File: conformer.cpp

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (217 lines) | stat: -rw-r--r-- 9,772 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include "models.h"

ggml_cgraph * clip_graph_conformer::build() {
    const int n_frames   = img.nx;
    const int n_pos      = n_frames / 2;
    const int n_pos_embd = (((((n_frames + 1) / 2) + 1) / 2 + 1) / 2) * 2 - 1;
    GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);

    ggml_tensor * pos_emb = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 512, n_pos_embd);
    ggml_set_name(pos_emb, "pos_emb");
    ggml_set_input(pos_emb);
    ggml_build_forward_expand(gf, pos_emb);

    ggml_tensor * inp = build_inp_raw(1);
    cb(inp, "input", -1);

    auto * cur = ggml_cont(ctx0, ggml_transpose(ctx0, inp));

    // pre encode, conv subsampling
    {
        // layer.0 - conv2d
        cur = ggml_conv_2d(ctx0, model.pre_encode_conv_X_w[0], cur, 2, 2, 1, 1, 1, 1);
        cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[0]);
        cb(cur, "conformer.pre_encode.conv.{}", 0);

        // layer.1 - relu
        cur = ggml_relu_inplace(ctx0, cur);

        // layer.2 conv2d dw
        cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[2], cur, 2, 2, 1, 1, 1, 1);
        cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[2]);
        cb(cur, "conformer.pre_encode.conv.{}", 2);

        // layer.3 conv2d
        cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[3], cur, 1, 1, 0, 0, 1, 1);
        cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[3]);
        cb(cur, "conformer.pre_encode.conv.{}", 3);

        // layer.4 - relu
        cur = ggml_relu_inplace(ctx0, cur);

        // layer.5 conv2d dw
        cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[5], cur, 2, 2, 1, 1, 1, 1);
        cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[5]);
        cb(cur, "conformer.pre_encode.conv.{}", 5);

        // layer.6 conv2d
        cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[6], cur, 1, 1, 0, 0, 1, 1);
        cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[6]);
        cb(cur, "conformer.pre_encode.conv.{}", 6);

        // layer.7 - relu
        cur = ggml_relu_inplace(ctx0, cur);

        // flatten channel and frequency axis
        cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 0, 2, 1, 3));
        cur = ggml_reshape_2d(ctx0, cur, cur->ne[0] * cur->ne[1], cur->ne[2]);

        // calculate out
        cur = ggml_mul_mat(ctx0, model.pre_encode_out_w, cur);
        cur = ggml_add(ctx0, cur, model.pre_encode_out_b);
        cb(cur, "conformer.pre_encode.out", -1);
    }

    // pos_emb
    cb(pos_emb, "pos_emb", -1);

    for (int il = 0; il < hparams.n_layer; il++) {
        const auto & layer = model.layers[il];

        auto * residual = cur;

        cb(cur, "layer.in", il);

        // feed_forward1
        cur = build_norm(cur, layer.ff_norm_w, layer.ff_norm_b, NORM_TYPE_NORMAL, 1e-5, il);
        cb(cur, "conformer.layers.{}.norm_feed_forward1", il);

        cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, nullptr, nullptr, layer.ff_down_w, layer.ff_down_b, FFN_SILU,
                        il);
        cb(cur, "conformer.layers.{}.feed_forward1.linear2", il);

        const auto fc_factor = 0.5f;
        residual             = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor));

        // self-attention
        {
            cur = build_norm(residual, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, 1e-5, il);
            cb(cur, "conformer.layers.{}.norm_self_att", il);

            ggml_tensor * Qcur     = ggml_mul_mat(ctx0, layer.q_w, cur);
            Qcur                   = ggml_add(ctx0, Qcur, layer.q_b);
            Qcur                   = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, Qcur->ne[1]);
            ggml_tensor * Q_bias_u = ggml_add(ctx0, Qcur, layer.pos_bias_u);
            Q_bias_u               = ggml_permute(ctx0, Q_bias_u, 0, 2, 1, 3);
            ggml_tensor * Q_bias_v = ggml_add(ctx0, Qcur, layer.pos_bias_v);
            Q_bias_v               = ggml_permute(ctx0, Q_bias_v, 0, 2, 1, 3);

            // TODO @ngxson : some cont can/should be removed when ggml_mul_mat support these cases
            ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
            Kcur               = ggml_add(ctx0, Kcur, layer.k_b);
            Kcur               = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, Kcur->ne[1]);
            Kcur               = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));

            ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
            Vcur               = ggml_add(ctx0, Vcur, layer.v_b);
            Vcur               = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, Vcur->ne[1]);
            Vcur               = ggml_cont(ctx0, ggml_permute(ctx0, Vcur, 1, 2, 0, 3));

            // build_attn won't fit due to matrix_ac and matrix_bd separation
            ggml_tensor * matrix_ac = ggml_mul_mat(ctx0, Q_bias_u, Kcur);
            matrix_ac               = ggml_cont(ctx0, ggml_permute(ctx0, matrix_ac, 1, 0, 2, 3));
            cb(matrix_ac, "conformer.layers.{}.self_attn.id3", il);

            auto * p = ggml_mul_mat(ctx0, layer.linear_pos_w, pos_emb);
            cb(p, "conformer.layers.{}.self_attn.linear_pos", il);
            p = ggml_reshape_3d(ctx0, p, d_head, n_head, p->ne[1]);
            p = ggml_permute(ctx0, p, 0, 2, 1, 3);

            auto * matrix_bd = ggml_mul_mat(ctx0, Q_bias_v, p);
            matrix_bd        = ggml_cont(ctx0, ggml_permute(ctx0, matrix_bd, 1, 0, 2, 3));

            // rel shift
            {
                const auto pos_len = matrix_bd->ne[0];
                const auto q_len   = matrix_bd->ne[1];
                const auto h       = matrix_bd->ne[2];
                matrix_bd          = ggml_pad(ctx0, matrix_bd, 1, 0, 0, 0);
                matrix_bd          = ggml_roll(ctx0, matrix_bd, 1, 0, 0, 0);
                matrix_bd          = ggml_reshape_3d(ctx0, matrix_bd, q_len, pos_len + 1, h);
                matrix_bd          = ggml_view_3d(ctx0, matrix_bd, q_len, pos_len, h, matrix_bd->nb[1],
                                                        matrix_bd->nb[2], matrix_bd->nb[0] * q_len);
                matrix_bd          = ggml_cont_3d(ctx0, matrix_bd, pos_len, q_len, h);
            }

            matrix_bd     = ggml_view_3d(ctx0, matrix_bd, matrix_ac->ne[0], matrix_bd->ne[1],
                                               matrix_bd->ne[2], matrix_bd->nb[1], matrix_bd->nb[2], 0);
            auto * scores = ggml_add(ctx0, matrix_ac, matrix_bd);
            scores        = ggml_scale(ctx0, scores, 1.0f / std::sqrt(d_head));
            cb(scores, "conformer.layers.{}.self_attn.id0", il);

            ggml_tensor * attn = ggml_soft_max(ctx0, scores);
            ggml_tensor * x    = ggml_mul_mat(ctx0, attn, Vcur);
            x                  = ggml_permute(ctx0, x, 2, 0, 1, 3);
            x                  = ggml_cont_2d(ctx0, x, x->ne[0] * x->ne[1], x->ne[2]);

            ggml_tensor * out = ggml_mul_mat(ctx0, layer.o_w, x);
            out               = ggml_add(ctx0, out, layer.o_b);
            cb(out, "conformer.layers.{}.self_attn.linear_out", il);

            cur = out;
        }

        residual = ggml_add(ctx0, residual, cur);
        cur      = build_norm(residual, layer.norm_conv_w, layer.norm_conv_b, NORM_TYPE_NORMAL, 1e-5, il);
        cb(cur, "conformer.layers.{}.norm_conv", il);

        // conv
        {
            auto * x = cur;
            x = ggml_mul_mat(ctx0, layer.conv_pw1_w, x);
            x = ggml_add(ctx0, x, layer.conv_pw1_b);
            cb(x, "conformer.layers.{}.conv.pointwise_conv1", il);

            // ggml_glu doesn't support sigmoid
            // TODO @ngxson : support this ops in ggml
            {
                int64_t       d    = x->ne[0] / 2;
                ggml_tensor * gate = ggml_sigmoid(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], d * x->nb[0]));
                x                  = ggml_mul(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], 0), gate);
                x                  = ggml_cont(ctx0, ggml_transpose(ctx0, x));
            }

            // use ggml_ssm_conv for f32 precision
            x = ggml_pad(ctx0, x, 4, 0, 0, 0);
            x = ggml_roll(ctx0, x, 4, 0, 0, 0);
            x = ggml_pad(ctx0, x, 4, 0, 0, 0);
            x = ggml_ssm_conv(ctx0, x, layer.conv_dw_w);
            x = ggml_add(ctx0, x, layer.conv_dw_b);

            x = ggml_add(ctx0, ggml_mul(ctx0, x, layer.conv_norm_w), layer.conv_norm_b);
            x = ggml_silu(ctx0, x);

            // pointwise_conv2
            x = ggml_mul_mat(ctx0, layer.conv_pw2_w, x);
            x = ggml_add(ctx0, x, layer.conv_pw2_b);

            cur = x;
        }

        residual = ggml_add(ctx0, residual, cur);

        cur = build_norm(residual, layer.ff_norm_1_w, layer.ff_norm_1_b, NORM_TYPE_NORMAL, 1e-5, il);
        cb(cur, "conformer.layers.{}.norm_feed_forward2", il);

        cur = build_ffn(cur, layer.ff_up_1_w, layer.ff_up_1_b, nullptr, nullptr, layer.ff_down_1_w, layer.ff_down_1_b,
                        FFN_SILU, il);  // TODO(tarek): read activation for ffn from hparams
        cb(cur, "conformer.layers.{}.feed_forward2.linear2", il);

        residual = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor));
        cb(residual, "conformer.layers.{}.conv.id", il);

        cur = build_norm(residual, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, 1e-5, il);
        cb(cur, "conformer.layers.{}.norm_out", il);
    }

    // audio adapter
    cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
    cb(cur, "audio_adapter.model.{}", 0);
    cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_3_w, model.mm_3_b, FFN_GELU_ERF, -1);

    cb(cur, "projected", -1);

    ggml_build_forward_expand(gf, cur);

    return gf;
}