File: test_chat_completion.py

package info (click to toggle)
llama.cpp 6641%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 43,824 kB
  • sloc: cpp: 218,020; ansic: 117,624; python: 29,020; lisp: 9,094; sh: 5,776; objc: 1,045; javascript: 828; xml: 259; makefile: 219
file content (456 lines) | stat: -rw-r--r-- 18,674 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import pytest
from openai import OpenAI
from utils import *

server: ServerProcess

@pytest.fixture(autouse=True)
def create_server():
    global server
    server = ServerPreset.tinyllama2()


@pytest.mark.parametrize(
    "model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason,jinja,chat_template",
    [
        (None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", False, None),
        (None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", True, None),
        (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", False, None),
        (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True,  None),
        (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True, 'chatml'),
        (None, "Book", "What is the best book", 8, "^ blue",                    23, 8, "length", True, "This is not a chat template, it is"),
        ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),
        ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),
        (None, "Book", [{"type": "text", "text": "What is"}, {"type": "text", "text": "the best book"}], 8, "Whillicter", 79, 8, "length", False, None),
        (None, "Book", [{"type": "text", "text": "What is"}, {"type": "text", "text": "the best book"}], 8, "Whillicter", 79, 8, "length", True, None),
    ]
)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason, jinja, chat_template):
    global server
    server.jinja = jinja
    server.chat_template = chat_template
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "model": model,
        "max_tokens": max_tokens,
        "messages": [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
    })
    assert res.status_code == 200
    assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
    assert res.body["system_fingerprint"].startswith("b")
    assert res.body["model"] == model if model is not None else server.model_alias
    assert res.body["usage"]["prompt_tokens"] == n_prompt
    assert res.body["usage"]["completion_tokens"] == n_predicted
    choice = res.body["choices"][0]
    assert "assistant" == choice["message"]["role"]
    assert match_regex(re_content, choice["message"]["content"]), f'Expected {re_content}, got {choice["message"]["content"]}'
    assert choice["finish_reason"] == finish_reason


@pytest.mark.parametrize(
    "system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
    [
        ("Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
        ("You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
    ]
)
def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
    global server
    server.model_alias = None # try using DEFAULT_OAICOMPAT_MODEL
    server.start()
    res = server.make_stream_request("POST", "/chat/completions", data={
        "max_tokens": max_tokens,
        "messages": [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
        "stream": True,
    })
    content = ""
    last_cmpl_id = None
    for i, data in enumerate(res):
        if data["choices"]:
            choice = data["choices"][0]
            if i == 0:
                # Check first role message for stream=True
                assert choice["delta"]["content"] is None
                assert choice["delta"]["role"] == "assistant"
            else:
                assert "role" not in choice["delta"]
            assert data["system_fingerprint"].startswith("b")
            assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
            if last_cmpl_id is None:
                last_cmpl_id = data["id"]
            assert last_cmpl_id == data["id"] # make sure the completion id is the same for all events in the stream
            if choice["finish_reason"] in ["stop", "length"]:
                assert "content" not in choice["delta"]
                assert match_regex(re_content, content)
                assert choice["finish_reason"] == finish_reason
            else:
                assert choice["finish_reason"] is None
                content += choice["delta"]["content"] or ''
        else:
            assert data["usage"]["prompt_tokens"] == n_prompt
            assert data["usage"]["completion_tokens"] == n_predicted


def test_chat_completion_with_openai_library():
    global server
    server.start()
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=8,
        seed=42,
        temperature=0.8,
    )
    assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
    assert res.choices[0].finish_reason == "length"
    assert res.choices[0].message.content is not None
    assert match_regex("(Suddenly)+", res.choices[0].message.content)


def test_chat_template():
    global server
    server.chat_template = "llama3"
    server.debug = True  # to get the "__verbose" object in the response
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": 8,
        "messages": [
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ]
    })
    assert res.status_code == 200
    assert "__verbose" in res.body
    assert res.body["__verbose"]["prompt"] == "<s> <|start_header_id|>system<|end_header_id|>\n\nBook<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat is the best book<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"


@pytest.mark.parametrize("prefill,re_prefill", [
    ("Whill", "Whill"),
    ([{"type": "text", "text": "Wh"}, {"type": "text", "text": "ill"}], "Whill"),
])
def test_chat_template_assistant_prefill(prefill, re_prefill):
    global server
    server.chat_template = "llama3"
    server.debug = True  # to get the "__verbose" object in the response
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": 8,
        "messages": [
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
            {"role": "assistant", "content": prefill},
        ]
    })
    assert res.status_code == 200
    assert "__verbose" in res.body
    assert res.body["__verbose"]["prompt"] == f"<s> <|start_header_id|>system<|end_header_id|>\n\nBook<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat is the best book<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n{re_prefill}"


def test_apply_chat_template():
    global server
    server.chat_template = "command-r"
    server.start()
    res = server.make_request("POST", "/apply-template", data={
        "messages": [
            {"role": "system", "content": "You are a test."},
            {"role": "user", "content":"Hi there"},
        ]
    })
    assert res.status_code == 200
    assert "prompt" in res.body
    assert res.body["prompt"] == "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a test.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"


@pytest.mark.parametrize("response_format,n_predicted,re_content", [
    ({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
    ({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
    ({"type": "json_schema", "json_schema": {"schema": {"const": "foooooo"}}}, 10, "\"foooooo\""),
    ({"type": "json_object"}, 10, "(\\{|John)+"),
    ({"type": "sound"}, 0, None),
    # invalid response format (expected to fail)
    ({"type": "json_object", "schema": 123}, 0, None),
    ({"type": "json_object", "schema": {"type": 123}}, 0, None),
    ({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
])
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": n_predicted,
        "messages": [
            {"role": "system", "content": "You are a coding assistant."},
            {"role": "user", "content": "Write an example"},
        ],
        "response_format": response_format,
    })
    if re_content is not None:
        assert res.status_code == 200
        choice = res.body["choices"][0]
        assert match_regex(re_content, choice["message"]["content"])
    else:
        assert res.status_code != 200
        assert "error" in res.body


@pytest.mark.parametrize("jinja,json_schema,n_predicted,re_content", [
    (False, {"const": "42"}, 6, "\"42\""),
    (True, {"const": "42"}, 6, "\"42\""),
])
def test_completion_with_json_schema(jinja: bool, json_schema: dict, n_predicted: int, re_content: str):
    global server
    server.jinja = jinja
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": n_predicted,
        "messages": [
            {"role": "system", "content": "You are a coding assistant."},
            {"role": "user", "content": "Write an example"},
        ],
        "json_schema": json_schema,
    })
    assert res.status_code == 200, f'Expected 200, got {res.status_code}'
    choice = res.body["choices"][0]
    assert match_regex(re_content, choice["message"]["content"]), f'Expected {re_content}, got {choice["message"]["content"]}'


@pytest.mark.parametrize("jinja,grammar,n_predicted,re_content", [
    (False, 'root ::= "a"{5,5}', 6, "a{5,5}"),
    (True, 'root ::= "a"{5,5}', 6, "a{5,5}"),
])
def test_completion_with_grammar(jinja: bool, grammar: str, n_predicted: int, re_content: str):
    global server
    server.jinja = jinja
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": n_predicted,
        "messages": [
            {"role": "user", "content": "Does not matter what I say, does it?"},
        ],
        "grammar": grammar,
    })
    assert res.status_code == 200, res.body
    choice = res.body["choices"][0]
    assert match_regex(re_content, choice["message"]["content"]), choice["message"]["content"]


@pytest.mark.parametrize("messages", [
    None,
    "string",
    [123],
    [{}],
    [{"role": 123}],
    [{"role": "system", "content": 123}],
    # [{"content": "hello"}], # TODO: should not be a valid case
    [{"role": "system", "content": "test"}, {}],
    [{"role": "user", "content": "test"}, {"role": "assistant", "content": "test"}, {"role": "assistant", "content": "test"}],
])
def test_invalid_chat_completion_req(messages):
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "messages": messages,
    })
    assert res.status_code == 400 or res.status_code == 500
    assert "error" in res.body


def test_chat_completion_with_timings_per_token():
    global server
    server.start()
    res = server.make_stream_request("POST", "/chat/completions", data={
        "max_tokens": 10,
        "messages": [{"role": "user", "content": "test"}],
        "stream": True,
        "stream_options": {"include_usage": True},
        "timings_per_token": True,
    })
    stats_received = False
    for i, data in enumerate(res):
        if i == 0:
            # Check first role message for stream=True
            assert data["choices"][0]["delta"]["content"] is None
            assert data["choices"][0]["delta"]["role"] == "assistant"
            assert "timings" not in data, f'First event should not have timings: {data}'
        else:
            if data["choices"]:
                assert "role" not in data["choices"][0]["delta"]
            else:
                assert "timings" in data
                assert "prompt_per_second" in data["timings"]
                assert "predicted_per_second" in data["timings"]
                assert "predicted_n" in data["timings"]
                assert data["timings"]["predicted_n"] <= 10
                stats_received = True
    assert stats_received


def test_logprobs():
    global server
    server.start()
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        temperature=0.0,
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=5,
        logprobs=True,
        top_logprobs=10,
    )
    output_text = res.choices[0].message.content
    aggregated_text = ''
    assert res.choices[0].logprobs is not None
    assert res.choices[0].logprobs.content is not None
    for token in res.choices[0].logprobs.content:
        aggregated_text += token.token
        assert token.logprob <= 0.0
        assert token.bytes is not None
        assert len(token.top_logprobs) > 0
    assert aggregated_text == output_text


def test_logprobs_stream():
    global server
    server.start()
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        temperature=0.0,
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=5,
        logprobs=True,
        top_logprobs=10,
        stream=True,
    )
    output_text = ''
    aggregated_text = ''
    for i, data in enumerate(res):
        if data.choices:
            choice = data.choices[0]
            if i == 0:
                # Check first role message for stream=True
                assert choice.delta.content is None
                assert choice.delta.role == "assistant"
            else:
                assert choice.delta.role is None
                if choice.finish_reason is None:
                    if choice.delta.content:
                        output_text += choice.delta.content
                    assert choice.logprobs is not None
                    assert choice.logprobs.content is not None
                    for token in choice.logprobs.content:
                        aggregated_text += token.token
                        assert token.logprob <= 0.0
                        assert token.bytes is not None
                        assert token.top_logprobs is not None
                        assert len(token.top_logprobs) > 0
    assert aggregated_text == output_text


def test_logit_bias():
    global server
    server.start()

    exclude = ["i", "I", "the", "The", "to", "a", "an", "be", "is", "was", "but", "But", "and", "And", "so", "So", "you", "You", "he", "He", "she", "She", "we", "We", "they", "They", "it", "It", "his", "His", "her", "Her", "book", "Book"]

    res = server.make_request("POST", "/tokenize", data={
        "content": " " + " ".join(exclude) + " ",
    })
    assert res.status_code == 200
    tokens = res.body["tokens"]
    logit_bias = {tok: -100 for tok in tokens}

    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        temperature=0.0,
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=64,
        logit_bias=logit_bias
    )
    output_text = res.choices[0].message.content
    assert output_text
    assert all(output_text.find(" " + tok + " ") == -1 for tok in exclude)

def test_context_size_exceeded():
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "messages": [
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ] * 100, # make the prompt too long
    })
    assert res.status_code == 400
    assert "error" in res.body
    assert res.body["error"]["type"] == "exceed_context_size_error"
    assert res.body["error"]["n_prompt_tokens"] > 0
    assert server.n_ctx is not None
    assert server.n_slots is not None
    assert res.body["error"]["n_ctx"] == server.n_ctx // server.n_slots


@pytest.mark.parametrize(
    "n_batch,batch_count,reuse_cache",
    [
        (64, 15, False),
        (64, 1, True),
    ]
)
def test_return_progresssss(n_batch, batch_count, reuse_cache):
    global server
    server.n_batch = n_batch
    server.n_ctx = 2048
    server.n_slots = 1
    server.start()
    def make_cmpl_request():
        return server.make_stream_request("POST", "/chat/completions", data={
            "max_tokens": 10,
            "messages": [
                {"role": "user", "content": "This is a test" * 100},
            ],
            "stream": True,
            "return_progress": True,
        })
    if reuse_cache:
        # make a first request to populate the cache
        res0 = make_cmpl_request()
        for _ in res0:
            pass # discard the output

    res = make_cmpl_request()
    last_progress = None
    total_batch_count = 0
    for data in res:
        cur_progress = data.get("prompt_progress", None)
        if cur_progress is None:
            continue
        if last_progress is not None:
            assert cur_progress["total"] == last_progress["total"]
            assert cur_progress["cache"] == last_progress["cache"]
            assert cur_progress["processed"] > last_progress["processed"]
        total_batch_count += 1
        last_progress = cur_progress

    assert last_progress is not None
    assert last_progress["total"] > 0
    assert last_progress["processed"] == last_progress["total"]
    assert total_batch_count == batch_count