File: common.py

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (150 lines) | stat: -rw-r--r-- 5,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3

import os
import sys
import torch


def get_model_name_from_env_path(env_path_name):
    model_path = os.getenv(env_path_name)
    if not model_path:
        print(f"Error: {env_path_name} environment variable not set")
        sys.exit(1)

    if not os.path.exists(model_path):
        print(f"Error: Model file not found: {model_path}")
        sys.exit(1)

    name = os.path.basename(os.path.normpath(model_path))
    if name.endswith(".gguf"):
        name = name[:-5]

    return name


def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
    """
    Print a tensor in llama.cpp debug style.

    Supports:
    - 2D tensors (seq, hidden)
    - 3D tensors (batch, seq, hidden)
    - 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head

    Shows first and last max_vals of each vector per sequence position.
    """
    t = tensor.detach().to(torch.float32).cpu()

    # Determine dimensions
    if t.ndim == 3:
        _, s, _ = t.shape
    elif t.ndim == 2:
        _, s = 1, t.shape[0]
        t = t.unsqueeze(0)
    elif t.ndim == 4:
        _, s, _, _ = t.shape
    else:
        print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
        return

    ten_shape = t.shape

    print(f"ggml_debug: {name} = (f32)  ... = {{{ten_shape}}}")
    print("                                     [")
    print("                                      [")

    # Determine indices for first and last sequences
    first_indices = list(range(min(s, max_seq)))
    last_indices = list(range(max(0, s - max_seq), s))

    # Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
    has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)

    # Combine indices
    if has_overlap:
        # If there's overlap, just use the combined unique indices
        indices = sorted(list(set(first_indices + last_indices)))
        separator_index = None
    else:
        # If no overlap, we'll add a separator between first and last sequences
        indices = first_indices + last_indices
        separator_index = len(first_indices)

    for i, si in enumerate(indices):
        # Add separator if needed
        if separator_index is not None and i == separator_index:
            print("                                       ...")

        # Extract appropriate slice
        vec = t[0, si]
        if vec.ndim == 2:  # 4D case: flatten heads × dim_per_head
            flat = vec.flatten().tolist()
        else:  # 2D or 3D case
            flat = vec.tolist()

        # First and last slices
        first = flat[:max_vals]
        last = flat[-max_vals:] if len(flat) >= max_vals else flat
        first_str = ", ".join(f"{v:12.4f}" for v in first)
        last_str = ", ".join(f"{v:12.4f}" for v in last)

        print(f"                                       [{first_str}, ..., {last_str}]")

    print("                                      ],")
    print("                                     ]")
    print(f"                                     sum = {t.sum().item():.6f}\n")


def debug_hook(name):
    def fn(_m, input, output):
        if isinstance(input, torch.Tensor):
            summarize(input, name + "_in")
        elif isinstance(input, (tuple, list)) and len(input) > 0 and isinstance(input[0], torch.Tensor):
            summarize(input[0], name + "_in")
        if isinstance(output, torch.Tensor):
            summarize(output, name + "_out")
        elif isinstance(output, (tuple, list)) and len(output) > 0 and isinstance(output[0], torch.Tensor):
            summarize(output[0], name + "_out")

    return fn


def setup_rope_debug(model_module_path: str, function_name: str = "apply_rotary_pos_emb"):
    """
    Apply monkey patch to dump RoPE activations for debugging.

    Args:
        model_module_path: Path to the model module (e.g., "transformers.models.apertus.modeling_apertus")
        function_name: Name of the RoPE function to patch (default: "apply_rotary_pos_emb")

    Example:
        from utils.common import setup_rope_debug
        setup_rope_debug("transformers.models.apertus.modeling_apertus")
    """
    import importlib

    # Import the module and get the original function
    module = importlib.import_module(model_module_path)
    orig_rope = getattr(module, function_name)

    # Set torch print options for better debugging
    torch.set_printoptions(threshold=float('inf'))
    torch.set_printoptions(precision=6, sci_mode=False)

    def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
        # log inputs
        summarize(q, "RoPE.q_in")
        summarize(k, "RoPE.k_in")

        # call original
        q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)

        # log outputs
        summarize(q_out, "RoPE.q_out")
        summarize(k_out, "RoPE.k_out")

        return q_out, k_out

    # Patch it
    setattr(module, function_name, debug_rope)
    print(f"RoPE debug patching applied to {model_module_path}.{function_name}")