File: qwen3vl.cpp

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (191 lines) | stat: -rw-r--r-- 6,981 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#include "models.h"

ggml_cgraph * clip_graph_qwen3vl::build() {
    GGML_ASSERT(model.patch_bias != nullptr);
    GGML_ASSERT(model.position_embeddings != nullptr);
    GGML_ASSERT(model.class_embedding == nullptr);

    const int batch_size       = 1;
    const int n_pos            = n_patches;
    const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position

    norm_type norm_t = NORM_TYPE_NORMAL;

    int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};

    ggml_tensor * inp_raw = build_inp_raw();
    ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);

    GGML_ASSERT(img.nx % (patch_size * 2) == 0);
    GGML_ASSERT(img.ny % (patch_size * 2) == 0);

    // second conv dimension
    {
        auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_add(ctx0, inp, inp_1);

        inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
        inp = ggml_cont_4d(
            ctx0, inp,
            n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
        inp = ggml_reshape_4d(
            ctx0, inp,
            n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
        inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
        inp = ggml_cont_3d(
            ctx0, inp,
            n_embd, n_patches_x * n_patches_y, batch_size);
    }

    // add patch bias
    if (model.patch_bias != nullptr) {
        inp = ggml_add(ctx0, inp, model.patch_bias);
        cb(inp, "patch_bias", -1);
    }

    // calculate absolute position embedding and apply
    ggml_tensor * learned_pos_embd = resize_position_embeddings();
    learned_pos_embd = ggml_cont_4d(
        ctx0, learned_pos_embd,
        n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
    learned_pos_embd = ggml_reshape_4d(
        ctx0, learned_pos_embd,
        n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
    learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
    learned_pos_embd = ggml_cont_3d(
        ctx0, learned_pos_embd,
        n_embd, n_patches_x * n_patches_y, batch_size);
    inp = ggml_add(ctx0, inp, learned_pos_embd);
    cb(inp, "inp_pos_emb", -1);

    ggml_tensor * inpL = inp;

    ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
    ggml_set_name(positions, "positions");
    ggml_set_input(positions);

    // pre-layernorm
    if (model.pre_ln_w) {
        inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
    }

    // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
    ggml_tensor * deepstack_features = nullptr;
    const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl

    // loop over layers
    for (int il = 0; il < n_layer; il++) {
        auto & layer = model.layers[il];

        ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

        // layernorm1
        cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
        cb(cur, "ln1", il);

        // self-attention
        {
            cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
            cur = ggml_add(ctx0, cur, layer.qkv_b);

            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                    /* nb1    */ ggml_row_size(cur->type, d_head),
                    /* nb2    */ cur->nb[1],
                    /* offset */ 0);

            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                    /* nb1    */ ggml_row_size(cur->type, d_head),
                    /* nb2    */ cur->nb[1],
                    /* offset */ ggml_row_size(cur->type, n_embd));

            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                    /* nb1    */ ggml_row_size(cur->type, d_head),
                    /* nb2    */ cur->nb[1],
                    /* offset */ ggml_row_size(cur->type, 2 * n_embd));

            cb(Qcur, "Qcur", il);
            cb(Kcur, "Kcur", il);
            cb(Vcur, "Vcur", il);

            // apply M-RoPE
            Qcur = ggml_rope_multi(
                ctx0, Qcur, positions, nullptr,
                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
            Kcur = ggml_rope_multi(
                ctx0, Kcur, positions, nullptr,
                d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);

            cb(Qcur, "Qcur_rope", il);
            cb(Kcur, "Kcur_rope", il);

            cur = build_attn(layer.o_w, layer.o_b,
                Qcur, Kcur, Vcur, nullptr, kq_scale, il);
            cb(cur, "attn_out", il);
        }

        // re-add the layer input, e.g., residual
        cur = ggml_add(ctx0, cur, inpL);

        inpL = cur; // inpL = residual, cur = hidden_states

        cb(cur, "ffn_inp", il);

        // layernorm2
        cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
        cb(cur, "ffn_inp_normed", il);

        // ffn
        cur = build_ffn(cur,
            layer.ff_up_w, layer.ff_up_b,
            layer.ff_gate_w, layer.ff_gate_b,
            layer.ff_down_w, layer.ff_down_b,
            hparams.ffn_op, il);

        cb(cur, "ffn_out", il);

        // residual 2
        cur = ggml_add(ctx0, inpL, cur);
        cb(cur, "layer_out", il);

        if (layer.has_deepstack()) {
            ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
            feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
            feat = build_ffn(feat,
                layer.deepstack_fc1_w, layer.deepstack_fc1_b,
                nullptr, nullptr,
                layer.deepstack_fc2_w, layer.deepstack_fc2_b,
                ffn_op_type::FFN_GELU, il);

            if(!deepstack_features) {
                deepstack_features = feat;
            } else {
                // concat along the feature dimension
                deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
            }
        }

        inpL = cur;
    }

    // post-layernorm
    if (model.post_ln_w) {
        inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
    }

    // multimodal projection
    ggml_tensor * embeddings = inpL;
    embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);

    embeddings = build_ffn(embeddings,
        model.mm_0_w, model.mm_0_b,
        nullptr, nullptr,
        model.mm_1_w, model.mm_1_b,
        ffn_op_type::FFN_GELU, -1);

    embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension

    // build the graph
    ggml_build_forward_expand(gf, embeddings);

    return gf;
}