File: test-barrier.cpp

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (236 lines) | stat: -rw-r--r-- 7,671 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include "ggml.h"
#include "ggml-cpu.h"

#include <chrono>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cassert>
#include <vector>
#include <thread>

#define MAX_NARGS 2

static void test_barrier(int n_threads, int n_rounds) {
    struct ggml_init_params params = {
        /* .mem_size   = */ 1024*1024*1024,
        /* .mem_buffer = */ NULL,
        /* .no_alloc   = */ false,
    };

    struct ggml_context * ctx = ggml_init(params);

    // Create graph
    struct ggml_cgraph * gf = ggml_new_graph(ctx);

    // Lots of small, parallel ops where barriers in between will dominate
    struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,  64);
    for (int i = 0; i < 1000; i++) {
        struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 64, 128);
        out = ggml_mul_mat(ctx, a, out);

        struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 64);
        out = ggml_mul_mat(ctx, d, out);
    }

    ggml_build_forward_expand(gf, out);
    int n_nodes = ggml_graph_n_nodes(gf);

    // Create threadpool
    struct ggml_threadpool_params tpp  = ggml_threadpool_params_default(n_threads);
    struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
    if (!threadpool) {
        fprintf(stderr, "threadpool create failed : n_threads %d\n", n_threads);
        exit(1);
    }

    // The test runs with constant number of threads
    struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads, threadpool);

    std::vector<uint8_t> work_data(cplan.work_size);
    cplan.work_data = work_data.data();

    std::cerr << "graph-compute with"
              << "\n n_threads: " << n_threads
              << "\n   n_nodes: " << n_nodes
              << "\n  n_rounds: " << n_rounds
              << "\n";
    // ggml_graph_print(gf);

    // Warmup
    ggml_graph_compute(gf, &cplan);

    auto t0 = std::chrono::high_resolution_clock::now();

    for (int i=0; i < n_rounds; i++) {
        ggml_graph_compute(gf, &cplan);
    }

    auto t1 = std::chrono::high_resolution_clock::now();

    auto usec = std::chrono::duration_cast<std::chrono::microseconds>(t1-t0).count();
    auto nsec = std::chrono::duration_cast<std::chrono::nanoseconds>(t1-t0).count();
    std::cerr << "graph-compute took " << usec << " usec "
              << "\n " << (float) usec / n_rounds << " usec per-iter"
              << "\n " << (float) nsec / (n_rounds * n_nodes) << " nsec per-node"
              << "\n";

    ggml_threadpool_free(threadpool);
    ggml_free(ctx);
}

static void test_active(int n_threads, int n_rounds) {
    struct ggml_init_params params = {
        /* .mem_size   = */ 1024*1024*1024,
        /* .mem_buffer = */ NULL,
        /* .no_alloc   = */ false,
    };

    struct ggml_context * ctx = ggml_init(params);

    // Create graph
    struct ggml_cgraph * gf = ggml_new_graph(ctx);

    // Small graph with, parallel ops with barriers
    struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,  64);
    for (int i = 0; i < 2; i++) {
        struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 64, 128);
        out = ggml_mul_mat(ctx, a, out);

        struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 64);
        out = ggml_mul_mat(ctx, d, out);
    }

    ggml_build_forward_expand(gf, out);
    int n_nodes = ggml_graph_n_nodes(gf);

    // Create threadpool
    struct ggml_threadpool_params tpp  = ggml_threadpool_params_default(n_threads);
    struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
    if (!threadpool) {
        fprintf(stderr, "threadpool create failed : n_threads %d\n", n_threads);
        exit(1);
    }

    std::cerr << "graph-compute with"
              << "\n n_threads: " << n_threads
              << "\n   n_nodes: " << n_nodes
              << "\n  n_rounds: " << n_rounds
              << "\n";
    // ggml_graph_print(gf);

    // In this test we keep changing the number of threads every 4th iteration
    // to test for race conditions in that path

    for (int i=0; i < n_rounds; i++) {
        struct ggml_cplan cplan = ggml_graph_plan(gf, (i % 4) == 0 ? 1 : n_threads, threadpool);

        std::vector<uint8_t> work_data(cplan.work_size);
        cplan.work_data = work_data.data();

        ggml_graph_compute(gf, &cplan);
    }

    ggml_threadpool_free(threadpool);
    ggml_free(ctx);
}

static void test_multi_graph(int n_threads, int n_rounds) {
    struct ggml_init_params params = {
        /* .mem_size   = */ 1024*1024*1024,
        /* .mem_buffer = */ NULL,
        /* .no_alloc   = */ false,
    };

    struct ggml_context * ctx = ggml_init(params);

    // Create graphs
    struct ggml_cgraph * gf0 = ggml_new_graph(ctx);
    {
        // Small graph with parallel ops with barriers
        struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,  64);
        for (int i = 0; i < 2; i++) {
            struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 64, 128);
            out = ggml_mul_mat(ctx, a, out);

            struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 64);
            out = ggml_mul_mat(ctx, d, out);
        }

        ggml_build_forward_expand(gf0, out);
    }

    struct ggml_cgraph * gf1 = ggml_new_graph(ctx);
    {
        // Small graph with parallel ops with barriers
        // Use larger tensors to make sure work_data size is larger than gf0
        struct ggml_tensor * out = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,  256);
        for (int i = 0; i < 4; i++) {
            struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 256, 128);
            out = ggml_mul_mat(ctx, a, out);

            struct ggml_tensor * d = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, 128, 256);
            out = ggml_mul_mat(ctx, d, out);
        }

        ggml_build_forward_expand(gf1, out);
    }


    // Create threadpool
    struct ggml_threadpool_params tpp  = ggml_threadpool_params_default(n_threads);
    struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
    if (!threadpool) {
        fprintf(stderr, "threadpool create failed : n_threads %d\n", n_threads);
        exit(1);
    }

    std::cerr << "graph-compute with"
              << "\n gf0 n_nodes: " << ggml_graph_n_nodes(gf0)
              << "\n gf1 n_nodes: " << ggml_graph_n_nodes(gf1)
              << "\n   n_threads: " << n_threads
              << "\n    n_rounds: " << n_rounds
              << "\n";

    // In this test we keep changing the number of threads every 4th iteration
    // and we compute two graphs back to back to test graph frequent graph switching

    for (int i=0; i < n_rounds; i++) {
        struct ggml_cplan cplan0 = ggml_graph_plan(gf0, (i % 4) == 0 ? 1 : n_threads, threadpool);
        std::vector<uint8_t> work_data0(cplan0.work_size);
        cplan0.work_data = work_data0.data();

        struct ggml_cplan cplan1 = ggml_graph_plan(gf1, (i % 4) == 0 ? 1 : n_threads, threadpool);
        std::vector<uint8_t> work_data1(cplan1.work_size);
        cplan1.work_data = work_data1.data();

        ggml_graph_compute(gf0, &cplan0);
        ggml_graph_compute(gf1, &cplan1);
    }

    ggml_threadpool_free(threadpool);
    ggml_free(ctx);
}


int main(int argc, char *argv[]) {

    int n_threads = std::max(1, std::min(4, (int) std::thread::hardware_concurrency()));
    int n_rounds  = 100;

    if (argc > 1) {
        n_threads = std::atoi(argv[1]);
    }

    if (argc > 2) {
        n_rounds  = std::atoi(argv[2]);
    }

    test_barrier(n_threads, n_rounds);

    test_active(n_threads,  n_rounds * 100);

    test_multi_graph(n_threads,  n_rounds * 10);

    return 0;
}