File: mtmd-audio.cpp

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (590 lines) | stat: -rw-r--r-- 20,395 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#include "mtmd-audio.h"

#define _USE_MATH_DEFINES // for M_PI
#include <cmath>
#include <cstdint>
#include <cstring>
#include <thread>
#include <vector>
#include <fstream>
#include <algorithm>

// most of the code here is copied from whisper.cpp

constexpr bool DEBUG = false;

struct mtmd_audio_mel_filters {
    int32_t n_mel;
    int32_t n_fft;

    std::vector<float> data;
};

// note: this global cache is shared among all preprocessors
//       if we want to use multiple preprocessors at the same time,
//       we will need to enclose it in the preprocessor class in the future
static struct mtmd_audio_global_cache {
    // precomputed sin/cos table for FFT
    std::vector<float> sin_vals;
    std::vector<float> cos_vals;

    // hann window
    std::vector<float> hann_window;

    // mel filter bank
    mtmd_audio_mel_filters filters;

    void fill_sin_cos_table(int n) {
        sin_vals.resize(n);
        cos_vals.resize(n);
        for (int i = 0; i < n; i++) {
            double theta = (2 * M_PI * i) / n;
            sin_vals[i] = sinf(theta);
            cos_vals[i] = cosf(theta);
        }
    }

    void fill_hann_window(int length, bool periodic) {
        hann_window.resize(length);
        int offset = -1;
        if (periodic) {
            offset = 0;
        }
        for (int i = 0; i < length; i++) {
            hann_window[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
        }
    }

    // Build mel filterbank matrix [n_mel × n_fft_bins] at runtime.
    // n_fft_bins must be (N_fft / 2 + 1). Example: if N_fft=512 -> n_fft_bins=257.
    void fill_mel_filterbank_matrix(
        int n_mel,
        int n_fft,
        int sample_rate,            // e.g. 16000
        float fmin = 0.0f,          // e.g. 0.0
        float fmax = -1.0f,         // e.g. sr/2; pass -1 for auto
        bool slaney_area_norm = true,
        float scale = 1.0f          // optional extra scaling; use 1.0f/1000.0f to mimic your code
    ) {
        GGML_ASSERT(n_mel > 0 && n_fft > 1);
        if (fmax <= 0.0f) {
            fmax = 0.5f * sample_rate;
        }

        // Slaney scale (matches librosa default)
        const double min_log_hz = 1000.0;
        const double lin_slope = 3 / 200.;
        const double min_log_mel = min_log_hz * lin_slope;
        const double log_step = log(6.4) / 27.0;
        auto hz_to_mel = [min_log_hz, lin_slope, log_step, min_log_mel](const double f_hz) -> double {
            return (f_hz < min_log_hz) ? f_hz * lin_slope : min_log_mel + log(f_hz / min_log_hz) / log_step;
        };
        auto mel_to_hz = [min_log_hz, lin_slope, log_step, min_log_mel](const double m) -> double {
            return (m < min_log_mel) ? m / lin_slope : min_log_hz * exp((m - min_log_mel) * log_step);
        };

        // infer N_fft from n_fft_bins
        const double bin_hz_step = double(sample_rate) / double(n_fft);

        // mel grid: n_mel + 2 edges
        const double m_lo = hz_to_mel(fmin);
        const double m_hi = hz_to_mel(fmax);
        std::vector<double> mel_pts(n_mel + 2);
        for (int i = 0; i < n_mel + 2; ++i) {
            mel_pts[i] = m_lo + (m_hi - m_lo) * (double(i) / (n_mel + 1));
        }

        // convert to Hz
        std::vector<double> hz_pts(n_mel + 2);
        for (int i = 0; i < n_mel + 2; ++i) {
            hz_pts[i] = mel_to_hz(mel_pts[i]);
        }

        const int n_fft_bins = n_fft / 2 + 1;

        // filterbank
        std::vector<float> out(n_mel * n_fft_bins, 0);
        for (int m = 0; m < n_mel; ++m) {
            const double f_left   = hz_pts[m];
            const double f_center = hz_pts[m + 1];
            const double f_right  = hz_pts[m + 2];

            const double denom_l = std::max(1e-30, f_center - f_left);
            const double denom_r = std::max(1e-30, f_right  - f_center);
            const double enorm   = slaney_area_norm ? (2.0 / std::max(1e-30, f_right - f_left)) : 1.0;

            for (int k = 0; k < n_fft_bins; ++k) {
                const double f = k * bin_hz_step;
                double w = 0.0;
                if (f >= f_left && f <= f_center) {
                    w = (f - f_left) / denom_l;
                } else if (f > f_center && f <= f_right) {
                    w = (f_right - f) / denom_r;
                }
                out[size_t(m) * size_t(n_fft_bins) + size_t(k)] = float(w * enorm * scale);
            }
        }

        filters.n_mel = n_mel;
        filters.n_fft = n_fft;
        filters.data  = std::move(out);

        if (DEBUG) { // debug
            for (size_t i = 0; i < filters.data.size(); ++i) {
                if (filters.data[i] != 0.0f) {
                    printf("filters[%zu] = %f\n", i, filters.data[i] * 1000.0f);
                }
            }
        }
    }
} g_cache;

// naive Discrete Fourier Transform
// input is real-valued
// output is complex-valued
static void dft(const float * in, int N, float * out) {
    const int n_sin_cos_vals = g_cache.sin_vals.size();
    const int sin_cos_step = n_sin_cos_vals / N;

    for (int k = 0; k < N; k++) {
        float re = 0;
        float im = 0;

        for (int n = 0; n < N; n++) {
            int idx = (k * n * sin_cos_step) % (n_sin_cos_vals); // t = 2*M_PI*k*n/N
            re += in[n] * g_cache.cos_vals[idx]; // cos(t)
            im -= in[n] * g_cache.sin_vals[idx]; // sin(t)
        }

        out[k*2 + 0] = re;
        out[k*2 + 1] = im;
    }
}

// Cooley-Tukey FFT
// poor man's implementation - use something better
// input is real-valued
// output is complex-valued
static void fft(float * in, int N, float * out) {
    const int n_sin_cos_vals = g_cache.sin_vals.size();
    if (N == 1) {
        out[0] = in[0];
        out[1] = 0;
        return;
    }

    const int half_N = N / 2;
    if (N - half_N*2 == 1) {
        dft(in, N, out);
        return;
    }

    float* even = in + N;
    for (int i = 0; i < half_N; ++i) {
        even[i]= in[2*i];
    }
    float* even_fft = out + 2 * N;
    fft(even, half_N, even_fft);

    float* odd = even;
    for (int i = 0; i < half_N; ++i) {
        odd[i] = in[2*i + 1];
    }
    float* odd_fft = even_fft + N;
    fft(odd, half_N, odd_fft);

    const int sin_cos_step = n_sin_cos_vals / N;
    for (int k = 0; k < half_N; k++) {
        int idx = k * sin_cos_step; // t = 2*M_PI*k/N
        float re =  g_cache.cos_vals[idx]; // cos(t)
        float im = -g_cache.sin_vals[idx]; // sin(t)

        float re_odd = odd_fft[2*k + 0];
        float im_odd = odd_fft[2*k + 1];

        out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
        out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;

        out[2*(k + half_N) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
        out[2*(k + half_N) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
    }
}

struct filter_params {
    int32_t n_mel;
    int32_t n_fft_bins;
    int32_t hann_window_size;
    int32_t hop_length;
    int32_t sample_rate;
    bool    center_padding = false;
    float   preemph = 0.f;
    bool    use_natural_log = false;
    bool    norm_per_feature = false;
};

static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
                                              int n_samples, int frame_size, int frame_step, int n_threads,
                                              const filter_params & params, mtmd_audio_mel & out) {
    std::vector<float> fft_in(frame_size * 2, 0.0);
    std::vector<float> fft_out(frame_size * 2 * 2 * 2);

    int n_fft_bins = params.n_fft_bins;
    int i = ith;

    const auto & filters = g_cache.filters;

    // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
    GGML_ASSERT(n_fft_bins == 1 + (frame_size / 2));
    GGML_ASSERT(g_cache.sin_vals.size() == g_cache.cos_vals.size());
    // calculate FFT only when fft_in are not all zero
    for (; i < std::min(n_samples / frame_step + 1, out.n_len); i += n_threads) {
        const int offset = i * frame_step;

        // apply Hann window (~10% faster)
        for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
            fft_in[j] = hann[j] * samples[offset + j];
        }

        // fill the rest with zeros
        if (n_samples - offset < frame_size) {
            std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
        }

        // FFT
        fft(fft_in.data(), frame_size, fft_out.data());

        // Calculate modulus^2 of complex numbers
        // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
        for (int j = 0; j < n_fft_bins; j++) {
            fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
        }

        // mel spectrogram
        for (int j = 0; j < out.n_mel; j++) {
            double sum = 0.0;
            // unroll loop (suggested by GH user @lunixbochs)
            int k = 0;
            for (k = 0; k < n_fft_bins - 3; k += 4) {
                size_t idx = size_t(j) * size_t(n_fft_bins) + size_t(k);
                sum +=
                        fft_out[k + 0] * filters.data[idx + 0] +
                        fft_out[k + 1] * filters.data[idx + 1] +
                        fft_out[k + 2] * filters.data[idx + 2] +
                        fft_out[k + 3] * filters.data[idx + 3];
            }
            // handle n_fft remainder
            for (; k < n_fft_bins; k++) {
                sum += fft_out[k] * filters.data[j * n_fft_bins + k];
            }
            sum = params.use_natural_log
                ? log(sum + 5.960464477539063e-08)
                : log10(std::max(sum, 1e-10));
            out.data[j * out.n_len + i] = sum;
        }
    }

    // Otherwise fft_out are all zero
    double sum = params.use_natural_log ? log(1e-10) : log10(1e-10);
    for (; i < out.n_len; i += n_threads) {
        for (int j = 0; j < out.n_mel; j++) {
            out.data[j * out.n_len + i] = sum;
        }
    }
}

// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
static bool log_mel_spectrogram(
        const float * samples,
        const int     n_samples_in,
        const int     n_threads,
        const filter_params & params,
        mtmd_audio_mel & out) {
    //const int64_t t_start_us = ggml_time_us();

    out.n_len_org = n_samples_in;
    int n_samples = n_samples_in;

    // Hann window
    const float * hann = g_cache.hann_window.data();
    const int frame_size = (params.n_fft_bins - 1) * 2;
    const int frame_step = params.hop_length;

    // Padding
    std::vector<float> samples_padded;
    if (params.center_padding) {
        const auto pad_amount = frame_size / 2;
        samples_padded = std::vector<float>(n_samples + 2 * pad_amount, 0);
        std::copy(samples, samples + n_samples, samples_padded.data() + pad_amount);
        samples = samples_padded.data();
        n_samples = samples_padded.size();
    } else {
        // existing padding logic
        int64_t stage_1_pad = params.sample_rate * 30;
        int64_t stage_2_pad = frame_size / 2;
        samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
        std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
        // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
        std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
        // reflective pad 200 samples at the beginning of audio
        if (n_samples < stage_2_pad + 1) {
            // TODO: Handle short audio differently or return error
            return false;
        }
        std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
    }

    // preemphasis
    if (params.preemph) {
        const int pad_amount = frame_size / 2;
        const float preemph = 0.97f;
        float prev = samples_padded[pad_amount];
        for (int i = pad_amount + 1; i + pad_amount < n_samples; ++i) {
            float cur = samples_padded[i];
            samples_padded[i] = cur - preemph * prev;
            prev = cur;
        }
    }

    // pad hann window if it's smaller than frame_size
    // TODO: probably unnecessary here? (or better doing it in g_cache?)
    std::vector<float> hann_window_padded;
    if (params.hann_window_size < frame_size) {
        hann_window_padded.resize(frame_size);
        const int padding = (frame_size - params.hann_window_size) / 2;
        std::copy(hann, hann + params.hann_window_size, &hann_window_padded[padding]);
        hann = hann_window_padded.data();
    }


    out.n_mel = params.n_mel;
    out.n_len = (n_samples - frame_size) / frame_step + 1;
    // TODO: handle these checks better
    if (out.n_mel > 0 && (unsigned long)out.n_len > SIZE_MAX / out.n_mel) {
        LOG_ERR("%s: size overflow\n", __func__);
        return false;
    }
    if (n_samples < frame_size) {
        LOG_ERR("%s: not enough samples after padding\n", __func__);
        return false;
    }
    out.data.resize(out.n_mel * out.n_len);

    {
        std::vector<std::thread> workers(n_threads - 1);
        for (int iw = 0; iw < n_threads - 1; ++iw) {
            workers[iw] = std::thread(
                    log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded),
                    n_samples, frame_size, frame_step, n_threads,
                    std::cref(params), std::ref(out));
        }

        // main thread
        log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples, frame_size, frame_step, n_threads, params, out);
        for (int iw = 0; iw < n_threads - 1; ++iw) {
            workers[iw].join();
        }
    }

    const int effective_n_len = n_samples_in / frame_step;
    if (params.norm_per_feature) {
        for (int i = 0; i < out.n_mel; i++) {
            double mean = 0;
            for (int j = 0; j < effective_n_len; ++j) {
                mean += out.data[i * out.n_len + j];
            }
            mean /= effective_n_len;

            double var = 0.0;
            for (int j = 0; j < effective_n_len; ++j) {
                const double value = out.data[i * out.n_len + j] - mean;
                var += value * value;
            }
            var /= effective_n_len - 1;  // unbiased
            const double mstd = std::sqrt(var + 1e-5);

            for (int j = 0; j < effective_n_len; ++j) {
                auto &value = out.data[i * out.n_len + j];
                value = (value - mean) / mstd;
            }

            // pad the rest with zeros
            for (int j = effective_n_len; j < out.n_len; ++j) {
                out.data[i * out.n_len + j] = 0.0;
            }
        }
    } else {
        // clamping and normalization
        double mmax = -1e20;
        for (int i = 0; i < out.n_mel*out.n_len; i++) {
            if (out.data[i] > mmax) {
                mmax = out.data[i];
            }
        }

        mmax -= 8.0;

        for (int i = 0; i < out.n_mel*out.n_len; i++) {
            if (out.data[i] < mmax) {
                out.data[i] = mmax;
            }
            out.data[i] = (out.data[i] + 4.0)/4.0;
        }
    }

    // Dump log_mel_spectrogram
    if (DEBUG) {
        std::ofstream outFile("log_mel_spectrogram.json");
        outFile << "[";
        for (uint64_t i = 0; i < out.data.size() - 1; i++) {
            outFile << out.data[i] << ", ";
        }
        outFile << out.data[out.data.size() - 1] << "]";
        outFile.close();
    }

    return true;
}

//
// mtmd_audio_preprocessor_whisper
//

void mtmd_audio_preprocessor_whisper::initialize() {
    g_cache.fill_sin_cos_table(hparams.audio_n_fft);
    g_cache.fill_hann_window(hparams.audio_window_len, true);
    g_cache.fill_mel_filterbank_matrix(
        hparams.n_mel_bins,
        hparams.audio_n_fft,
        hparams.audio_sample_rate);
}

bool mtmd_audio_preprocessor_whisper::preprocess(
        const float * samples,
        size_t n_samples,
        std::vector<mtmd_audio_mel> & output) {
    if (n_samples == 0) {
        // empty audio
        return false;
    }

    std::vector<float> smpl;
    // if input is too short, pad with zeros
    // this is to avoid potential issues with stage1/2 padding in log_mel_spectrogram
    // TODO: maybe handle this better
    size_t min_samples = (size_t)hparams.audio_sample_rate * (hparams.audio_chunk_len + 1); // +1 second margin
    if (n_samples < min_samples) {
        smpl.resize(min_samples, 0.0f);
        std::memcpy(smpl.data(), samples, n_samples * sizeof(float));
        samples   = smpl.data();
        n_samples = smpl.size();
    }

    filter_params params;
    params.n_mel            = hparams.n_mel_bins;
    params.n_fft_bins       = 1 + (hparams.audio_n_fft / 2);
    params.hann_window_size = hparams.audio_window_len;
    params.hop_length       = hparams.audio_hop_len;
    params.sample_rate      = hparams.audio_sample_rate;
    params.center_padding   = false;
    params.preemph          = 0.0f; // disabled
    params.use_natural_log  = false;
    params.norm_per_feature = false;

    // make sure the global cache is initialized
    GGML_ASSERT(!g_cache.sin_vals.empty());
    GGML_ASSERT(!g_cache.cos_vals.empty());
    GGML_ASSERT(!g_cache.filters.data.empty());

    mtmd_audio_mel out_full;
    bool ok = log_mel_spectrogram(
                samples,
                n_samples,
                4, // n_threads
                params,
                out_full);
    if (!ok) {
        return false;
    }

    // because the cgraph in clip.cpp only accepts 3000 frames each, we need to split the mel
    // we always expect the mel to have 3000 silent frames at the end
    if (DEBUG) {
        printf("output: n_mel = %d, n_len = %d\n", out_full.n_mel, out_full.n_len);
    }
    const size_t frames_per_chunk = 3000;
    GGML_ASSERT((size_t)out_full.n_len > frames_per_chunk);
    for (size_t off = 0; off < (size_t)out_full.n_len; off += frames_per_chunk) {
        int n_len = std::min(frames_per_chunk, (size_t)out_full.n_len - off);
        if ((size_t)n_len < frames_per_chunk) {
            break; // last uncomplete chunk will always be a padded chunk, safe to ignore
        }

        mtmd_audio_mel out_chunk;
        out_chunk.n_len     = n_len;
        out_chunk.n_mel     = out_full.n_mel;
        out_chunk.n_len_org = out_full.n_mel; // unused
        out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);

        for (int i = 0; i < out_full.n_mel; i++) {
            auto src = out_full.data.begin() + i*out_full.n_len + off;
            out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
        }

        output.push_back(std::move(out_chunk));
    }

    return true;
}

//
// mtmd_audio_preprocessor_conformer
//

void mtmd_audio_preprocessor_conformer::initialize() {
    g_cache.fill_sin_cos_table(hparams.audio_n_fft);
    g_cache.fill_hann_window(hparams.audio_window_len, true);
    g_cache.fill_mel_filterbank_matrix(
        hparams.n_mel_bins,
        hparams.audio_n_fft,
        hparams.audio_sample_rate);
}

bool mtmd_audio_preprocessor_conformer::preprocess(
        const float * samples,
        size_t n_samples,
        std::vector<mtmd_audio_mel> & output) {
    // empty audio
    if (n_samples == 0) {
        return false;
    }

    filter_params params;
    params.n_mel            = hparams.n_mel_bins;
    params.n_fft_bins       = 1 + (hparams.audio_n_fft / 2);
    params.hann_window_size = hparams.audio_window_len;
    params.hop_length       = hparams.audio_hop_len;
    params.sample_rate      = hparams.audio_sample_rate;
    params.center_padding   = true;
    params.preemph          = 0.97f;
    params.use_natural_log  = true;
    params.norm_per_feature = true;

    // make sure the global cache is initialized
    GGML_ASSERT(!g_cache.sin_vals.empty());
    GGML_ASSERT(!g_cache.cos_vals.empty());
    GGML_ASSERT(!g_cache.filters.data.empty());

    mtmd_audio_mel out_full;
    bool ok = log_mel_spectrogram(
                samples,
                n_samples,
                4, // n_threads
                params,
                out_full);
    if (!ok) {
        return false;
    }

    output.push_back(std::move(out_full));
    return true;
}