File: run-org-model.py

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (182 lines) | stat: -rwxr-xr-x 6,755 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python3

import argparse
import os
import sys
import importlib
import torch
import numpy as np

from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig

# Add parent directory to path for imports
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from utils.common import debug_hook

def parse_arguments():
    parser = argparse.ArgumentParser(description="Process model with specified path")
    parser.add_argument("--model-path", "-m", help="Path to the model")
    parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
    parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
    parser.add_argument("--device", "-d", help="Device to use (cpu, cuda, mps, auto)", default="auto")
    return parser.parse_args()

def load_model_and_tokenizer(model_path, device="auto"):
    print("Loading model and tokenizer using AutoTokenizer:", model_path)
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
    multimodal = False
    full_config = config

    # Determine device_map based on device argument
    if device == "cpu":
        device_map = {"": "cpu"}
        print("Forcing CPU usage")
    elif device == "auto":
        device_map = "auto"
    else:
        device_map = {"": device}

    print("Model type:       ", config.model_type)
    if "vocab_size" not in config and "text_config" in config:
        config = config.text_config
        multimodal = True

    print("Vocab size:       ", config.vocab_size)
    print("Hidden size:      ", config.hidden_size)
    print("Number of layers: ", config.num_hidden_layers)
    print("BOS token id:     ", config.bos_token_id)
    print("EOS token id:     ", config.eos_token_id)

    unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
    if unreleased_model_name:
        model_name_lower = unreleased_model_name.lower()
        unreleased_module_path = (
            f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
        )
        class_name = f"{unreleased_model_name}ForCausalLM"
        print(f"Importing unreleased model module: {unreleased_module_path}")

        try:
            model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
            model = model_class.from_pretrained(
                    model_path,
                    device_map=device_map,
                    offload_folder="offload",
                    trust_remote_code=True,
                    config=config
            )
        except (ImportError, AttributeError) as e:
            print(f"Failed to import or load model: {e}")
            exit(1)
    else:
        if multimodal:
            model = AutoModelForImageTextToText.from_pretrained(
                    model_path,
                    device_map=device_map,
                    offload_folder="offload",
                    trust_remote_code=True,
                    config=full_config
            )
        else:
            model = AutoModelForCausalLM.from_pretrained(
                    model_path,
                    device_map=device_map,
                    offload_folder="offload",
                    trust_remote_code=True,
                    config=config
            )

    print(f"Model class: {model.__class__.__name__}")

    return model, tokenizer, config

def enable_torch_debugging(model):
        for name, module in model.named_modules():
            if len(list(module.children())) == 0:  # only leaf modules
                module.register_forward_hook(debug_hook(name))

def get_prompt(args):
    if args.prompt_file:
        with open(args.prompt_file, encoding='utf-8') as f:
            return f.read()
    elif os.getenv("MODEL_TESTING_PROMPT"):
        return os.getenv("MODEL_TESTING_PROMPT")
    else:
        return "Hello, my name is"

def main():
    args = parse_arguments()
    model_path = os.environ.get("MODEL_PATH", args.model_path)
    if model_path is None:
        print("Error: Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
        sys.exit(1)


    model, tokenizer, config = load_model_and_tokenizer(model_path, args.device)

    if args.verbose:
        enable_torch_debugging(model)

    model_name = os.path.basename(model_path)

    # Iterate over the model parameters (the tensors) and get the first one
    # and use it to get the device the model is on.
    device = next(model.parameters()).device
    prompt = get_prompt(args)
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)

    print(f"Input tokens: {input_ids}")
    print(f"Input text: {repr(prompt)}")
    print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")

    batch_size = 512

    with torch.no_grad():
        past = None
        outputs = None
        for i in range(0, input_ids.size(1), batch_size):
            print(f"Processing chunk with tokens {i} to {i + batch_size}")
            chunk = input_ids[:, i:i + batch_size]
            outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
            past = outputs.past_key_values

        logits = outputs.logits # type: ignore

        # Extract logits for the last token (next token prediction)
        last_logits = logits[0, -1, :].float().cpu().numpy()

        print(f"Logits shape: {logits.shape}")
        print(f"Last token logits shape: {last_logits.shape}")
        print(f"Vocab size: {len(last_logits)}")

        data_dir = Path("data")
        data_dir.mkdir(exist_ok=True)
        bin_filename = data_dir / f"pytorch-{model_name}.bin"
        txt_filename = data_dir / f"pytorch-{model_name}.txt"

        # Save to file for comparison
        last_logits.astype(np.float32).tofile(bin_filename)

        # Also save as text file for easy inspection
        with open(txt_filename, "w") as f:
            for i, logit in enumerate(last_logits):
                f.write(f"{i}: {logit:.6f}\n")

        # Print some sample logits for quick verification
        print(f"First 10 logits: {last_logits[:10]}")
        print(f"Last 10 logits: {last_logits[-10:]}")

        # Show top 5 predicted tokens
        top_indices = np.argsort(last_logits)[-5:][::-1]
        print("Top 5 predictions:")
        for idx in top_indices:
            token = tokenizer.decode([idx])
            print(f"  Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")

        print(f"Saved bin logits to: {bin_filename}")
        print(f"Saved txt logist to: {txt_filename}")

if __name__ == "__main__":
    main()