1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#include "models.h"
ggml_cgraph * clip_graph_conformer::build() {
const int n_frames = img.nx;
const int n_pos = n_frames / 2;
const int n_pos_embd = (((((n_frames + 1) / 2) + 1) / 2 + 1) / 2) * 2 - 1;
GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
ggml_tensor * pos_emb = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 512, n_pos_embd);
ggml_set_name(pos_emb, "pos_emb");
ggml_set_input(pos_emb);
ggml_build_forward_expand(gf, pos_emb);
ggml_tensor * inp = build_inp_raw(1);
cb(inp, "input", -1);
auto * cur = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
// pre encode, conv subsampling
{
// layer.0 - conv2d
cur = ggml_conv_2d(ctx0, model.pre_encode_conv_X_w[0], cur, 2, 2, 1, 1, 1, 1);
cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[0]);
cb(cur, "conformer.pre_encode.conv.{}", 0);
// layer.1 - relu
cur = ggml_relu_inplace(ctx0, cur);
// layer.2 conv2d dw
cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[2], cur, 2, 2, 1, 1, 1, 1);
cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[2]);
cb(cur, "conformer.pre_encode.conv.{}", 2);
// layer.3 conv2d
cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[3], cur, 1, 1, 0, 0, 1, 1);
cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[3]);
cb(cur, "conformer.pre_encode.conv.{}", 3);
// layer.4 - relu
cur = ggml_relu_inplace(ctx0, cur);
// layer.5 conv2d dw
cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[5], cur, 2, 2, 1, 1, 1, 1);
cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[5]);
cb(cur, "conformer.pre_encode.conv.{}", 5);
// layer.6 conv2d
cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[6], cur, 1, 1, 0, 0, 1, 1);
cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[6]);
cb(cur, "conformer.pre_encode.conv.{}", 6);
// layer.7 - relu
cur = ggml_relu_inplace(ctx0, cur);
// flatten channel and frequency axis
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 0, 2, 1, 3));
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0] * cur->ne[1], cur->ne[2]);
// calculate out
cur = ggml_mul_mat(ctx0, model.pre_encode_out_w, cur);
cur = ggml_add(ctx0, cur, model.pre_encode_out_b);
cb(cur, "conformer.pre_encode.out", -1);
}
// pos_emb
cb(pos_emb, "pos_emb", -1);
for (int il = 0; il < hparams.n_layer; il++) {
const auto & layer = model.layers[il];
auto * residual = cur;
cb(cur, "layer.in", il);
// feed_forward1
cur = build_norm(cur, layer.ff_norm_w, layer.ff_norm_b, NORM_TYPE_NORMAL, 1e-5, il);
cb(cur, "conformer.layers.{}.norm_feed_forward1", il);
cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, nullptr, nullptr, layer.ff_down_w, layer.ff_down_b, FFN_SILU,
il);
cb(cur, "conformer.layers.{}.feed_forward1.linear2", il);
const auto fc_factor = 0.5f;
residual = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor));
// self-attention
{
cur = build_norm(residual, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, 1e-5, il);
cb(cur, "conformer.layers.{}.norm_self_att", il);
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
Qcur = ggml_add(ctx0, Qcur, layer.q_b);
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, Qcur->ne[1]);
ggml_tensor * Q_bias_u = ggml_add(ctx0, Qcur, layer.pos_bias_u);
Q_bias_u = ggml_permute(ctx0, Q_bias_u, 0, 2, 1, 3);
ggml_tensor * Q_bias_v = ggml_add(ctx0, Qcur, layer.pos_bias_v);
Q_bias_v = ggml_permute(ctx0, Q_bias_v, 0, 2, 1, 3);
// TODO @ngxson : some cont can/should be removed when ggml_mul_mat support these cases
ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
Kcur = ggml_add(ctx0, Kcur, layer.k_b);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, Kcur->ne[1]);
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, Vcur->ne[1]);
Vcur = ggml_cont(ctx0, ggml_permute(ctx0, Vcur, 1, 2, 0, 3));
// build_attn won't fit due to matrix_ac and matrix_bd separation
ggml_tensor * matrix_ac = ggml_mul_mat(ctx0, Q_bias_u, Kcur);
matrix_ac = ggml_cont(ctx0, ggml_permute(ctx0, matrix_ac, 1, 0, 2, 3));
cb(matrix_ac, "conformer.layers.{}.self_attn.id3", il);
auto * p = ggml_mul_mat(ctx0, layer.linear_pos_w, pos_emb);
cb(p, "conformer.layers.{}.self_attn.linear_pos", il);
p = ggml_reshape_3d(ctx0, p, d_head, n_head, p->ne[1]);
p = ggml_permute(ctx0, p, 0, 2, 1, 3);
auto * matrix_bd = ggml_mul_mat(ctx0, Q_bias_v, p);
matrix_bd = ggml_cont(ctx0, ggml_permute(ctx0, matrix_bd, 1, 0, 2, 3));
// rel shift
{
const auto pos_len = matrix_bd->ne[0];
const auto q_len = matrix_bd->ne[1];
const auto h = matrix_bd->ne[2];
matrix_bd = ggml_pad(ctx0, matrix_bd, 1, 0, 0, 0);
matrix_bd = ggml_roll(ctx0, matrix_bd, 1, 0, 0, 0);
matrix_bd = ggml_reshape_3d(ctx0, matrix_bd, q_len, pos_len + 1, h);
matrix_bd = ggml_view_3d(ctx0, matrix_bd, q_len, pos_len, h, matrix_bd->nb[1],
matrix_bd->nb[2], matrix_bd->nb[0] * q_len);
matrix_bd = ggml_cont_3d(ctx0, matrix_bd, pos_len, q_len, h);
}
matrix_bd = ggml_view_3d(ctx0, matrix_bd, matrix_ac->ne[0], matrix_bd->ne[1],
matrix_bd->ne[2], matrix_bd->nb[1], matrix_bd->nb[2], 0);
auto * scores = ggml_add(ctx0, matrix_ac, matrix_bd);
scores = ggml_scale(ctx0, scores, 1.0f / std::sqrt(d_head));
cb(scores, "conformer.layers.{}.self_attn.id0", il);
ggml_tensor * attn = ggml_soft_max(ctx0, scores);
ggml_tensor * x = ggml_mul_mat(ctx0, attn, Vcur);
x = ggml_permute(ctx0, x, 2, 0, 1, 3);
x = ggml_cont_2d(ctx0, x, x->ne[0] * x->ne[1], x->ne[2]);
ggml_tensor * out = ggml_mul_mat(ctx0, layer.o_w, x);
out = ggml_add(ctx0, out, layer.o_b);
cb(out, "conformer.layers.{}.self_attn.linear_out", il);
cur = out;
}
residual = ggml_add(ctx0, residual, cur);
cur = build_norm(residual, layer.norm_conv_w, layer.norm_conv_b, NORM_TYPE_NORMAL, 1e-5, il);
cb(cur, "conformer.layers.{}.norm_conv", il);
// conv
{
auto * x = cur;
x = ggml_mul_mat(ctx0, layer.conv_pw1_w, x);
x = ggml_add(ctx0, x, layer.conv_pw1_b);
cb(x, "conformer.layers.{}.conv.pointwise_conv1", il);
// ggml_glu doesn't support sigmoid
// TODO @ngxson : support this ops in ggml
{
int64_t d = x->ne[0] / 2;
ggml_tensor * gate = ggml_sigmoid(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], d * x->nb[0]));
x = ggml_mul(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], 0), gate);
x = ggml_cont(ctx0, ggml_transpose(ctx0, x));
}
// use ggml_ssm_conv for f32 precision
x = ggml_pad(ctx0, x, 4, 0, 0, 0);
x = ggml_roll(ctx0, x, 4, 0, 0, 0);
x = ggml_pad(ctx0, x, 4, 0, 0, 0);
x = ggml_ssm_conv(ctx0, x, layer.conv_dw_w);
x = ggml_add(ctx0, x, layer.conv_dw_b);
x = ggml_add(ctx0, ggml_mul(ctx0, x, layer.conv_norm_w), layer.conv_norm_b);
x = ggml_silu(ctx0, x);
// pointwise_conv2
x = ggml_mul_mat(ctx0, layer.conv_pw2_w, x);
x = ggml_add(ctx0, x, layer.conv_pw2_b);
cur = x;
}
residual = ggml_add(ctx0, residual, cur);
cur = build_norm(residual, layer.ff_norm_1_w, layer.ff_norm_1_b, NORM_TYPE_NORMAL, 1e-5, il);
cb(cur, "conformer.layers.{}.norm_feed_forward2", il);
cur = build_ffn(cur, layer.ff_up_1_w, layer.ff_up_1_b, nullptr, nullptr, layer.ff_down_1_w, layer.ff_down_1_b,
FFN_SILU, il); // TODO(tarek): read activation for ffn from hparams
cb(cur, "conformer.layers.{}.feed_forward2.linear2", il);
residual = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor));
cb(residual, "conformer.layers.{}.conv.id", il);
cur = build_norm(residual, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, 1e-5, il);
cb(cur, "conformer.layers.{}.norm_out", il);
}
// audio adapter
cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
cb(cur, "audio_adapter.model.{}", 0);
cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_3_w, model.mm_3_b, FFN_GELU_ERF, -1);
cb(cur, "projected", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
|