1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
|
#include "clip.h"
#include "clip-impl.h"
#include "mtmd.h"
#include "mtmd-audio.h"
#include "llama.h"
#include <algorithm>
#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <vector>
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
bool is_audio = false; // true if the bitmap is audio
};
struct mtmd_image_tokens {
uint32_t nx; // number of tokens in x direction
uint32_t ny; // number of tokens in y direction
bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
uint32_t n_tokens() const { return nx * ny; }
clip_image_f32_batch batch_f32; // preprocessed image patches
std::string id; // optional user-defined ID, useful for KV cache tracking
mtmd_image_tokens clone() {
return mtmd_image_tokens{
nx,
ny,
use_mrope_pos,
batch_f32.clone(),
id
};
}
};
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens>;
struct mtmd_audio_tokens {
uint32_t n_tokens; // number of tokens
clip_image_f32_batch batch_f32; // preprocessed image patches
std::string id; // optional user-defined ID, useful for KV cache tracking
mtmd_audio_tokens clone() {
return mtmd_audio_tokens{
n_tokens,
batch_f32.clone(),
id
};
}
};
using mtmd_audio_tokens_ptr = std::unique_ptr<mtmd_audio_tokens>;
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens_ptr tokens_image;
mtmd_audio_tokens_ptr tokens_audio;
};
struct mtmd_input_chunks {
std::vector<mtmd_input_chunk> entries;
};
// slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
// models not having it (llava-1.6) will process embeddings without any special tokens in-between
enum mtmd_slice_tmpl {
MTMD_SLICE_TMPL_NONE,
MTMD_SLICE_TMPL_MINICPMV_2_5,
MTMD_SLICE_TMPL_MINICPMV_2_6,
MTMD_SLICE_TMPL_LLAMA4,
// TODO @ngxson : add support for idefics (SmolVLM)
};
const char * mtmd_default_marker() {
return "<__media__>";
}
mtmd_context_params mtmd_context_params_default() {
mtmd_context_params params;
params.use_gpu = true;
params.print_timings = true;
params.n_threads = 4;
params.verbosity = GGML_LOG_LEVEL_INFO;
params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
params.media_marker = mtmd_default_marker();
return params;
}
struct mtmd_context {
struct clip_ctx * ctx_v; // vision
struct clip_ctx * ctx_a; // audio
const struct llama_model * text_model;
std::vector<float> image_embd_v; // image embedding vector
bool print_timings;
int n_threads;
std::string media_marker;
const int n_embd_text;
// these are not token, but strings used to mark the beginning and end of image/audio embeddings
std::string img_beg;
std::string img_end;
std::string aud_beg;
std::string aud_end;
// for llava-uhd style models, we need special tokens in-between slices
// minicpmv calls them "slices", llama 4 calls them "tiles"
mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE;
llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image
llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image
llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices
llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices
llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start
llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice end
llama_token tok_sli_img_mid = LLAMA_TOKEN_NULL; // between 2 slices
llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row
bool tok_row_end_trail = false;
bool ov_img_first = false;
bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
// for whisper, we pre-calculate the mel filter bank
whisper_preprocessor::whisper_filters w_filters;
// TODO @ngxson : add timings
mtmd_context(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params & ctx_params) :
text_model (text_model),
print_timings(ctx_params.print_timings),
n_threads (ctx_params.n_threads),
media_marker (ctx_params.media_marker),
n_embd_text (llama_model_n_embd(text_model))
{
if (std::string(ctx_params.image_marker) != MTMD_DEFAULT_IMAGE_MARKER) {
throw std::runtime_error("custom image_marker is not supported anymore, use media_marker instead");
}
if (media_marker.empty()) {
throw std::runtime_error("media_marker must not be empty");
}
clip_context_params ctx_clip_params;
ctx_clip_params.use_gpu = ctx_params.use_gpu;
ctx_clip_params.verbosity = ctx_params.verbosity;
auto res = clip_init(mmproj_fname, ctx_clip_params);
ctx_v = res.ctx_v;
ctx_a = res.ctx_a;
if (!ctx_v && !ctx_a) {
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
}
// if both vision and audio mmproj are present, we need to validate their n_embd
if (ctx_v && ctx_a) {
int n_embd_v = clip_n_mmproj_embd(ctx_v);
int n_embd_a = clip_n_mmproj_embd(ctx_a);
if (n_embd_v != n_embd_a) {
throw std::runtime_error(string_format(
"mismatch between vision and audio mmproj (n_embd_v = %d, n_embd_a = %d)\n",
n_embd_v, n_embd_a));
}
}
// since we already validate n_embd of vision and audio mmproj,
// we can safely assume that they are the same
int n_embd_clip = clip_n_mmproj_embd(ctx_v ? ctx_v : ctx_a);
if (n_embd_text != n_embd_clip) {
throw std::runtime_error(string_format(
"mismatch between text model (n_embd = %d) and mmproj (n_embd = %d)\n"
"hint: you may be using wrong mmproj\n",
n_embd_text, n_embd_clip));
}
if (ctx_v) {
init_vision();
}
if (ctx_a) {
init_audio();
}
}
void init_vision() {
GGML_ASSERT(ctx_v != nullptr);
use_mrope = clip_is_qwen2vl(ctx_v);
projector_type proj = clip_get_projector_type(ctx_v);
int minicpmv_version = clip_is_minicpmv(ctx_v);
if (minicpmv_version == 2) {
// minicpmv 2.5 format:
// <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_5;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_slices_start = lookup_token("<slice>");
tok_slices_end = lookup_token("</slice>");
tok_sli_img_start = tok_ov_img_start;
tok_sli_img_end = tok_ov_img_end;
tok_row_end = lookup_token("\n");
tok_row_end_trail = false; // no trailing end-of-row token
ov_img_first = true;
} else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5 || minicpmv_version == 6) {
// minicpmv 2.6 format:
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_sli_img_start = lookup_token("<slice>");
tok_sli_img_end = lookup_token("</slice>");
tok_row_end = lookup_token("\n");
tok_row_end_trail = false; // no trailing end-of-row token
ov_img_first = true;
} else if (minicpmv_version != 0) {
GGML_ASSERT(false && "unsupported minicpmv version");
} else if (proj == PROJECTOR_TYPE_LLAMA4) {
// llama 4 format:
// <|image_start|>
// (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
// (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
// ... <|tile_y_separator|> <-- trailing end-of-row token
// <|image|> (overview) <-- overview image is last
// <|image_end|>
slice_tmpl = MTMD_SLICE_TMPL_LLAMA4;
tok_ov_img_start = lookup_token("<|image|>");
tok_sli_img_mid = lookup_token("<|tile_x_separator|>");
tok_row_end = lookup_token("<|tile_y_separator|>");
tok_row_end_trail = true; // add trailing end-of-row token
ov_img_first = false; // overview image is last
}
// set boi/eoi
if (proj == PROJECTOR_TYPE_GEMMA3) {
// <start_of_image> ... (image embeddings) ... <end_of_image>
img_beg = "<start_of_image>";
img_end = "<end_of_image>";
} else if (proj == PROJECTOR_TYPE_IDEFICS3) {
// https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
img_beg = "<fake_token_around_image><global-img>";
img_end = "<fake_token_around_image>";
} else if (proj == PROJECTOR_TYPE_PIXTRAL) {
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
img_end = "[IMG_END]";
} else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL) {
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
img_beg = "<|vision_start|>";
img_end = "<|vision_end|>";
} else if (proj == PROJECTOR_TYPE_LLAMA4) {
// (more details in mtmd_context constructor)
img_beg = "<|image_start|>";
img_end = "<|image_end|>";
LOG_WRN("%s: llama 4 vision is known to have degraded quality:\n"
" https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__);
} else if (proj == PROJECTOR_TYPE_INTERNVL) {
// <img> ... (image embeddings) ... </img>
img_beg = "<img>";
img_end = "</img>";
}
}
void init_audio() {
GGML_ASSERT(ctx_a != nullptr);
projector_type proj = clip_get_projector_type(ctx_a);
if (clip_has_whisper_encoder(ctx_a)) {
// TODO @ngxson : check if model n_mel is 128 or 80
w_filters = whisper_precalc_filters::get_128_bins();
}
LOG_WRN("%s: audio input is in experimental stage and may have reduced quality:\n"
" https://github.com/ggml-org/llama.cpp/discussions/13759\n", __func__);
if (proj == PROJECTOR_TYPE_QWEN2A) {
// <|audio_bos|> ... (embeddings) ... <|audio_eos|>
aud_beg = "<|audio_bos|>";
aud_end = "<|audio_eos|>";
} else if (proj == PROJECTOR_TYPE_ULTRAVOX) {
// [BEGIN_AUDIO] ... (embeddings) ...
aud_beg = "[BEGIN_AUDIO]";
}
}
// get clip ctx based on chunk type
clip_ctx * get_clip_ctx(const mtmd_input_chunk * chunk) const {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
return ctx_v;
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
return ctx_a;
}
GGML_ABORT("unknown chunk type");
}
projector_type proj_type_v() const {
return ctx_v ? clip_get_projector_type(ctx_v) : PROJECTOR_TYPE_UNKNOWN;
}
projector_type proj_type_a() const {
return ctx_a ? clip_get_projector_type(ctx_a) : PROJECTOR_TYPE_UNKNOWN;
}
~mtmd_context() {
clip_free(ctx_a);
clip_free(ctx_v);
}
private:
llama_token lookup_token(const std::string & token_text) {
const llama_vocab * vocab = llama_model_get_vocab(text_model);
const int n_vocab = llama_vocab_n_tokens(vocab);
for (int i = 0; i < n_vocab; i++) {
if (token_to_piece(vocab, i, true) == token_text) {
return i;
}
}
return LLAMA_TOKEN_NULL;
}
std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
std::string piece;
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
if (n_chars < 0) {
piece.resize(-n_chars);
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
GGML_ASSERT(check == -n_chars);
} else {
piece.resize(n_chars);
}
return piece;
}
};
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const struct llama_model * text_model,
const struct mtmd_context_params ctx_params) {
try {
return new mtmd_context(mmproj_fname, text_model, ctx_params);
} catch (const std::exception & e) {
LOG_ERR("%s: error: %s\n", __func__, e.what());
return nullptr;
}
}
void mtmd_free(mtmd_context * ctx) {
if (ctx) {
delete ctx;
}
}
struct mtmd_tokenizer {
mtmd_context * ctx;
std::vector<const mtmd_bitmap *> bitmaps;
std::string input_text;
bool add_special;
bool parse_special;
const llama_vocab * vocab;
mtmd_input_chunks cur;
mtmd_tokenizer(mtmd_context * ctx,
const mtmd_input_text * text,
const mtmd_bitmap ** bitmaps,
size_t n_bitmaps) : ctx(ctx), bitmaps(bitmaps, bitmaps + n_bitmaps) {
add_special = text->add_special;
parse_special = text->parse_special;
input_text = text->text;
vocab = llama_model_get_vocab(ctx->text_model);
// for compatibility, we convert image marker to media marker
string_replace_all(input_text, MTMD_DEFAULT_IMAGE_MARKER, ctx->media_marker);
}
int32_t tokenize(mtmd_input_chunks * output) {
cur.entries.clear();
std::vector<std::string> parts = split_text(input_text, ctx->media_marker);
size_t i_bm = 0; // index of the current bitmap
for (auto & part : parts) {
if (part == ctx->media_marker) {
// this is a marker, we should add the next bitmap
if (i_bm >= bitmaps.size()) {
LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
__func__, bitmaps.size(), parts.size() - 1);
return 1;
}
const mtmd_bitmap * bitmap = bitmaps[i_bm++];
int32_t res = add_media(bitmap);
if (res != 0) {
return res;
}
} else {
// this is a text part, we should add it as text
add_text(part, parse_special);
}
}
if (add_special && llama_vocab_get_add_bos(vocab)) {
// if first chunk is text, we add BOS token to first text chunk
// otherwise, create a new text chunk with BOS token
if (!cur.entries.empty() && cur.entries[0].type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
// add BOS token to the beginning of first text chunk
cur.entries[0].tokens_text.insert(cur.entries[0].tokens_text.begin(), llama_vocab_bos(vocab));
} else {
// create a new text chunk with BOS token at the beginning
mtmd_input_chunk bos_chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
{llama_vocab_bos(vocab)},
nullptr, // image tokens
nullptr, // audio tokens
};
cur.entries.insert(cur.entries.begin(), std::move(bos_chunk));
}
}
if (add_special && llama_vocab_get_add_eos(vocab)) {
// if last chunk is text, we add EOS token to it
add_text({llama_vocab_eos(vocab)});
}
if (i_bm != bitmaps.size()) {
LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
__func__, bitmaps.size(), parts.size() - 1);
return 1;
}
*output = std::move(cur);
return 0;
}
void add_text(const std::string & txt, bool parse_special) {
LOG_DBG("%s: %s\n", __func__, txt.c_str());
auto tokens = mtmd_tokenize_text_internal(vocab, txt, /* add_special */ false, parse_special);
add_text(tokens);
}
void add_text(const std::vector<llama_token> & tokens) {
if (tokens.empty()) {
return;
}
// if last entry is also a text chunk, add tokens to it instead of creating new chunk
if (!cur.entries.empty() && cur.entries.back().type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
cur.entries.back().tokens_text.insert(
cur.entries.back().tokens_text.end(),
tokens.begin(),
tokens.end());
} else {
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
tokens,
nullptr, // image tokens
nullptr, // audio tokens
};
cur.entries.emplace_back(std::move(chunk));
}
}
int32_t add_media(const mtmd_bitmap * bitmap) {
if (!bitmap->is_audio) {
// handle image
if (!ctx->ctx_v) {
LOG_ERR("%s: error: model does not support vision input\n", __func__);
return 2;
}
if (!ctx->img_beg.empty()) {
add_text(ctx->img_beg, true); // add image begin token
}
// convert mtmd_bitmap to clip_image_u8
clip_image_u8_ptr img_u8(clip_image_u8_init());
img_u8->nx = bitmap->nx;
img_u8->ny = bitmap->ny;
img_u8->buf.resize(bitmap->data.size());
std::memcpy(img_u8->buf.data(), bitmap->data.data(), img_u8->nx * img_u8->ny * 3);
// preprocess image
clip_image_f32_batch batch_f32;
bool ok = clip_image_preprocess(ctx->ctx_v, img_u8.get(), &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
return 2;
}
// handle llava-uhd style preprocessing
if (
ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
) {
const int n_col = batch_f32.grid_x;
const int n_row = batch_f32.grid_y;
// split batch into chunks of single images
// NOTE: batch_f32 will be invalidated after this call
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmap->id);
GGML_ASSERT(chunks.size() > 0);
auto ov_chunk = std::move(chunks.front());
chunks.erase(chunks.begin());
// add overview image (first)
if (ctx->ov_img_first) {
if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_start});
}
cur.entries.emplace_back(std::move(ov_chunk));
if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_end});
}
}
// add slices (or tiles)
if (!chunks.empty()) {
GGML_ASSERT((int)chunks.size() == n_row * n_col);
if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_slices_start});
}
for (int y = 0; y < n_row; y++) {
for (int x = 0; x < n_col; x++) {
const bool is_last_in_row = (x == n_col - 1);
if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_sli_img_start});
}
cur.entries.emplace_back(std::move(chunks[y * n_col + x]));
if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_sli_img_end});
}
if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_sli_img_mid});
}
}
if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_row_end});
}
}
if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_slices_end});
}
}
// add overview image (last)
if (!ctx->ov_img_first) {
if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_start});
}
cur.entries.emplace_back(std::move(ov_chunk));
if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
add_text({ctx->tok_ov_img_end});
}
}
} else {
size_t n_tokens = 0;
for (const auto & entry : batch_f32.entries) {
n_tokens += clip_n_output_tokens(ctx->ctx_v, entry.get());
}
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
if (ctx->use_mrope) {
// for Qwen2VL, we need this information for M-RoPE decoding positions
image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_v, batch_f32.entries[0].get());
image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_v, batch_f32.entries[0].get());
image_tokens->use_mrope_pos = true;
} else {
// other models, we only need the total number of tokens
image_tokens->nx = n_tokens;
image_tokens->ny = 1;
}
image_tokens->batch_f32 = std::move(batch_f32);
image_tokens->id = bitmap->id; // optional
LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{}, // text tokens
std::move(image_tokens),
nullptr, // audio tokens
};
cur.entries.emplace_back(std::move(chunk));
}
if (!ctx->img_end.empty()) {
add_text(ctx->img_end, true); // add image end token
}
} else {
// handle audio
if (!ctx->ctx_a) {
LOG_ERR("%s: error: model does not support audio input\n", __func__);
return 2;
}
if (bitmap->data.size() == 0) {
LOG_ERR("%s: error: empty audio data\n", __func__);
return 2;
}
if (!ctx->aud_beg.empty()) {
add_text(ctx->aud_beg, true); // add audio begin token
}
// preprocess audio
GGML_ASSERT(ctx->w_filters.n_mel); // make sure we have filter preloaded
std::vector<whisper_preprocessor::whisper_mel> mel_spec_chunks;
const float * samples = (const float *)bitmap->data.data();
size_t n_samples = bitmap->data.size() / sizeof(float);
bool ok = whisper_preprocessor::preprocess_audio(samples, n_samples, ctx->w_filters, mel_spec_chunks);
if (!ok) {
LOG_ERR("Unable to preprocess audio\n");
return 2;
}
// consider each mel_spec as a separate audio chunk
// TODO: maybe support batching, but this may come with memory cost
for (auto & mel_spec : mel_spec_chunks) {
clip_image_f32_ptr mel_f32(clip_image_f32_init());
mel_f32->nx = mel_spec.n_len;
mel_f32->ny = mel_spec.n_mel;
mel_f32->buf = std::move(mel_spec.data);
size_t n_tokens = clip_n_output_tokens(ctx->ctx_a, mel_f32.get());
clip_image_f32_batch batch_f32;
batch_f32.is_audio = true;
batch_f32.entries.push_back(std::move(mel_f32));
mtmd_audio_tokens_ptr audio_tokens(new mtmd_audio_tokens);
audio_tokens->n_tokens = n_tokens;
audio_tokens->batch_f32 = std::move(batch_f32);
audio_tokens->id = bitmap->id; // optional
LOG_DBG("audio_tokens->n_tokens = %d\n", audio_tokens->n_tokens);
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_AUDIO,
{}, // text tokens
nullptr, // image tokens
std::move(audio_tokens),
};
cur.entries.emplace_back(std::move(chunk));
}
if (!ctx->aud_end.empty()) {
add_text(ctx->aud_end, true); // add audio end token
}
}
return 0;
}
std::vector<mtmd_input_chunk> split_batch_to_chunk(clip_image_f32_batch && batch_f32, const std::string & id) {
std::vector<mtmd_input_chunk> chunks;
for (auto & entry : batch_f32.entries) {
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
image_tokens->nx = clip_n_output_tokens(ctx->ctx_v, entry.get());
image_tokens->ny = 1;
image_tokens->batch_f32.entries.push_back(std::move(entry));
image_tokens->id = id;
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{}, // text tokens
std::move(image_tokens),
nullptr, // audio tokens
};
chunks.emplace_back(std::move(chunk));
}
return chunks;
}
// for example: "a <__media__> b <__media__> c" --> "a", "<__media__>", "b", "<__media__>", "c"
static std::vector<std::string> split_text(const std::string & input, const std::string & delimiter) {
std::vector<std::string> result;
if (input.empty()) {
return result;
}
size_t start = 0;
size_t pos = 0;
while ((pos = input.find(delimiter, start)) != std::string::npos) {
if (pos > start) {
result.push_back(input.substr(start, pos - start));
}
result.push_back(delimiter);
start = pos + delimiter.length();
}
if (start < input.length()) {
result.push_back(input.substr(start));
}
return result;
}
// copied from common_tokenize
static std::vector<llama_token> mtmd_tokenize_text_internal(
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
};
int32_t mtmd_tokenize(mtmd_context * ctx,
mtmd_input_chunks * output,
const mtmd_input_text * text,
const mtmd_bitmap ** bitmaps,
size_t n_bitmaps) {
mtmd_tokenizer tokenizer(ctx, text, bitmaps, n_bitmaps);
return tokenizer.tokenize(output);
}
int32_t mtmd_encode_chunk(mtmd_context * ctx, const mtmd_input_chunk * chunk) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
LOG_WRN("mtmd_encode_chunk has no effect for text chunks\n");
return 0;
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
if (!ctx->ctx_v) {
LOG_ERR("%s: model does not support vision input\n", __func__);
return 1;
}
return mtmd_encode(ctx, chunk->tokens_image.get());
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
if (!ctx->ctx_a) {
LOG_ERR("%s: model does not support audio input\n", __func__);
return 1;
}
int n_mmproj_embd = ctx->n_embd_text;
ctx->image_embd_v.resize(chunk->tokens_audio->n_tokens * n_mmproj_embd);
bool ok = clip_image_batch_encode(
ctx->ctx_a,
ctx->n_threads,
&chunk->tokens_audio->batch_f32,
ctx->image_embd_v.data());
return ok ? 0 : 1;
}
LOG_ERR("%s: unknown chunk type %d\n", __func__, (int)chunk->type);
return 1;
}
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
clip_ctx * ctx_clip = ctx->ctx_v;
if (!ctx_clip) {
LOG_ERR("%s: this API does not support non-vision input, please use mtmd_encode_chunk instead\n", __func__);
return 1;
}
int n_mmproj_embd = clip_n_mmproj_embd(ctx_clip);
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = false;
if (clip_is_llava(ctx_clip) || clip_is_minicpmv(ctx_clip) || clip_is_glm(ctx_clip)) {
// TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
const auto & entries = image_tokens->batch_f32.entries;
for (size_t i = 0; i < entries.size(); i++) {
int n_tokens_per_image = clip_n_output_tokens(ctx_clip, entries[i].get());
ok = clip_image_encode(
ctx_clip,
ctx->n_threads,
entries[i].get(),
ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
}
} else {
ok = clip_image_batch_encode(
ctx_clip,
ctx->n_threads,
&image_tokens->batch_f32,
ctx->image_embd_v.data());
}
return ok ? 0 : 1;
}
float * mtmd_get_output_embd(mtmd_context * ctx) {
return ctx->image_embd_v.data();
}
bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
if (ctx->ctx_v && clip_get_projector_type(ctx->ctx_v) == PROJECTOR_TYPE_GEMMA3) {
return true;
}
return false;
}
bool mtmd_decode_use_mrope(mtmd_context * ctx) {
return ctx->use_mrope;
}
bool mtmd_support_vision(mtmd_context * ctx) {
return ctx->ctx_v != nullptr;
}
bool mtmd_support_audio(mtmd_context * ctx) {
return ctx->ctx_a != nullptr;
}
int mtmd_get_audio_bitrate(mtmd_context * ctx) {
if (!ctx->ctx_a) {
return -1;
}
// for now, we assume that all audio models have the same bitrate
return 16000; // 16kHz
}
//
// public API functions
//
// mtmd_bitmap
mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
uint32_t ny,
const unsigned char * data) {
mtmd_bitmap * bitmap = new mtmd_bitmap;
bitmap->nx = nx;
bitmap->ny = ny;
size_t data_size = (size_t)nx * ny * 3;
bitmap->data.resize(data_size);
std::memcpy(bitmap->data.data(), data, data_size);
return bitmap;
}
mtmd_bitmap * mtmd_bitmap_init_from_audio(size_t n_samples,
const float * data) {
mtmd_bitmap * bitmap = new mtmd_bitmap;
bitmap->nx = n_samples;
bitmap->ny = 1;
bitmap->is_audio = true;
size_t data_size = n_samples * sizeof(float);
bitmap->data.resize(data_size);
std::memcpy(bitmap->data.data(), data, data_size);
return bitmap;
}
uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
return bitmap->nx;
}
uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
return bitmap->ny;
}
const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
return bitmap->data.data();
}
size_t mtmd_bitmap_get_n_bytes(const mtmd_bitmap * bitmap) {
return bitmap->data.size();
}
bool mtmd_bitmap_is_audio(const mtmd_bitmap * bitmap) {
return bitmap->is_audio;
}
const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
return bitmap->id.c_str();
}
void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
if (id) {
bitmap->id = std::string(id);
} else {
bitmap->id.clear();
}
}
void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
if (bitmap) {
delete bitmap;
}
}
// mtmd_input_chunks
mtmd_input_chunks * mtmd_input_chunks_init() {
return new mtmd_input_chunks;
}
size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
return chunks->entries.size();
}
const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
if (idx >= chunks->entries.size()) {
return nullptr;
}
return &chunks->entries[idx];
}
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
if (chunks) {
delete chunks;
}
}
// mtmd_input_chunk
enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
return chunk->type;
}
const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
*n_tokens_output = chunk->tokens_text.size();
return chunk->tokens_text.data();
}
*n_tokens_output = 0;
return nullptr;
}
const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
return chunk->tokens_image.get();
}
return nullptr;
}
size_t mtmd_input_chunk_get_n_tokens(const mtmd_input_chunk * chunk) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
return chunk->tokens_text.size();
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
return mtmd_image_tokens_get_n_tokens(chunk->tokens_image.get());
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
return chunk->tokens_audio->n_tokens;
} else {
GGML_ABORT("invalid chunk type");
}
}
llama_pos mtmd_input_chunk_get_n_pos(const mtmd_input_chunk * chunk) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
return chunk->tokens_text.size();
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
return mtmd_image_tokens_get_n_pos(chunk->tokens_image.get());
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
return chunk->tokens_audio->n_tokens;
} else {
GGML_ABORT("invalid chunk type");
}
}
const char * mtmd_input_chunk_get_id(const mtmd_input_chunk * chunk) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
return chunk->tokens_image->id.c_str();
} else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
return chunk->tokens_audio->id.c_str();
}
return nullptr;
}
mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
mtmd_input_chunk * copy = new mtmd_input_chunk{
chunk->type,
chunk->tokens_text,
nullptr,
nullptr,
};
if (chunk->tokens_image) {
// copy the image tokens
copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
*copy->tokens_image = chunk->tokens_image->clone();
}
if (chunk->tokens_audio) {
// copy the audio tokens
copy->tokens_audio = mtmd_audio_tokens_ptr(new mtmd_audio_tokens());
*copy->tokens_audio = chunk->tokens_audio->clone();
}
return copy;
}
void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
if (chunk) {
delete chunk;
}
}
// mtmd_image_tokens
size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
return image_tokens->n_tokens();
}
size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
return image_tokens->nx;
}
size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
return image_tokens->ny;
}
const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
return image_tokens->id.c_str();
}
llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
if (image_tokens->use_mrope_pos) {
return 1; // for M-RoPE, the whole image is 1 in temporal dimension
}
return image_tokens->n_tokens();
}
// test function
mtmd_input_chunks * mtmd_test_create_input_chunks() {
mtmd_input_chunks * chunks = mtmd_input_chunks_init();
if (!chunks) {
return nullptr;
}
// create a text chunk
std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
mtmd_input_chunk chunk_text{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens_text),
nullptr, // image tokens
nullptr, // audio tokens
};
chunks->entries.emplace_back(std::move(chunk_text));
// create an image chunk
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
image_tokens->nx = 4;
image_tokens->ny = 4;
image_tokens->batch_f32.entries.resize(16);
image_tokens->id = "image_1";
mtmd_input_chunk chunk_image{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{}, // text tokens
std::move(image_tokens),
nullptr, // audio tokens
};
chunks->entries.emplace_back(std::move(chunk_image));
return chunks;
}
|