MultiModalProjector
        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
        cb(cur, "projected", -1);

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    ggml_cgraph * build_kimivl() {
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * learned_pos_embd = resize_position_embeddings();

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };

        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                add_pos);

        cb(cur, "vit_out", -1);

        {
            // patch_merger
            const int scale_factor = model.hparams.proj_scale_factor;
            cur = build_patch_merge_permute(cur, scale_factor);

            // projection norm
            int proj_inp_dim = cur->ne[0];
            cur = ggml_view_2d(ctx0, cur,
                n_embd, cur->ne[1] * scale_factor * scale_factor,
                ggml_row_size(cur->type, n_embd), 0);
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
            cur = ggml_view_2d(ctx0, cur,
                proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
                ggml_row_size(cur->type, proj_inp_dim), 0);
            cb(cur, "proj_inp_normed", -1);

            // projection mlp
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
            cb(cur, "proj_out", -1);
        }

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    // this graph is used by llava, granite and glm
    // due to having embedding_stack (used by granite), we cannot reuse build_vit
    ggml_cgraph * build_llava() {
        const int batch_size = 1;
        const int n_pos = n_patches + (model.class_embedding ? 1 : 0);

        GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");

        // Calculate the deepest feature layer based on hparams and projector type
        int max_feature_layer = n_layer;
        {
            // Get the index of the second to last layer; this is the default for models that have a llava projector
            int il_last = hparams.n_layer - 1;
            int deepest_feature_layer = -1;

            if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
                il_last += 1;
            }

            // If we set explicit vision feature layers, only go up to the deepest one
            // NOTE: only used by granite-vision models for now
            for (const auto & feature_layer : hparams.vision_feature_layer) {
                if (feature_layer > deepest_feature_layer) {
                    deepest_feature_layer = feature_layer;
                }
            }
            max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
        }

        ggml_tensor * inp = build_inp();

        // concat class_embeddings and patch_embeddings
        if (model.class_embedding) {
            inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
        }

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));

        ggml_tensor * inpL = inp;

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
            cb(inpL, "pre_ln", -1);
        }

        std::vector<ggml_tensor *> embedding_stack;
        const auto & vision_feature_layer = hparams.vision_feature_layer;

        // loop over layers
        for (int il = 0; il < max_feature_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // If this is an embedding feature layer, save the output.
            // NOTE: 0 index here refers to the input to the encoder.
            if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
                embedding_stack.push_back(cur);
            }

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "layer_inp_normed", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }

                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }

                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }

            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);

            inpL = cur; // inpL = residual, cur = hidden_states

            cb(cur, "ffn_inp", il);

            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_inp_normed", il);

            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);

            cb(cur, "ffn_out", il);

            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);

            inpL = cur;
        }

        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
        }

        ggml_tensor * embeddings = inpL;

        // process vision feature layers (used by granite)
        {
            // final layer is a vision feature layer
            if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
                embedding_stack.push_back(inpL);
            }

            // If feature layers are explicitly set, stack them (if we have multiple)
            if (!embedding_stack.empty()) {
                embeddings = embedding_stack[0];
                for (size_t i = 1; i < embedding_stack.size(); i++) {
                    embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
                }
            }
        }

        // llava projector (also used by granite)
        if (ctx->model.hparams.has_llava_projector) {
            embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);

            ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
            ggml_set_name(patches, "patches");
            ggml_set_input(patches);

            // shape [1, 576, 1024]
            // ne is whcn, ne = [1024, 576, 1, 1]
            embeddings = ggml_get_rows(ctx0, embeddings, patches);

            // print_tensor_info(embeddings, "embeddings");

            // llava projector
            if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);

                embeddings = ggml_gelu(ctx0, embeddings);
                if (model.mm_2_w) {
                    embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                    embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
                }
            }
            else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
                // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
                // First LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                    model.mm_1_b);

                // GELU activation
                embeddings = ggml_gelu(ctx0, embeddings);

                // Second linear layer
                embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

                // Second LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                    model.mm_4_b);
            }
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
                // MobileVLM projector
                int n_patch = 24;
                ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
                mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
                mlp_1 = ggml_gelu(ctx0, mlp_1);
                ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
                mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
                // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

                // block 1
                ggml_tensor * block_1 = nullptr;
                {
                    // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
                    mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
                    mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
                    // stride = 1, padding = 1, bias is nullptr
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);

                    // layer norm
                    // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                    // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);
                    // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // residual
                    block_1 = ggml_add(ctx0, mlp_3, block_1);
                }

                // block_2
                {
                    // stride = 2
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);

                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // layer norm
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    // not sure the parameters is right for globalAvgPooling
                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);

                    // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                    block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                    // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
                }
                embeddings = block_1;
            }
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
            {
                int n_patch = 24;
                ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
                mlp_0 = ggml_gelu(ctx0, mlp_0);
                ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
                mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
                // mlp_2 ne = [2048, 576, 1, 1]
                // // AVG Pool Layer 2*2, strides = 2
                mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
                // mlp_2 ne = [576, 2048, 1, 1]
                mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
                // mlp_2 ne [24, 24, 2048, 1]
                mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
                // weight ne = [3, 3, 2048, 1]
                ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
                peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, mlp_2);
                peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
                embeddings = peg_0;
            }
            else {
                GGML_ABORT("fatal error");
            }
        }

        // glm projector
        else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
            embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
            embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            // GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
                embeddings = ggml_swiglu_split(ctx0, embeddings, x);
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
            // arrangement of BOI/EOI token embeddings
            // note: these embeddings are not present in text model, hence we cannot process them as text tokens
            // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
            {
                embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
                embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
            }
        }

        else {
            GGML_ABORT("llava: unknown projector type");
        }

        // build the graph
        ggml_build_forward_expand(gf, embeddings);

        return gf;
    }

    // whisper encoder with custom projector
    ggml_cgraph * build_whisper_enc() {
        const int n_frames = img.nx;
        const int n_pos    = n_frames / 2;
        GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);

        ggml_tensor * inp = build_inp_raw(1);

        // conv1d block
        {
            // convolution + gelu
            ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_1_b);

            cur = ggml_gelu_erf(ctx0, cur);

            cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_2_b);

            cur = ggml_gelu_erf(ctx0, cur);
            // transpose
            inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
            cb(inp, "after_conv1d", -1);
        }

        // sanity check (only check one layer, but it should be the same for all)
        GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
        GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
        GGML_ASSERT(model.layers[0].q_b);
        GGML_ASSERT(model.layers[0].v_b);
        GGML_ASSERT(!model.layers[0].k_b); // no bias for k
        GGML_ASSERT(model.post_ln_w && model.post_ln_b);

        ggml_tensor * pos_embd_selected = ggml_view_2d(
            ctx0, model.position_embeddings,
            model.position_embeddings->ne[0], n_pos,
            model.position_embeddings->nb[1], 0
        );
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                pos_embd_selected,
                                nullptr);

        cb(cur, "after_transformer", -1);

        if (model.audio_has_stack_frames()) {
            // StackAudioFrames
            // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
            int64_t stride = n_embd * hparams.proj_stack_factor;
            int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
            int64_t pad = padded_len - ggml_nelements(cur);
            if (pad > 0) {
                cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
                cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
            }
            cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
                                ggml_row_size(cur->type, stride), 0);
            cb(cur, "after_stacked", -1);
        }

        if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
            // UltravoxProjector
            // pre-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);

            // ffn in
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);

            // swiglu
            // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
            cur = ggml_swiglu_swapped(ctx0, cur);

            // mid-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);

            // ffn out
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_fc_b);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_gelu_erf(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else {
            GGML_ABORT("%s: unknown projector type", __func__);
        }

        cb(cur, "projected", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

private:
    //
    // utility functions
    //

    void cb(ggml_tensor * cur0, const char * name, int il) const {
        if (ctx->debug_graph) {
            ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
            std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
            ggml_set_name(cur, cur_name.c_str());
            ggml_set_output(cur);
            ggml_build_forward_expand(gf, cur);
            ctx->debug_print_tensors.push_back(cur);
        }
    }

    // siglip2 naflex
    ggml_tensor * resize_position_embeddings() {
        ggml_tensor * pos_embd = model.position_embeddings;
        const int height       = img.ny / patch_size;
        const int width        = img.nx / patch_size;
        const uint32_t mode    = GGML_SCALE_MODE_BILINEAR;
        const int n_per_side   = (int)std::sqrt(pos_embd->ne[1]);

        GGML_ASSERT(pos_embd);

        if (height == n_per_side && width == n_per_side) {
            return pos_embd;
        }

        pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side);  // -> (n_embd, n_per_side, n_per_side)
        pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3);                         // -> (n_per_side, n_per_side, n_embd)
        pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
        pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3);                         // -> (n_embd, width, height)
        pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);             // -> (n_embd, width * height)

        return pos_embd;
    }

    // build vision transformer (ViT) cgraph
    // this function should cover most of the models
    // if your model has specific features, you should probably duplicate this function
    ggml_tensor * build_vit(
                ggml_tensor * inp,
                int64_t n_pos,
                norm_type norm_t,
                ffn_op_type ffn_t,
                ggml_tensor * learned_pos_embd,
                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
            ) {
        if (learned_pos_embd) {
            inp = ggml_add(ctx0, inp, learned_pos_embd);
            cb(inp, "pos_embed", -1);
        }

        ggml_tensor * inpL = inp;

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
            cb(inpL, "pre_ln", -1);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "layer_inp_normed", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }

                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }

                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }

                if (layer.q_norm) {
                    Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
                    cb(Qcur, "Qcur_norm", il);
                }

                if (layer.k_norm) {
                    Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
                    cb(Kcur, "Kcur_norm", il);
                }

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                if (add_pos) {
                    Qcur = add_pos(Qcur, layer);
                    Kcur = add_pos(Kcur, layer);
                    cb(Qcur, "Qcur_pos", il);
                    cb(Kcur, "Kcur_pos", il);
                }

                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }

            if (layer.ls_1_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_1_w);
                cb(cur, "attn_out_scaled", il);
            }

            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);

            inpL = cur; // inpL = residual, cur = hidden_states

            cb(cur, "ffn_inp", il);

            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);

            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                ffn_t, il);

            cb(cur, "ffn_out", il);

            if (layer.ls_2_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_2_w);
                cb(cur, "ffn_out_scaled", il);
            }

            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);

            inpL = cur;
        }

        if (ctx->model.audio_has_avgpool()) {
            ggml_tensor * cur = inpL;
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            inpL = cur;
        }

        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
        }
        return inpL;
    }

    // build the input after conv2d (inp_raw --> patches)
    // returns tensor with shape [n_embd, n_patches]
    ggml_tensor * build_inp() {
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
        inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
        if (model.patch_bias) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }
        return inp;
    }

    ggml_tensor * build_inp_raw(int channels = 3) {
        ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
        ggml_set_name(inp_raw, "inp_raw");
        ggml_set_input(inp_raw);
        return inp_raw;
    }

    ggml_tensor * build_norm(
            ggml_tensor * cur,
            ggml_tensor * mw,
            ggml_tensor * mb,
            norm_type type,
            float norm_eps,
            int il) const {

        cur = type == NORM_TYPE_RMS
            ? ggml_rms_norm(ctx0, cur, norm_eps)
            : ggml_norm(ctx0, cur, norm_eps);

        if (mw || mb) {
            cb(cur, "norm", il);
        }

        if (mw) {
            cur = ggml_mul(ctx0, cur, mw);
            if (mb) {
                cb(cur, "norm_w", il);
            }
        }

        if (mb) {
            cur = ggml_add(ctx0, cur, mb);
        }

        return cur;
    }

    ggml_tensor * build_ffn(
            ggml_tensor * cur,
            ggml_tensor * up,
            ggml_tensor * up_b,
            ggml_tensor * gate,
            ggml_tensor * gate_b,
            ggml_tensor * down,
            ggml_tensor * down_b,
            ffn_op_type type_op,
            int il) const {

        ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
        cb(tmp, "ffn_up", il);

        if (up_b) {
            tmp = ggml_add(ctx0, tmp, up_b);
            cb(tmp, "ffn_up_b", il);
        }

        if (gate) {
            cur = ggml_mul_mat(ctx0, gate, cur);
            cb(cur, "ffn_gate", il);

            if (gate_b) {
                cur = ggml_add(ctx0, cur, gate_b);
                cb(cur, "ffn_gate_b", il);
            }
        } else {
            cur = tmp;
        }

        // we only support parallel ffn for now
        switch (type_op) {
            case FFN_SILU:
                if (gate) {
                    cur = ggml_swiglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_swiglu", il);
                } else {
                    cur = ggml_silu(ctx0, cur);
                    cb(cur, "ffn_silu", il);
                } break;
            case FFN_GELU:
                if (gate) {
                    cur = ggml_geglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu", il);
                } else {
                    cur = ggml_gelu(ctx0, cur);
                    cb(cur, "ffn_gelu", il);
                } break;
            case FFN_GELU_ERF:
                if (gate) {
                    cur = ggml_geglu_erf_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_erf", il);
                } else {
                    cur = ggml_gelu_erf(ctx0, cur);
                    cb(cur, "ffn_gelu_erf", il);
                } break;
            case FFN_GELU_QUICK:
                if (gate) {
                    cur = ggml_geglu_quick_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_quick", il);
                } else {
                    cur = ggml_gelu_quick(ctx0, cur);
                    cb(cur, "ffn_gelu_quick", il);
                } break;
        }

        if (down) {
            cur = ggml_mul_mat(ctx0, down, cur);
        }

        if (down_b) {
            cb(cur, "ffn_down", il);
        }

        if (down_b) {
            cur = ggml_add(ctx0, cur, down_b);
        }

        return cur;
    }

    ggml_tensor * build_attn(
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur,
            ggml_tensor * k_cur,
            ggml_tensor * v_cur,
            ggml_tensor * kq_mask,
            float kq_scale,
            int il) const {
        // these nodes are added to the graph together so that they are not reordered
        // by doing so, the number of splits in the graph is reduced
        ggml_build_forward_expand(gf, q_cur);
        ggml_build_forward_expand(gf, k_cur);
        ggml_build_forward_expand(gf, v_cur);

        ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
        //cb(q, "q", il);

        ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
        //cb(k, "k", il);

        ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
        v = ggml_cont(ctx0, v);
        //cb(k, "v", il);

        ggml_tensor * cur;

        // TODO @ngxson : support flash attention
        {
            const auto n_tokens = q->ne[1];
            const auto n_head   = q->ne[2];
            // const auto n_kv     = k->ne[1]; // for flash attention

            ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            // F32 may not needed for vision encoders?
            // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);

            ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
            cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
        }

        cb(cur, "kqv_out", il);

        if (wo) {
            cur = ggml_mul_mat(ctx0, wo, cur);
        }

        if (wo_b) {
            cur = ggml_add(ctx0, cur, wo_b);
        }

        return cur;
    }

    // implementation of the 2D RoPE without adding a new op in ggml
    // this is not efficient (use double the memory), but works on all backends
    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
    static ggml_tensor * build_rope_2d(
        ggml_context * ctx0,
        ggml_tensor * cur,
        ggml_tensor * pos_a, // first half
        ggml_tensor * pos_b, // second half
        const float freq_base,
        const bool interleave_freq
    ) {
        const int64_t n_dim  = cur->ne[0];
        const int64_t n_head = cur->ne[1];
        const int64_t n_pos  = cur->ne[2];

        // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
        // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
        // first half of cur will use 1e-0, 1e-2 (even)
        // second half of cur will use 1e-1, 1e-3 (odd)
        // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
        //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
        // then for the second half, we use freq_scale to shift the inv_freq
        //  ^ why? replace (2i) with (2i+1) in the above equation
        const float freq_scale_odd = interleave_freq
                                    ? std::pow(freq_base, (float)-2/n_dim)
                                    : 1.0;

        // first half
        ggml_tensor * first;
        {
            first = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                0);
            first = ggml_rope_ext(
                ctx0,
                first,
                pos_a,      // positions
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                1.0f, 0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        // second half
        ggml_tensor * second;
        {
            second = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                n_dim/2 * ggml_element_size(cur));
            second = ggml_rope_ext(
                ctx0,
                second,
                pos_b,      // positions
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                freq_scale_odd,
                0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        cur = ggml_concat(ctx0, first, second, 0);
        return cur;
    }

    // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
    // support dynamic resolution
    ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
        GGML_ASSERT(scale_factor > 1);

        const int n_embd = cur->ne[0];
        int width  = img.nx / patch_size;
        int height = img.ny / patch_size;

        // pad width and height to factor
        const int64_t pad_width  = CLIP_ALIGN(width,  scale_factor) - width;
        const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
        cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
        if (pad_width || pad_height) {
            cur     = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
            width  += pad_width;
            height += pad_height;
        }

        // unshuffle h
        cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        // unshuffle w
        cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
        cb(cur, "pixel_shuffle", -1);

        return cur;
    }

};

static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
    clip_graph graph(ctx, *imgs.entries[0]);

    ggml_cgraph * res;

    switch (ctx->proj_type()) {
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
        case PROJECTOR_TYPE_LFM2:
            {
                res = graph.build_siglip();
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
                res = graph.build_pixtral();
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
            {
                res = graph.build_qwen2vl();
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
                res = graph.build_minicpmv();
            } break;
        case PROJECTOR_TYPE_INTERNVL:
            {
                res = graph.build_internvl();
            } break;
        case PROJECTOR_TYPE_LLAMA4:
            {
                res = graph.build_llama4();
            } break;
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_QWEN2A:
            {
                res = graph.build_whisper_enc();
            } break;
        case PROJECTOR_TYPE_KIMIVL:
            {
                res = graph.build_kimivl();
            } break;
        default:
            {
                res = graph.build_llava();
            } break;
    }
    return res;
}

struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;

    std::string fname;

    size_t model_size = 0; // in bytes

    bool has_vision = false;
    bool has_audio  = false;

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
    clip_model_loader(const char * fname) : fname(fname) {
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };

        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
        }

        ctx_meta.reset(meta);

        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());

        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
        }

        // modalities
        {
            get_bool(KEY_HAS_VISION_ENC, has_vision, false);
            get_bool(KEY_HAS_AUDIO_ENC,  has_audio,  false);

            if (has_vision) {
                LOG_INF("%s: has vision encoder\n", __func__);
            }
            if (has_audio) {
                LOG_INF("%s: has audio encoder\n", __func__);
            }
        }

        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
                ggml_tensor * cur = ggml_get_tensor(meta, name);
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
            }
        }
    }

    void load_hparams(clip_model & model, clip_modality modality) {
        auto & hparams = model.hparams;
        std::string log_ffn_op; // for logging

        // sanity check
        if (modality == CLIP_MODALITY_VISION) {
            GGML_ASSERT(has_vision);
        } else if (modality == CLIP_MODALITY_AUDIO) {
            GGML_ASSERT(has_audio);
        }
        model.modality = modality;


        // projector type
        std::string proj_type;
        {
            get_string(KEY_PROJ_TYPE, proj_type, false);
            if (!proj_type.empty()) {
                model.proj_type = clip_projector_type_from_string(proj_type);
            }
            if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
            }

            // correct arch for multimodal models
            if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
                model.proj_type = modality == CLIP_MODALITY_VISION
                                    ? PROJECTOR_TYPE_QWEN25VL
                                    : PROJECTOR_TYPE_QWEN2A;
            }
        }

        const bool is_vision = model.modality == CLIP_MODALITY_VISION;
        const bool is_audio  = model.modality == CLIP_MODALITY_AUDIO;

        // other hparams
        {
            const char * prefix = is_vision ? "vision" : "audio";
            get_u32(string_format(KEY_N_EMBD,         prefix), hparams.n_embd);
            get_u32(string_format(KEY_N_HEAD,         prefix), hparams.n_head);
            get_u32(string_format(KEY_N_FF,           prefix), hparams.n_ff);
            get_u32(string_format(KEY_N_BLOCK,        prefix), hparams.n_layer);
            get_u32(string_format(KEY_PROJ_DIM,       prefix), hparams.projection_dim);
            get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);

            if (is_vision) {
                get_u32(KEY_IMAGE_SIZE, hparams.image_size);
                get_u32(KEY_PATCH_SIZE, hparams.patch_size);
                get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
                get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
                get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
                if (hparams.minicpmv_query_num == 0) {
                    // Fallback to hardcoded values for legacy models
                    if (hparams.minicpmv_version == 3) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 4) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 5) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 6) {
                        hparams.minicpmv_query_num = 64;
                    } else {
                        hparams.minicpmv_query_num = 96;
                    }
                }
            } else if (is_audio) {
                get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);

            } else {
                GGML_ASSERT(false && "unknown modality");
            }

            // for pinpoints, we need to convert it into a list of resolution candidates
            {
                std::vector<int> pinpoints;
                get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
                if (!pinpoints.empty()) {
                    for (size_t i = 0; i < pinpoints.size(); i += 2) {
                        hparams.image_res_candidates.push_back({
                            pinpoints[i],
                            pinpoints[i+1],
                        });
                    }
                }
            }

            // default warmup value
            hparams.warmup_image_size = hparams.image_size;

            hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
                                       || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                                       || model.proj_type == PROJECTOR_TYPE_LDP
                                       || model.proj_type == PROJECTOR_TYPE_LDPV2;

            {
                bool use_gelu = false;
                bool use_silu = false;
                get_bool(KEY_USE_GELU, use_gelu, false);
                get_bool(KEY_USE_SILU, use_silu, false);
                if (use_gelu && use_silu) {
                    throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
                }
                if (use_gelu) {
                    hparams.ffn_op = FFN_GELU;
                    log_ffn_op = "gelu";
                } else if (use_silu) {
                    hparams.ffn_op = FFN_SILU;
                    log_ffn_op = "silu";
                } else {
                    hparams.ffn_op = FFN_GELU_QUICK;
                    log_ffn_op = "gelu_quick";
                }
            }

            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }

            if (is_vision) {
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
                    hparams.image_mean[i] = mean_data[i];
                    hparams.image_std[i]  = std_data[i];
                }
            }

            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }

            // model-specific params
            switch (model.proj_type) {
                case PROJECTOR_TYPE_MINICPMV:
                    {
                        if (hparams.minicpmv_version == 0) {
                            hparams.minicpmv_version = 2; // default to 2 if not set
                        }
                    } break;
                case PROJECTOR_TYPE_IDEFICS3:
                case PROJECTOR_TYPE_LFM2:
                case PROJECTOR_TYPE_INTERNVL:
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_PIXTRAL:
                    {
                        hparams.rope_theta = 10000.0f;
                        hparams.warmup_image_size = hparams.patch_size * 8;
                        // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
                        // ref: https://github.com/ggml-org/llama.cpp/issues/14310
                        hparams.image_size = 1024;
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
                    } break;
                case PROJECTOR_TYPE_KIMIVL:
                    {
                        hparams.rope_theta = 10000.0f;
                        hparams.warmup_image_size = hparams.patch_size * 8;
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_GEMMA3:
                    {
                        // default value (used by all model sizes in gemma 3 family)
                        // number of patches for each **side** is reduced by a factor of 4
                        hparams.proj_scale_factor = 4;
                        // test model (tinygemma3) has a different value, we optionally read it
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_QWEN2VL:
                    {
                        // max image size = sqrt(max_pixels) = 3584
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
                    } break;
                case PROJECTOR_TYPE_QWEN25VL:
                    {
                        // max image size = sqrt(max_pixels)
                        // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
                        get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
                    } break;
                case PROJECTOR_TYPE_LLAMA4:
                    {
                        hparams.rope_theta = 10000.0f;
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
                        set_llava_uhd_res_candidates(model, 3);
                    } break;
                case PROJECTOR_TYPE_ULTRAVOX:
                case PROJECTOR_TYPE_QWEN2A:
                case PROJECTOR_TYPE_VOXTRAL:
                    {
                        bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
                                             model.proj_type == PROJECTOR_TYPE_VOXTRAL;
                        get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
                        if (hparams.n_mel_bins != 128) {
                            throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
                        }
                        hparams.ffn_op = FFN_GELU_ERF;
                        log_ffn_op = "gelu_erf"; // temporary solution for logging
                    } break;
                default:
                    break;
            }

            LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
            LOG_INF("%s: n_embd:             %d\n", __func__, hparams.n_embd);
            LOG_INF("%s: n_head:             %d\n", __func__, hparams.n_head);
            LOG_INF("%s: n_ff:               %d\n", __func__, hparams.n_ff);
            LOG_INF("%s: n_layer:            %d\n", __func__, hparams.n_layer);
            LOG_INF("%s: ffn_op:             %s\n", __func__, log_ffn_op.c_str());
            LOG_INF("%s: projection_dim:     %d\n", __func__, hparams.projection_dim);
            if (is_vision) {
                LOG_INF("\n--- vision hparams ---\n");
                LOG_INF("%s: image_size:         %d\n", __func__, hparams.image_size);
                LOG_INF("%s: patch_size:         %d\n", __func__, hparams.patch_size);
                LOG_INF("%s: has_llava_proj:     %d\n", __func__, hparams.has_llava_projector);
                LOG_INF("%s: minicpmv_version:   %d\n", __func__, hparams.minicpmv_version);
                LOG_INF("%s: proj_scale_factor:  %d\n", __func__, hparams.proj_scale_factor);
                LOG_INF("%s: n_wa_pattern:       %d\n", __func__, hparams.n_wa_pattern);
            } else if (is_audio) {
                LOG_INF("\n--- audio hparams ---\n");
                LOG_INF("%s: n_mel_bins:         %d\n", __func__, hparams.n_mel_bins);
                LOG_INF("%s: proj_stack_factor:  %d\n", __func__, hparams.proj_stack_factor);
            }
            LOG_INF("\n");
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }

    void load_tensors(clip_ctx & ctx_clip) {
        auto & model = ctx_clip.model;
        auto & hparams = model.hparams;
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;

        // TODO @ngxson : support both audio and video in the future
        const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";

        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
        }

        // create data context
        struct ggml_init_params params = {
            /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
        }

        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
            ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
                ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };

        model.class_embedding = get_tensor(TN_CLASS_EMBD, false);

        model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
        model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"),   false);

        model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
        model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"),   false);

        model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);

        model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);

        // layers
        model.layers.resize(hparams.n_layer);
        for (int il = 0; il < hparams.n_layer; ++il) {
            auto & layer = model.layers[il];
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "weight"));
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "weight"));
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "weight"));
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
            layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
            layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        prefix, il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        prefix, il, "weight"), false);
            layer.ls_1_w = get_tensor(string_format(TN_LS_1,        prefix, il, "weight"), false); // no bias
            layer.ls_2_w = get_tensor(string_format(TN_LS_2,        prefix, il, "weight"), false); // no bias

            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        prefix, il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        prefix, il, "bias"), false);

            // ffn
            layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "weight"));
            layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "bias"),   false);
            layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
            layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"),   false);
            layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
            layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"),   false);

            // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
            // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
            bool is_ffn_swapped = (
                    // only old models need this fix
                    model.proj_type == PROJECTOR_TYPE_MLP
                    || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                    || model.proj_type == PROJECTOR_TYPE_LDP
                    || model.proj_type == PROJECTOR_TYPE_LDPV2
                    || model.proj_type == PROJECTOR_TYPE_QWEN2VL
                    || model.proj_type == PROJECTOR_TYPE_QWEN25VL
                    || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
                    || model.proj_type == PROJECTOR_TYPE_GEMMA3
                    || model.proj_type == PROJECTOR_TYPE_IDEFICS3
                    || model.proj_type == PROJECTOR_TYPE_MINICPMV
                ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
            if (is_ffn_swapped) {
                // swap up and down weights
                ggml_tensor * tmp = layer.ff_up_w;
                layer.ff_up_w = layer.ff_down_w;
                layer.ff_down_w = tmp;
                // swap up and down biases
                tmp = layer.ff_up_b;
                layer.ff_up_b = layer.ff_down_b;
                layer.ff_down_b = tmp;
                if (il == 0) {
                    LOG_WRN("%s: ffn up/down are swapped\n", __func__);
                }
            }
        }

        switch (model.proj_type) {
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
                    // Yi-type llava
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    // missing in Yi-type llava
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
                    // Yi-type llava
                    model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (model.mm_3_w) {
                        // TODO: this is a hack to support Yi-type llava
                        model.proj_type = PROJECTOR_TYPE_MLP_NORM;
                    }
                    model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
                } break;
            case PROJECTOR_TYPE_MINICPMV:
                {
                    // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
                    model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
                    model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
                    model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
                } break;
            case PROJECTOR_TYPE_QWEN2VL:
            case PROJECTOR_TYPE_QWEN25VL:
                {
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
            case PROJECTOR_TYPE_GEMMA3:
                {
                    model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
                } break;
            case PROJECTOR_TYPE_IDEFICS3:
                {
                    model.projection = get_tensor(TN_MM_PROJECTOR);
                } break;
            case PROJECTOR_TYPE_LFM2:
            case PROJECTOR_TYPE_KIMIVL:
                {
                    model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
                    model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
            case PROJECTOR_TYPE_PIXTRAL:
                {
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
                    // [IMG_BREAK] token embedding
                    model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
                    // for mistral small 3.1
                    model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
            case PROJECTOR_TYPE_ULTRAVOX:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
                    model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
                    model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
                } break;
            case PROJECTOR_TYPE_QWEN2A:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
                    model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
                } break;
            case PROJECTOR_TYPE_VOXTRAL:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
                } break;
            case PROJECTOR_TYPE_INTERNVL:
                {
                    model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                } break;
            case PROJECTOR_TYPE_LLAMA4:
                {
                    model.mm_model_proj    = get_tensor(TN_MM_PROJECTOR);
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                } break;
            default:
                GGML_ASSERT(false && "unknown projector type");
        }

        // load data
        {
            std::vector<uint8_t> read_buf;

            auto fin = std::ifstream(fname, std::ios::binary);
            if (!fin) {
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
            }

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
                ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
            }
            fin.close();

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
    }

    void alloc_compute_meta(clip_ctx & ctx_clip) {
        const auto & hparams = ctx_clip.model.hparams;
        ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());

        // create a fake batch
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
        if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
            img->nx = hparams.warmup_image_size;
            img->ny = hparams.warmup_image_size;
        } else {
            img->nx = hparams.warmup_audio_size;
            img->ny = hparams.n_mel_bins;
        }
        batch.entries.push_back(std::move(img));

        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);

        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
            }
        }
    }

    void get_bool(const std::string & key, bool & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }

    void get_i32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }

    void get_u32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

    void get_f32(const std::string & key, float & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

    void get_string(const std::string & key, std::string & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }

    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }

    void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
        auto & hparams = model.hparams;
        for (int x = 1; x <= max_patches_per_side; x++) {
            for (int y = 1; y <= max_patches_per_side; y++) {
                if (x == 1 && y == 1) {
                    continue; // skip the first point
                }
                hparams.image_res_candidates.push_back(clip_image_size{
                    x*hparams.image_size,
                    y*hparams.image_size,
                });
            }
        }
    }
};

struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
    g_logger_state.verbosity_thold = ctx_params.verbosity;
    clip_ctx * ctx_vision = nullptr;
    clip_ctx * ctx_audio = nullptr;

    try {
        clip_model_loader loader(fname);

        if (loader.has_vision) {
            ctx_vision = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
            loader.load_tensors(*ctx_vision);
            loader.alloc_compute_meta(*ctx_vision);
        }

        if (loader.has_audio) {
            ctx_audio = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
            loader.load_tensors(*ctx_audio);
            loader.alloc_compute_meta(*ctx_audio);
        }

    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
        if (ctx_vision) {
            delete ctx_vision;
        }
        if (ctx_audio) {
            delete ctx_audio;
        }
        return {nullptr, nullptr};
    }

    return {ctx_vision, ctx_audio};
}

struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8  * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->ny;
}

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
    }
    return batch->entries[idx].get();
}

void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());

    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
        int c = i % 3; // rgb
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
    }
}

// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
    // Bilinear resize function
    static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }

    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
    static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
        float C[5] = {};
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
                }
            }
        }

        return true;
    }

    // llava-1.6 type of resize_and_pad
    // if the ratio is not 1:1, padding with pad_color will be applied
    // pad_color is single channel, default is 0 (black)
    static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        int target_width  = target_resolution.width;
        int target_height = target_resolution.height;

        float scale_w = static_cast<float>(target_width) / image.nx;
        float scale_h = static_cast<float>(target_height) / image.ny;

        int new_width, new_height;

        if (scale_w < scale_h) {
            new_width  = target_width;
            new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
        } else {
            new_height = target_height;
            new_width  = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
        }

        clip_image_u8 resized_image;
        bicubic_resize(image, resized_image, new_width, new_height);

        clip_image_u8 padded_image;
        padded_image.nx = target_width;
        padded_image.ny = target_height;
        padded_image.buf.resize(3 * target_width * target_height);

        // Fill the padded image with the fill color
        for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
            padded_image.buf[i]     = pad_color[0];
            padded_image.buf[i + 1] = pad_color[1];
            padded_image.buf[i + 2] = pad_color[2];
        }

        // Calculate padding offsets
        int pad_x = (target_width  - new_width)  / 2;
        int pad_y = (target_height - new_height) / 2;

        // Copy the resized image into the center of the padded buffer
        for (int y = 0; y < new_height; ++y) {
            for (int x = 0; x < new_width; ++x) {
                for (int c = 0; c < 3; ++c) {
                    padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
                }
            }
        }
        dst = std::move(padded_image);
    }

    static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);

        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
            }
        }
    }

    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will be aligned to the nearest multiple of align_size
    // if H or W size is larger than max_dimension, it will be resized to max_dimension
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
        if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
            return {0, 0};
        }

        float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
                                              static_cast<float>(max_dimension) / inp_size.height));

        float target_width_f  = static_cast<float>(inp_size.width)  * scale;
        float target_height_f = static_cast<float>(inp_size.height) * scale;

        int aligned_width  = CLIP_ALIGN((int)target_width_f,  align_size);
        int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);

        return {aligned_width, aligned_height};
    }

private:
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};

/**
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
 *
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
 */
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };

    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;

        const bool has_slices    = original_size.width > slice_size || original_size.height > slice_size;
        const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();

        if (!has_slices) {
            // skip slicing logic
            res.overview_size = clip_image_size{slice_size, slice_size};
            res.refined_size  = clip_image_size{0, 0};
            res.grid_size     = clip_image_size{0, 0};

            return res;
        }

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
                original_size,
                ctx->model.hparams.image_res_candidates);
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

            LOG_DBG("%s: using pinpoints for slicing\n", __func__);
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width,  res.refined_size.height);

            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
                }
            }

            res.grid_size.height = refine_size.height / slice_size;
            res.grid_size.width  = refine_size.width  / slice_size;
            LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);

            return res;
        }

        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)

        auto best_size    = get_best_resize(original_size, slice_size, patch_size, !has_slices);
        res.overview_size = best_size;

        {
            const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
            const float log_ratio = log((float)original_width / original_height);
            const float ratio = (float)original_width * original_height / (slice_size * slice_size);
            const int multiple = fmin(ceil(ratio), max_slice_nums);

            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width, res.refined_size.height,
                    res.grid_size.width, res.grid_size.height);

            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
                }
            }
        }

        return res;
    }

    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;

        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
        image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
            image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
        } else {
            image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
        }

        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
            image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
            output.push_back(std::move(img_slice));
        }

        return output;
    }

private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

    static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
        float scale_width  = static_cast<float>(target_max.width)  / orig.width;
        float scale_height = static_cast<float>(target_max.height) / orig.height;
        float scale = std::min(scale_width, scale_height);
        return clip_image_size{
            static_cast<int>(orig.width  * scale),
            static_cast<int>(orig.height * scale),
        };
    }

    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
     * For example, when given a list of resolutions:
     *  - 100x100
     *  - 200x100
     *  - 100x200
     *  - 200x200
     *
     * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
     *
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        clip_image_size best_fit;
        int min_wasted_area = std::numeric_limits<int>::max();
        int max_effective_resolution = 0;

        for (const clip_image_size & candidate : possible_resolutions) {
            auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
            int effective_resolution = std::min(
                target_size.width * target_size.height,
                original_size.width * original_size.height);
            int wasted_area = (candidate.width * candidate.height) - effective_resolution;

            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
                max_effective_resolution = effective_resolution;
                min_wasted_area = wasted_area;
                best_fit = candidate;
            }

            LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
        }

        return best_fit;
    }

    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
                }
                ++m;
            }
        }

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
    }
};

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
    clip_image_size original_size{img->nx, img->ny};
    bool pad_to_square = true;
    auto & params = ctx->model.hparams;
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
    if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
        pad_to_square = false;
    }

    if (clip_is_minicpmv(ctx)) {
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

        for (size_t i = 0; i < imgs.size(); ++i) {
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
            res_imgs->entries.push_back(std::move(res));
        }

        res_imgs->grid_x = inst.grid_size.width;
        res_imgs->grid_y = inst.grid_size.height;
        return true;

    } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
        clip_image_u8 resized;
        auto patch_size = params.patch_size * 2;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
        image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);

        clip_image_f32_ptr img_f32(clip_image_f32_init());
        // clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
        // res_imgs->data[0] = *res;
        res_imgs->entries.push_back(std::move(img_f32));
        return true;
    }
    else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
            || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
            || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
            || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
    ) {
        clip_image_u8 resized_image;
        int sz = params.image_size;
        image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        //clip_image_save_to_bmp(resized_image, "resized.bmp");
        normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
        res_imgs->entries.push_back(std::move(img_f32));
        return true;

    } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
        clip_image_u8 resized_image;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
        image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
        res_imgs->entries.push_back(std::move(img_f32));
        return true;

    } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
        GGML_ASSERT(!params.image_res_candidates.empty());
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

        for (size_t i = 0; i < imgs.size(); ++i) {
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
            res_imgs->entries.push_back(std::move(res));
        }

        res_imgs->grid_x = inst.grid_size.width;
        res_imgs->grid_y = inst.grid_size.height;
        return true;

    } else if ( ctx->proj_type() == PROJECTOR_TYPE_LFM2
             || ctx->proj_type() == PROJECTOR_TYPE_KIMIVL
    ) {
        GGML_ASSERT(params.proj_scale_factor);

        // smart resize
        const int width = img->nx;
        const int height = img->ny;
        const int total_factor = params.patch_size * params.proj_scale_factor;
        constexpr int min_image_tokens = 64;
        constexpr int max_image_tokens = 1024;
        const float min_pixels = min_image_tokens * total_factor * total_factor;
        const float max_pixels = max_image_tokens * total_factor * total_factor;

        auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
        auto ceil_by_factor  = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
        auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };

        int h_bar = std::max(total_factor, round_by_factor(height));
        int w_bar = std::max(total_factor, round_by_factor(width));

        if (h_bar * w_bar > max_pixels) {
            const auto beta = std::sqrt((height * width) / max_pixels);
            h_bar = std::max(total_factor, floor_by_factor(height / beta));
            w_bar = std::max(total_factor, floor_by_factor(width / beta));
        } else if (h_bar * w_bar < min_pixels) {
            const auto beta = std::sqrt(min_pixels / (height * width));
            h_bar = ceil_by_factor(height * beta);
            w_bar = ceil_by_factor(width * beta);
        }

        const std::array<uint8_t, 3> pad_color = {122, 116, 104};

        clip_image_u8 resized_img;
        image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
        clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
        res_imgs->entries.push_back(std::move(res));
        return true;
    }

    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156

    clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily

    if (pad_to_square) {
        // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
        // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
        const int longer_side = std::max(img->nx, img->ny);
        temp->nx = longer_side;
        temp->ny = longer_side;
        temp->buf.resize(3 * longer_side * longer_side);

        // background color in RGB from LLaVA (this is the mean rgb color * 255)
        const std::array<uint8_t, 3> pad_color = {122, 116, 104};

        // resize the image to the target_size
        image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);

        clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
        res_imgs->entries.push_back(std::move(res));
        return true;

    } else if (!params.image_res_candidates.empty()) {
        // "spatial_unpad" with "anyres" processing for llava-1.6
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

        for (size_t i = 0; i < imgs.size(); ++i) {
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
            res_imgs->entries.push_back(std::move(res));
        }

        return true;
    } else {
        GGML_ABORT("Unknown image preprocessing type");
    }

}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
    return ctx->model.image_newline;
}

void clip_free(clip_ctx * ctx) {
    if (ctx == nullptr) {
        return;
    }
    delete ctx;
}

// deprecated
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
    const int32_t nx = ctx->model.hparams.image_size;
    const int32_t ny = ctx->model.hparams.image_size;
    return clip_embd_nbytes_by_img(ctx, nx, ny);
}

size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
    return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
}

int32_t clip_get_image_size(const struct clip_ctx * ctx) {
    return ctx->model.hparams.image_size;
}

int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
    return ctx->model.hparams.patch_size;
}

int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
    return ctx->model.hparams.n_embd;
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
    return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
}

int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->model.hparams;
    const int n_total = clip_n_output_tokens(ctx, img);
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
        return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
    }
    return n_total;
}

int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->model.hparams;
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
        return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
    }
    return 1;
}

int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->model.hparams;

    // for models with fixed size image, the input image is already pre-processed and resized to square
    int patch_size = params.patch_size;
    int n_patches = (img->nx / patch_size) * (img->ny / patch_size);

    projector_type proj = ctx->proj_type();

    switch (proj) {
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
            {
                // do nothing
            } break;
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
        case PROJECTOR_TYPE_GLM_EDGE:
            {
                n_patches /= 4;
                if (ctx->model.mm_glm_tok_boi) {
                    n_patches += 2; // for BOI and EOI token embeddings
                }
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
                // Use actual config value if available, otherwise fall back to hardcoded values
                if (params.minicpmv_query_num > 0) {
                    n_patches = params.minicpmv_query_num;
                } else {
                    // Fallback to hardcoded values for legacy models
                    if (params.minicpmv_version == 2) {
                        n_patches = 96;
                    } else if (params.minicpmv_version == 3) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 4) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 5) {
                        // MiniCPM-V 4.0
                        n_patches = 64;
                    } else if (params.minicpmv_version == 6) {
                        // MiniCPM-V 4.5
                        n_patches = 64;
                    } else {
                        GGML_ABORT("Unknown minicpmv version");
                    }
                }
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
            {
                // dynamic size (2 conv, so double patch size)
                int patch_size = params.patch_size * 2;
                int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
                int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
                n_patches = x_patch * y_patch;
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
        case PROJECTOR_TYPE_INTERNVL:
        case PROJECTOR_TYPE_LLAMA4:
            {
                // both X and Y are downscaled by the scale factor
                int scale_factor = ctx->model.hparams.proj_scale_factor;
                n_patches /= (scale_factor * scale_factor);
            } break;
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
            {
                // dynamic size
                int scale_factor = ctx->model.hparams.proj_scale_factor;
                int out_patch_size = params.patch_size * scale_factor;
                int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
                int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
                n_patches = x_patch * y_patch;
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
                // dynamic size
                int n_merge = params.spatial_merge_size;
                int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
                int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
                n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
            } break;
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_QWEN2A:
            {
                n_patches = img->nx;

                const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
                if (ctx->model.audio_has_stack_frames()) {
                    GGML_ASSERT(proj_stack_factor > 0);
                    const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
                    n_patches = n_len / proj_stack_factor;
                }

                // whisper downscales input token by half after conv1d
                n_patches /= 2;

                if (ctx->model.audio_has_avgpool()) {
                    // divide by 2 because of nn.AvgPool1d(2, stride=2)
                    n_patches /= 2;
                }
            } break;
        default:
            GGML_ABORT("unsupported projector type");
    }

    return n_patches;
}

static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
    assert(embed_dim % 2 == 0);
    int H = pos.size();
    int W = pos[0].size();

    std::vector<float> omega(embed_dim / 2);
    for (int i = 0; i < embed_dim / 2; ++i) {
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
    }

    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                float out_value = pos[h][w] * omega[d];
                emb[h][w][d] = sin(out_value);
                emb[h][w][d + embed_dim / 2] = cos(out_value);
            }
        }
    }

    return emb;
}

static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
    assert(embed_dim % 2 == 0);
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)

    int H = emb_h.size();
    int W = emb_h[0].size();
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));

    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                emb[h][w][d] = emb_h[h][w][d];
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
            }
        }
    }
    return emb;
}

static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
    int grid_h_size = image_size.first;
    int grid_w_size = image_size.second;

    std::vector<float> grid_h(grid_h_size);
    std::vector<float> grid_w(grid_w_size);

    for (int i = 0; i < grid_h_size; ++i) {
        grid_h[i] = static_cast<float>(i);
    }
    for (int i = 0; i < grid_w_size; ++i) {
        grid_w[i] = static_cast<float>(i);
    }

    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid[h][w] = grid_w[w];
        }
    }
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid_2d[0][h][w] = grid_h[h];
            grid_2d[1][h][w] = grid_w[w];
        }
    }

    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);

    int H = image_size.first;
    int W = image_size.second;
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
        }
    }

    return pos_embed_2d;
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;
    int batch_size = imgs.entries.size();

    // TODO @ngxson : implement batch size > 1 as a loop
    //                we don't need true batching support because the cgraph will gonna be big anyway
    if (batch_size != 1) {
        return false; // only support batch size of 1
    }

    // build the inference graph
    ctx->debug_print_tensors.clear();
    ggml_backend_sched_reset(ctx->sched.get());
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);

    // set inputs
    const auto & model   = ctx->model;
    const auto & hparams = model.hparams;

    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
    const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
    const int pos_w = image_size_width  / patch_size;
    const int pos_h = image_size_height / patch_size;

    const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl

    auto get_inp_tensor = [&gf](const char * name) {
        ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
        if (inp == nullptr) {
            GGML_ABORT("Failed to get tensor %s", name);
        }
        if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
            GGML_ABORT("Tensor %s is not an input tensor", name);
        }
        return inp;
    };

    auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_I32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    // set input pixel values
    if (!imgs.is_audio) {
        size_t nelem = 0;
        for (const auto & img : imgs.entries) {
            nelem += img->nx * img->ny * 3;
        }
        std::vector<float> inp_raw(nelem);

        // layout of data (note: the channel dim is unrolled to better visualize the layout):
        //
        // ┌──W──┐
        // │     H │  channel = R
        // ├─────┤ │
        // │     H │  channel = G
        // ├─────┤ │
        // │     H │  channel = B
        // └─────┘ │
        //   ──────┘ x B

        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
                float * batch_entry = inp_raw.data() + b * (3*n);
                for (int y = 0; y < ny; y++) {
                    for (int x = 0; x < nx; x++) {
                        size_t base_src = 3*(y * nx + x); // idx of the first channel
                        size_t base_dst =    y * nx + x;  // idx of the first channel
                        batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
                        batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
                        batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
                    }
                }
            }
        }
        set_input_f32("inp_raw", inp_raw);

    } else {
        // audio input
        GGML_ASSERT(imgs.entries.size() == 1);
        const auto & mel_inp = imgs.entries[0];
        const int n_step = mel_inp->nx;
        const int n_mel  = mel_inp->ny;
        std::vector<float> inp_raw(n_step * n_mel);
        std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
        set_input_f32("inp_raw", inp_raw);
    }

    // set input per projector
    switch (ctx->model.proj_type) {
        case PROJECTOR_TYPE_MINICPMV:
            {
                // inspired from siglip:
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
                std::vector<int32_t> positions(pos_h * pos_w);
                int bucket_coords_h[1024];
                int bucket_coords_w[1024];
                for (int i = 0; i < pos_h; i++){
                    bucket_coords_h[i] = std::floor(70.0*i/pos_h);
                }
                for (int i = 0; i < pos_w; i++){
                    bucket_coords_w[i] = std::floor(70.0*i/pos_w);
                }
                for (int i = 0, id = 0; i < pos_h; i++){
                    for (int j = 0; j < pos_w; j++){
                        positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                    }
                }
                set_input_i32("positions", positions);

                // inspired from resampler of Qwen-VL:
                //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
                //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
                int embed_dim = clip_n_mmproj_embd(ctx);

                // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
                auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));

                std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
                for(int i = 0; i < pos_w * pos_h; ++i){
                    for(int j = 0; j < embed_dim; ++j){
                        pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
                    }
                }

                set_input_f32("pos_embed", pos_embed);
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
            {
                const int merge_ratio = 2;
                const int pw = image_size_width  / patch_size;
                const int ph = image_size_height / patch_size;
                std::vector<int> positions(n_pos * 4);
                int ptr = 0;
                for (int y = 0; y < ph; y += merge_ratio) {
                    for (int x = 0; x < pw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                positions[                  ptr] = y + dy;
                                positions[    num_patches + ptr] = x + dx;
                                positions[2 * num_patches + ptr] = y + dy;
                                positions[3 * num_patches + ptr] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }

                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
            {
                // pw * ph = number of tokens output by ViT after apply patch merger
                // ipw * ipw = number of vision token been processed inside ViT
                const int merge_ratio = 2;
                const int pw  = image_size_width  / patch_size / merge_ratio;
                const int ph  = image_size_height / patch_size / merge_ratio;
                const int ipw = image_size_width  / patch_size;
                const int iph = image_size_height / patch_size;

                std::vector<int> idx    (ph * pw);
                std::vector<int> inv_idx(ph * pw);

                if (use_window_attn) {
                    const int attn_window_size = 112;
                    const int grid_window = attn_window_size / patch_size / merge_ratio;
                    int dst = 0;
                    // [num_vision_tokens, num_vision_tokens] attention mask tensor
                    std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
                    int mask_row = 0;

                    for (int y = 0; y < ph; y += grid_window) {
                        for (int x = 0; x < pw; x += grid_window) {
                            const int win_h = std::min(grid_window, ph - y);
                            const int win_w = std::min(grid_window, pw - x);
                            const int dst_0 = dst;
                            // group all tokens belong to the same window togather (to a continue range)
                            for (int dy = 0; dy < win_h; dy++) {
                                for (int dx = 0; dx < win_w; dx++) {
                                    const int src = (y + dy) * pw + (x + dx);
                                    GGML_ASSERT(src < (int)idx.size());
                                    GGML_ASSERT(dst < (int)inv_idx.size());
                                    idx    [src] = dst;
                                    inv_idx[dst] = src;
                                    dst++;
                                }
                            }

                            for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
                                int row_offset = mask_row * (ipw * iph);
                                std::fill(
                                    mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
                                    mask.begin() + row_offset + (dst   * merge_ratio * merge_ratio),
                                    0.0);
                                mask_row++;
                            }
                        }
                    }

                    set_input_i32("window_idx",     idx);
                    set_input_i32("inv_window_idx", inv_idx);
                    set_input_f32("window_mask",    mask);
                } else {
                    for (int i = 0; i < ph * pw; i++) {
                        idx[i] = i;
                    }
                }

                const int mpow = merge_ratio * merge_ratio;
                std::vector<int> positions(n_pos * 4);

                int ptr = 0;
                for (int y = 0; y < iph; y += merge_ratio) {
                    for (int x = 0; x < ipw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                auto remap = idx[ptr / mpow];
                                remap = (remap * mpow) + (ptr % mpow);

                                positions[                  remap] = y + dy;
                                positions[    num_patches + remap] = x + dx;
                                positions[2 * num_patches + remap] = y + dy;
                                positions[3 * num_patches + remap] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }

                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
        case PROJECTOR_TYPE_KIMIVL:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<int> pos_data(n_pos);
                // dimension H
                for (int i = 0; i < n_pos; i++) {
                    pos_data[i] = i / n_patches_per_col;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < n_pos; i++) {
                    pos_data[i] = i % n_patches_per_col;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        case PROJECTOR_TYPE_GLM_EDGE:
        {
            // llava and other models
            std::vector<int32_t> positions(n_pos);
            for (int i = 0; i < n_pos; i++) {
                positions[i] = i;
            }
            set_input_i32("positions", positions);
        } break;
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
            {
                // llava and other models
                std::vector<int32_t> positions(n_pos);
                for (int i = 0; i < n_pos; i++) {
                    positions[i] = i;
                }
                set_input_i32("positions", positions);

                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
                int patch_offset = model.class_embedding ? 1 : 0;
                std::vector<int32_t> patches(num_patches);
                for (int i = 0; i < num_patches; i++) {
                    patches[i] = i + patch_offset;
                }
                set_input_i32("patches", patches);
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
        case PROJECTOR_TYPE_INTERNVL:
        case PROJECTOR_TYPE_QWEN2A:
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_VOXTRAL:
            {
                // do nothing
            } break;
        case PROJECTOR_TYPE_LLAMA4:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
                // last pos is always kept 0, it's for CLS
                // dimension H
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i / n_patches_per_col) + 1;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i % n_patches_per_col) + 1;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        default:
            GGML_ABORT("Unknown projector type");
    }

    // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
    ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
    ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
    if (reg) {
        auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
        if (ggml_backend_set_n_threads_fn) {
            ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
        }
    }

    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }

    // print debug nodes
    if (ctx->debug_graph) {
        LOG_INF("\n\n---\n\n");
        LOG_INF("\n\nDebug graph:\n\n");
        for (ggml_tensor * t : ctx->debug_print_tensors) {
            std::vector<uint8_t> data(ggml_nbytes(t));
            ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
            print_tensor_shape(t);
            print_tensor_data(t, data.data(), 3);
        }
    }

    // the last node is the embedding tensor
    ggml_tensor * embeddings = ggml_graph_node(gf, -1);

    // sanity check (only support batch size of 1 for now)
    const int n_tokens_out = embeddings->ne[1];
    const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
    if (n_tokens_out != expected_n_tokens_out) {
        LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
        GGML_ABORT("Invalid number of output tokens");
    }

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
    switch (ctx->model.proj_type) {
        case PROJECTOR_TYPE_LDP:
            return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
        case PROJECTOR_TYPE_LDPV2:
            return ctx->model.mm_model_peg_0_b->ne[0];
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_PIXTRAL:
            return ctx->model.mm_2_w->ne[1];
        case PROJECTOR_TYPE_MLP_NORM:
            return ctx->model.mm_3_b->ne[0];
        case PROJECTOR_TYPE_MINICPMV:
            return ctx->model.mm_model_proj->ne[0];
        case PROJECTOR_TYPE_GLM_EDGE:
            return ctx->model.mm_model_mlp_3_w->ne[1];
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
            return ctx->model.mm_1_b->ne[0];
        case PROJECTOR_TYPE_GEMMA3:
            return ctx->model.mm_input_proj_w->ne[0];
        case PROJECTOR_TYPE_IDEFICS3:
            return ctx->model.projection->ne[1];
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
            return ctx->model.mm_2_w->ne[1];
        case PROJECTOR_TYPE_INTERNVL:
            return ctx->model.mm_3_w->ne[1];
        case PROJECTOR_TYPE_LLAMA4:
            return ctx->model.mm_model_proj->ne[1];
        case PROJECTOR_TYPE_QWEN2A:
            return ctx->model.mm_fc_w->ne[1];
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
            return ctx->model.mm_2_w->ne[1];
        default:
            GGML_ABORT("Unknown projector type");
    }
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
    if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
        return ctx->model.hparams.minicpmv_version;
    }
    return 0;
}

bool clip_is_glm(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
}

bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
}

bool clip_is_llava(const struct clip_ctx * ctx) {
    return ctx->model.hparams.has_llava_projector;
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
}

bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_VISION;
}

bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_AUDIO;
}

bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
        || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
}

bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
    return ctx->proj_type();
}

void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
    clip_image_f32 * audio = new clip_image_f32;
    audio->nx = n_frames;
    audio->ny = n_mel;
    audio->buf.resize(n_frames * n_mel);
    std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));

    batch->entries.push_back(clip_image_f32_ptr(audio));
    batch->is_audio = true;
}