File: server-common.cpp

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (1681 lines) | stat: -rw-r--r-- 60,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
#include "common.h"
#include "log.h"
#include "llama.h"
#include "mtmd.h"
#include "mtmd-helper.h"
#include "chat.h"
#include "arg.h" // for common_remote_get_content; TODO: use download.h only
#include "base64.hpp"

#include "server-common.h"

#include <random>
#include <sstream>
#include <fstream>

json format_error_response(const std::string & message, const enum error_type type) {
    std::string type_str;
    int code = 500;
    switch (type) {
        case ERROR_TYPE_INVALID_REQUEST:
            type_str = "invalid_request_error";
            code = 400;
            break;
        case ERROR_TYPE_AUTHENTICATION:
            type_str = "authentication_error";
            code = 401;
            break;
        case ERROR_TYPE_NOT_FOUND:
            type_str = "not_found_error";
            code = 404;
            break;
        case ERROR_TYPE_SERVER:
            type_str = "server_error";
            code = 500;
            break;
        case ERROR_TYPE_PERMISSION:
            type_str = "permission_error";
            code = 403;
            break;
        case ERROR_TYPE_NOT_SUPPORTED:
            type_str = "not_supported_error";
            code = 501;
            break;
        case ERROR_TYPE_UNAVAILABLE:
            type_str = "unavailable_error";
            code = 503;
            break;
        case ERROR_TYPE_EXCEED_CONTEXT_SIZE:
            type_str = "exceed_context_size_error";
            code = 400;
            break;
    }
    return json {
        {"code", code},
        {"message", message},
        {"type", type_str},
    };
}

//
// random string / id
//

std::string random_string() {
    static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");

    std::random_device rd;
    std::mt19937 generator(rd());

    std::string result(32, ' ');

    for (int i = 0; i < 32; ++i) {
        result[i] = str[generator() % str.size()];
    }

    return result;
}

std::string gen_chatcmplid() {
    return "chatcmpl-" + random_string();
}

std::string gen_tool_call_id() {
    return random_string();
}

//
// lora utils
//

bool lora_all_alora(const std::vector<common_adapter_lora_info> & loras) {
    bool found_alora = false;
    for (const auto & lora : loras) {
        if (lora.scale != 0) {
            if (llama_adapter_get_alora_n_invocation_tokens(lora.ptr) == 0) {
                return false;
            }
            found_alora = true;
        }
    }
    return found_alora;
}

bool lora_should_clear_cache(
        const std::vector<common_adapter_lora_info> & current,
        const std::vector<common_adapter_lora_info> & next) {

    // This should always be called after determining that the two sets are
    // _not_ equal. This assert is therefore some slightly wasted work and
    // should be safe to remove as long as this method is called correctly.
    GGML_ASSERT(!are_lora_equal(current, next));

    return (
        !(lora_get_enabled_ids(current).empty() || lora_all_alora(current)) ||
        !lora_all_alora(next));
}

std::map<int, float> parse_lora_request(const json & data) {
    std::map<int, float> lora;

    // set value
    for (const auto & entry : data) {
        int id      = json_value(entry, "id", -1);
        float scale = json_value(entry, "scale", 0.0f);
        lora[id] = scale;
    }

    return lora;
}

bool are_lora_equal(
        const std::vector<common_adapter_lora_info> & l1,
        const std::vector<common_adapter_lora_info> & l2) {
    if (l1.size() != l2.size()) {
        return false;
    }
    for (size_t i = 0; i < l1.size(); ++i) {
        // we don't check lora.path to reduce the time complexity
        if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
            return false;
        }
    }
    return true;
}

std::vector<size_t> lora_get_enabled_ids(const std::vector<common_adapter_lora_info> & loras) {
    std::vector<size_t> enabled_ids;
    for (size_t i = 0; i < loras.size(); ++i) {
        if (loras[i].scale > 0) {
            enabled_ids.push_back(i);
        }
    }
    return enabled_ids;
}

//
// base64 utils (TODO: use the base64::decode from base64.hpp)
//

static const std::string base64_chars =
             "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
             "abcdefghijklmnopqrstuvwxyz"
             "0123456789+/";

static inline bool is_base64(uint8_t c) {
    return (isalnum(c) || (c == '+') || (c == '/'));
}

static inline raw_buffer base64_decode(const std::string & encoded_string) {
    int i = 0;
    int j = 0;
    int in_ = 0;

    int in_len = encoded_string.size();

    uint8_t char_array_4[4];
    uint8_t char_array_3[3];

    raw_buffer ret;

    while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
        char_array_4[i++] = encoded_string[in_]; in_++;
        if (i == 4) {
            for (i = 0; i < 4; i++) {
                char_array_4[i] = base64_chars.find(char_array_4[i]);
            }

            char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
            char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
            char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];

            for (i = 0; (i < 3); i++) {
                ret.push_back(char_array_3[i]);
            }

            i = 0;
        }
    }

    if (i) {
        for (j = i; j < 4; j++) {
            char_array_4[j] = 0;
        }

        for (j = 0; j < 4; j++) {
            char_array_4[j] = base64_chars.find(char_array_4[j]);
        }

        char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
        char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
        char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];

        for (j = 0; j < i - 1; j++) {
            ret.push_back(char_array_3[j]);
        }
    }

    return ret;
}

//
// server_tokens implementation
//

server_tokens::server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) {
    for (size_t i = 0; i < mtmd_chunks.size(); ++i) {
        push_back(mtmd_chunks[i]);
    }
}

server_tokens::server_tokens(const llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {
}

llama_pos server_tokens::pos_next() const {
    if (!has_mtmd) {
        return tokens.size();
    }

    llama_pos res = tokens.size();

    for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) {
        const auto & chunk = it->second;
        res += mtmd_input_chunk_get_n_pos(chunk.get()) - mtmd_input_chunk_get_n_tokens(chunk.get());
    }

    return res;
}

std::string server_tokens::str() const {
    std::ostringstream oss;
    oss << "tokens: ";
    for (size_t idx = 0; idx < tokens.size(); ++idx) {
        llama_token t = tokens[idx];
        oss << "idx:" << idx << " ";
        if (t == LLAMA_TOKEN_NULL) {
            oss << "<embd> ";
        } else {
            oss << t << " ";
        }
    }
    oss << "\n";
    oss << "image idx: ";
    for (const auto & it : map_idx_to_media) {
        oss << it.first << ", ";
    }
    return oss.str();
}

const mtmd::input_chunk_ptr & server_tokens::find_chunk(size_t idx) const {
    auto it = map_idx_to_media.find(idx);
    if (it != map_idx_to_media.end()) {
        return it->second;
    }
    throw std::runtime_error("Chunk not found");
}

void server_tokens::push_back(llama_token tok) {
    if (tok == LLAMA_TOKEN_NULL) {
        throw std::runtime_error("Invalid token");
    }
    tokens.emplace_back(tok);
}

void server_tokens::push_back(const mtmd_input_chunk * chunk) {
    auto type = mtmd_input_chunk_get_type(chunk);
    if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
        GGML_ASSERT(has_mtmd);
        const size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk);
        size_t start_idx = tokens.size();
        for (size_t i = 0; i < n_tokens; ++i) {
            tokens.emplace_back(LLAMA_TOKEN_NULL);
        }
        mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
        map_idx_to_media[start_idx] = std::move(new_chunk);
    } else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
        size_t n_tokens;
        const auto * text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
        for (size_t i = 0; i < n_tokens; ++i) {
            push_back(text_tokens[i]);
        }
    } else {
        GGML_ABORT("Invalid chunk type");
    }
}

void server_tokens::push_back(server_tokens & tokens) {
    size_t start_idx = size();
    for (size_t i = 0; i < tokens.size(); i++) {
        push_back(tokens[i]);
    }
    if (tokens.has_mtmd) {
        // Assert if we are copying MTMD chunks to a server_tokens that does not have mtmd.
        // We could also just check, but this will prevent silently dropping MTMD data.
        GGML_ASSERT(has_mtmd);
        for (auto it = tokens.map_idx_to_media.begin(); it != tokens.map_idx_to_media.end(); ) {
            auto * chunk = tokens.map_idx_to_media[it->first].get();
            mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
            map_idx_to_media[start_idx + it->first] = std::move(new_chunk);
        }
    }
}

void server_tokens::insert(const llama_tokens & inp_tokens) {
    GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
    tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end());
}

const llama_tokens & server_tokens::get_text_tokens() const {
    GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
    return tokens;
}

void server_tokens::set_token(llama_pos pos, llama_token id) {
    GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
    tokens[pos] = id;
}

void server_tokens::keep_first(size_t n) {
    GGML_ASSERT(n <= tokens.size());
    if (has_mtmd) {
        if (n == tokens.size()) {
            return; // nothing to do
        }
        // we throw an error if we try to remove a token in the middle of an image
        // for ex. with input of 5 text tokens and 2 images:
        //    [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
        // n  1   2   3   4   5   6      7      8      9      10
        // allowed to resize      ^                    ^
        // disallowed to resize          ^      ^             ^
        if (n > 0) {
            // make sure we never remove tokens in the middle of an image
            // note that the case where we keep a full image at the end is allowed:
            //   tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] != LLAMA_TOKEN_NULL
            if (tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] == LLAMA_TOKEN_NULL) {
                find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk
            }
        }
        // remove all image chunks that are not used anymore
        for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ) {
            size_t idx = it->first;
            if (idx >= n) {
                it = map_idx_to_media.erase(it);
            } else {
                ++it;
            }
        }
    }
    tokens.resize(n);
}

std::string server_tokens::detokenize(const llama_context * ctx, bool special) const {
    llama_tokens text_tokens;
    text_tokens.reserve(tokens.size());
    for (const auto & t : tokens) {
        if (t != LLAMA_TOKEN_NULL) {
            text_tokens.push_back(t);
        }
    }
    return common_detokenize(ctx, text_tokens, special);
}

size_t server_tokens::get_common_prefix(const server_tokens & b) const {
    const size_t max_idx = std::min(tokens.size(), b.tokens.size());

    if (!has_mtmd) {
        for (size_t i = 0; i < max_idx; ++i) {
            if (tokens[i] == b.tokens[i]) {
                continue;
            }

            return i;
        }

        return max_idx;
    }

    for (size_t i = 0; i < max_idx; ++i) {
        const llama_token ai =   tokens[i];
        const llama_token bi = b.tokens[i];

        if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
            const auto & a_chunk =   find_chunk(i);
            const auto & b_chunk = b.find_chunk(i);

            GGML_ASSERT(a_chunk && b_chunk);

            const std::string id_ai = mtmd_input_chunk_get_id(a_chunk.get());
            const std::string id_bi = mtmd_input_chunk_get_id(b_chunk.get());

            const size_t n_tok_a = mtmd_input_chunk_get_n_tokens(a_chunk.get());
            const size_t n_tok_b = mtmd_input_chunk_get_n_tokens(b_chunk.get());

            if (id_ai == id_bi && n_tok_a == n_tok_b) {
                GGML_ASSERT(n_tok_a > 0 && "Invalid media chunk"); // should never happen
                i += n_tok_a - 1; // will be +1 by the for loop
                continue;
            }

            return i;
        }

        if (ai == bi) {
            continue;
        }

        return i;
    }

    return max_idx; // all tokens are equal
}

bool server_tokens::validate(const struct llama_context * ctx) const {
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    const int32_t n_vocab = llama_vocab_n_tokens(vocab);

    for (size_t i = 0; i < tokens.size(); ++i) {
        const auto & t = tokens[i];
        if (t == LLAMA_TOKEN_NULL) {
            try {
                const auto & chunk = find_chunk(i);
                size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk.get());
                i += n_tokens - 1; // will be +1 by the for loop
            } catch (const std::exception & e) {
                return false;
            }
        } else if (t < 0 || t >= n_vocab) {
            return false;
        }
    }
    return true;
}

int32_t server_tokens::process_chunk(
            llama_context * ctx,
            mtmd_context * mctx,
            size_t idx,
            llama_pos pos,
            int32_t seq_id,
            size_t & n_tokens_out) const {
    const auto & chunk = find_chunk(idx);
    const char * name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE
                        ? "image" : "audio";
    SRV_INF("processing %s...\n", name);
    int32_t n_batch = llama_n_batch(ctx);
    int64_t t0 = ggml_time_ms();
    llama_pos new_n_past; // unused for now
    int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
        chunk.get(),
        pos,
        seq_id,
        n_batch,
        true, // logits last
        &new_n_past);
    SRV_INF("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0);
    if (result != 0) {
        LOG_ERR("mtmd_helper_eval failed with status %d", result);
        n_tokens_out = 0;
        return result;
    }
    n_tokens_out = mtmd_input_chunk_get_n_tokens(chunk.get());
    return 0;
}

server_tokens server_tokens::clone() const {
    server_tokens res;
    res.has_mtmd = has_mtmd;
    res.tokens   = tokens;
    for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) {
        size_t idx = it->first;
        const mtmd::input_chunk_ptr & chunk = it->second;
        res.map_idx_to_media[idx] = mtmd::input_chunk_ptr(mtmd_input_chunk_copy(chunk.get()));
    }
    return res;
}

//
// tokenizer and input processing utils
//

bool json_is_array_of_numbers(const json & data) {
    if (data.is_array()) {
        for (const auto & e : data) {
            if (!e.is_number_integer()) {
                return false;
            }
        }
        return true;
    }
    return false;
}

bool json_is_array_of_mixed_numbers_strings(const json & data) {
    bool seen_string = false;
    bool seen_number = false;
    if (data.is_array()) {
        for (const auto & e : data) {
            seen_string |= e.is_string();
            seen_number |= e.is_number_integer();
            if (seen_number && seen_string) {
                return true;
            }
        }
    }
    return false;
}

bool json_is_array_and_contains_numbers(const json & data) {
    if (data.is_array()) {
        for (const auto & e : data) {
            if (e.is_number_integer()) {
                return true;
            }
        }
        return false;
    }
    return false;
}

json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
    json result = json::object();

    for (const std::string & path : paths) {
        json current = js;
        const auto keys = string_split<std::string>(path, /*separator*/ '/');
        bool valid_path = true;
        for (const std::string & k : keys) {
            if (valid_path && current.is_object() && current.contains(k)) {
                current = current[k];
            } else {
                valid_path = false;
            }
        }
        if (valid_path) {
            result[path] = current;
        }
    }
    return result;
}

llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
    // If `add_bos` is true, we only add BOS, when json_prompt is a string,
    // or the first element of the json_prompt array is a string.
    llama_tokens prompt_tokens;

    if (json_prompt.is_array()) {
        bool first = true;
        for (const auto & p : json_prompt) {
            if (p.is_string()) {
                auto s = p.template get<std::string>();

                llama_tokens p;
                if (first) {
                    p = common_tokenize(vocab, s, add_special, parse_special);
                    first = false;
                } else {
                    p = common_tokenize(vocab, s, false, parse_special);
                }

                prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
            } else {
                if (first) {
                    first = false;
                }

                prompt_tokens.push_back(p.template get<llama_token>());
            }
        }
    } else {
        auto s = json_prompt.template get<std::string>();
        prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
    }

    return prompt_tokens;
}

size_t validate_utf8(const std::string& text) {
    size_t len = text.size();
    if (len == 0) return 0;

    // Check the last few bytes to see if a multi-byte character is cut off
    for (size_t i = 1; i <= 4 && i <= len; ++i) {
        unsigned char c = text[len - i];
        // Check for start of a multi-byte sequence from the end
        if ((c & 0xE0) == 0xC0) {
            // 2-byte character start: 110xxxxx
            // Needs at least 2 bytes
            if (i < 2) return len - i;
        } else if ((c & 0xF0) == 0xE0) {
            // 3-byte character start: 1110xxxx
            // Needs at least 3 bytes
            if (i < 3) return len - i;
        } else if ((c & 0xF8) == 0xF0) {
            // 4-byte character start: 11110xxx
            // Needs at least 4 bytes
            if (i < 4) return len - i;
        }
    }

    // If no cut-off multi-byte character is found, return full length
    return len;
}

// Computes FNV-1a hash of the data
static std::string fnv_hash(const uint8_t * data, size_t len) {
    const uint64_t fnv_prime = 0x100000001b3ULL;
    uint64_t hash = 0xcbf29ce484222325ULL;

    for (size_t i = 0; i < len; ++i) {
        hash ^= data[i];
        hash *= fnv_prime;
    }
    return std::to_string(hash);
}

server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files) {
    mtmd::bitmaps bitmaps;
    for (auto & file : files) {
        mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(mctx, file.data(), file.size()));
        if (!bmp.ptr) {
            throw std::runtime_error("Failed to load image or audio file");
        }
        // calculate bitmap hash (for KV caching)
        std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
        bmp.set_id(hash.c_str());
        bitmaps.entries.push_back(std::move(bmp));
    }
    // process prompt
    std::vector<server_tokens> inputs;
    // multimodal
    mtmd_input_text inp_txt = {
        prompt.c_str(),
        /* add_special */   true,
        /* parse_special */ true,
    };
    mtmd::input_chunks chunks(mtmd_input_chunks_init());
    auto bitmaps_c_ptr = bitmaps.c_ptr();
    int32_t tokenized = mtmd_tokenize(mctx,
                                      chunks.ptr.get(),
                                      &inp_txt,
                                      bitmaps_c_ptr.data(),
                                      bitmaps_c_ptr.size());
    if (tokenized != 0) {
        throw std::runtime_error("Failed to tokenize prompt");
    }
    auto result = server_tokens(chunks, true);
    return result;
}

/**
 * break the input "prompt" object into multiple prompt if needed, then tokenize them
 * use tokenize_input_prompts() if the input could be an array.
 * this supports these cases:
 * - "prompt": "string"
 * - "prompt": [12, 34, 56]
 * - "prompt": [12, 34, "string", 56, 78]
 * - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
 */
static server_tokens tokenize_input_subprompt(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) {
    constexpr char JSON_STRING_PROMPT_KEY[] = "prompt_string";
    constexpr char JSON_MTMD_DATA_KEY[] = "multimodal_data";
    const bool has_mtmd = mctx != nullptr;
    if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
        // string or mixed
        llama_tokens tmp = tokenize_mixed(vocab, json_prompt, add_special, parse_special);
        return server_tokens(tmp, false);
    } else if (json_is_array_of_numbers(json_prompt)) {
        // array of tokens
        llama_tokens tmp = json_prompt.get<llama_tokens>();
        return server_tokens(tmp, false);
    } else if (json_prompt.contains(JSON_STRING_PROMPT_KEY)) {
        // JSON object with prompt key.
        if (json_prompt.contains(JSON_MTMD_DATA_KEY)) {
            if (!has_mtmd)
                throw std::runtime_error("Multimodal data provided, but model does not support multimodal requests.");

            // JSON object with prompt and multimodal key.
            std::vector<raw_buffer> files;
            for (const auto & entry : json_prompt.at(JSON_MTMD_DATA_KEY)) {
                files.push_back(base64_decode(entry));
            }
            return process_mtmd_prompt(mctx, json_prompt.at(JSON_STRING_PROMPT_KEY), files);
        } else {
            // Not multimodal, but contains a subobject.
            llama_tokens tmp = tokenize_mixed(vocab, json_prompt.at(JSON_STRING_PROMPT_KEY), add_special, parse_special);
            return server_tokens(tmp, false);
        }
   } else {
       throw std::runtime_error("\"prompt\" elements must be a string, a list of tokens, a JSON object containing a prompt string, or a list of mixed strings & tokens.");
   }
}

std::vector<server_tokens> tokenize_input_prompts(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) {
    std::vector<server_tokens> result;
    if (json_prompt.is_array() && !json_is_array_and_contains_numbers(json_prompt)) {
        result.reserve(json_prompt.size());
        for (const auto & p : json_prompt) {
            result.push_back(tokenize_input_subprompt(vocab, mctx, p,add_special, parse_special));
        }
    } else {
        result.push_back(tokenize_input_subprompt(vocab, mctx, json_prompt, add_special, parse_special));
    }
    if (result.empty()) {
        throw std::runtime_error("\"prompt\" must not be empty");
    }
    return result;
}

//
// OAI utils
//

// used by /completions endpoint
json oaicompat_completion_params_parse(const json & body) {
    json llama_params;

    if (!body.contains("prompt")) {
        throw std::runtime_error("\"prompt\" is required");
    }

    // Handle "stop" field
    if (body.contains("stop") && body.at("stop").is_string()) {
        llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
    } else {
        llama_params["stop"] = json_value(body, "stop", json::array());
    }

    // Handle "echo" field
    if (json_value(body, "echo", false)) {
        throw std::runtime_error("Only no echo is supported");
    }

    // Params supported by OAI but unsupported by llama.cpp
    static const std::vector<std::string> unsupported_params { "best_of", "suffix" };
    for (const auto & param : unsupported_params) {
        if (body.contains(param)) {
            throw std::runtime_error("Unsupported param: " + param);
        }
    }

    // Copy remaining properties to llama_params
    for (const auto & item : body.items()) {
        // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
        if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
            llama_params[item.key()] = item.value();
        }
    }

    return llama_params;
}

// media_path always end with '/', see arg.cpp
static void handle_media(
        std::vector<raw_buffer> & out_files,
        json & media_obj,
        const std::string & media_path) {
    std::string url = json_value(media_obj, "url", std::string());
    if (string_starts_with(url, "http")) {
        // download remote image
        // TODO @ngxson : maybe make these params configurable
        common_remote_params params;
        params.headers.push_back("User-Agent: llama.cpp/" + build_info);
        params.max_size = 1024 * 1024 * 10; // 10MB
        params.timeout  = 10; // seconds
        SRV_INF("downloading image from '%s'\n", url.c_str());
        auto res = common_remote_get_content(url, params);
        if (200 <= res.first && res.first < 300) {
            SRV_INF("downloaded %zu bytes\n", res.second.size());
            raw_buffer data;
            data.insert(data.end(), res.second.begin(), res.second.end());
            out_files.push_back(data);
        } else {
            throw std::runtime_error("Failed to download image");
        }

    } else if (string_starts_with(url, "file://")) {
        if (media_path.empty()) {
            throw std::invalid_argument("file:// URLs are not allowed unless --media-path is specified");
        }
        // load local image file
        std::string file_path = url.substr(7); // remove "file://"
        raw_buffer data;
        if (!fs_validate_filename(file_path, true)) {
            throw std::invalid_argument("file path is not allowed: " + file_path);
        }
        SRV_INF("loading image from local file '%s'\n", (media_path + file_path).c_str());
        std::ifstream file(media_path + file_path, std::ios::binary);
        if (!file) {
            throw std::invalid_argument("file does not exist or cannot be opened: " + file_path);
        }
        data.assign((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
        out_files.push_back(data);

    } else {
        // try to decode base64 image
        std::vector<std::string> parts = string_split<std::string>(url, /*separator*/ ',');
        if (parts.size() != 2) {
            throw std::runtime_error("Invalid url value");
        } else if (!string_starts_with(parts[0], "data:image/")) {
            throw std::runtime_error("Invalid url format: " + parts[0]);
        } else if (!string_ends_with(parts[0], "base64")) {
            throw std::runtime_error("url must be base64 encoded");
        } else {
            auto base64_data = parts[1];
            auto decoded_data = base64_decode(base64_data);
            out_files.push_back(decoded_data);
        }
    }
}

// used by /chat/completions endpoint
json oaicompat_chat_params_parse(
    json & body, /* openai api json semantics */
    const oaicompat_parser_options & opt,
    std::vector<raw_buffer> & out_files)
{
    json llama_params;

    auto tools = json_value(body, "tools", json());
    auto has_tools = tools.is_array() && !tools.empty();
    auto stream = json_value(body, "stream", false);
    auto tool_choice = json_value(body, "tool_choice", std::string("auto"));

    if (!opt.use_jinja) {
        if (has_tools) {
            throw std::runtime_error("tools param requires --jinja flag");
        }
        if (tool_choice != "auto") {
            throw std::runtime_error("tool_choice param requires --jinja flag");
        }
    }

    // Handle "stop" field
    if (body.contains("stop") && body.at("stop").is_string()) {
        llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
    } else {
        llama_params["stop"] = json_value(body, "stop", json::array());
    }

    auto json_schema = json_value(body, "json_schema", json());
    auto grammar = json_value(body, "grammar", std::string());
    if (!json_schema.is_null() && !grammar.empty()) {
        throw std::runtime_error("Cannot use both json_schema and grammar");
    }

    // Handle "response_format" field
    if (body.contains("response_format")) {
        json response_format      = json_value(body, "response_format", json::object());
        std::string response_type = json_value(response_format, "type", std::string());
        if (response_type == "json_object") {
            json_schema = json_value(response_format, "schema", json::object());
        } else if (response_type == "json_schema") {
            auto schema_wrapper = json_value(response_format, "json_schema", json::object());
            json_schema = json_value(schema_wrapper, "schema", json::object());
        } else if (!response_type.empty() && response_type != "text") {
            throw std::invalid_argument("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
        }
    }

    // get input files
    if (!body.contains("messages")) {
        throw std::invalid_argument("'messages' is required");
    }
    json & messages = body.at("messages");
    if (!messages.is_array()) {
        throw std::invalid_argument("Expected 'messages' to be an array");
    }
    for (auto & msg : messages) {
        std::string role = json_value(msg, "role", std::string());
        if (role != "assistant" && !msg.contains("content")) {
            throw std::invalid_argument("All non-assistant messages must contain 'content'");
        }
        if (role == "assistant") {
            if (!msg.contains("content") && !msg.contains("tool_calls")) {
                throw std::invalid_argument("Assistant message must contain either 'content' or 'tool_calls'!");
            }
            if (!msg.contains("content")) {
                continue; // avoid errors with no content
            }
        }
        json & content = msg.at("content");
        if (content.is_string() || content.is_null()) {
            continue;
        }

        if (!content.is_array()) {
            throw std::invalid_argument("Expected 'content' to be a string or an array");
        }

        for (auto & p : content) {
            std::string type      = json_value(p, "type", std::string());
            if (type == "image_url") {
                if (!opt.allow_image) {
                    throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
                }

                json image_url = json_value(p, "image_url", json::object());
                handle_media(out_files, image_url, opt.media_path);

                // replace this chunk with a marker
                p["type"] = "text";
                p["text"] = mtmd_default_marker();
                p.erase("image_url");

            } else if (type == "input_audio") {
                if (!opt.allow_audio) {
                    throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
                }

                json input_audio   = json_value(p, "input_audio", json::object());
                std::string data   = json_value(input_audio, "data", std::string());
                std::string format = json_value(input_audio, "format", std::string());
                // while we also support flac, we don't allow it here so we matches the OAI spec
                if (format != "wav" && format != "mp3") {
                    throw std::invalid_argument("input_audio.format must be either 'wav' or 'mp3'");
                }
                auto decoded_data = base64_decode(data); // expected to be base64 encoded
                out_files.push_back(decoded_data);

                // TODO: add audio_url support by reusing handle_media()

                // replace this chunk with a marker
                p["type"] = "text";
                p["text"] = mtmd_default_marker();
                p.erase("input_audio");

            } else if (type != "text") {
                throw std::invalid_argument("unsupported content[].type");
            }
        }
    }

    common_chat_templates_inputs inputs;
    inputs.messages              = common_chat_msgs_parse_oaicompat(messages);
    inputs.tools                 = common_chat_tools_parse_oaicompat(tools);
    inputs.tool_choice           = common_chat_tool_choice_parse_oaicompat(tool_choice);
    inputs.json_schema           = json_schema.is_null() ? "" : json_schema.dump();
    inputs.grammar               = grammar;
    inputs.use_jinja             = opt.use_jinja;
    inputs.parallel_tool_calls   = json_value(body, "parallel_tool_calls", false);
    inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
    inputs.reasoning_format      = opt.reasoning_format;
    if (body.contains("reasoning_format")) {
        inputs.reasoning_format = common_reasoning_format_from_name(body.at("reasoning_format").get<std::string>());
    }
    inputs.enable_thinking       = opt.enable_thinking;
    if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
        if (body.contains("grammar")) {
            throw std::invalid_argument("Cannot use custom grammar constraints with tools.");
        }
        llama_params["parse_tool_calls"] = true;
    }

    // merge the template args provided from command line with the args provided in the user request
    auto chat_template_kwargs_object = json_value(body, "chat_template_kwargs", json::object());
    inputs.chat_template_kwargs = opt.chat_template_kwargs;
    for (const auto & item : chat_template_kwargs_object.items()) {
        inputs.chat_template_kwargs[item.key()] = item.value().dump();
    }

    // parse the "enable_thinking" kwarg to override the default value
    auto enable_thinking_kwarg = json_value(inputs.chat_template_kwargs, "enable_thinking", std::string(""));
    if (enable_thinking_kwarg == "true") {
        inputs.enable_thinking = true;
    } else if (enable_thinking_kwarg == "false") {
        inputs.enable_thinking = false;
    } else if (!enable_thinking_kwarg.empty() && enable_thinking_kwarg[0] == '"') {
        throw std::invalid_argument("invalid type for \"enable_thinking\" (expected boolean, got string)");
    }

    // if the assistant message appears at the end of list, we do not add end-of-turn token
    // for ex. this can be useful to modify the reasoning process in reasoning models
    bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant;
    common_chat_msg last_message;
    if (prefill_assistant_message) {
        last_message = inputs.messages.back();
        inputs.messages.pop_back();

        /* sanity check, max one assistant message at the end of the list */
        if (!inputs.messages.empty() && inputs.messages.back().role == "assistant"){
            throw std::invalid_argument("Cannot have 2 or more assistant messages at the end of the list.");
        }

        /* TODO: test this properly */
        inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE;

        if ( inputs.enable_thinking ) {
            throw std::invalid_argument("Assistant response prefill is incompatible with enable_thinking.");
        }

        inputs.add_generation_prompt = true;
    }

    // Apply chat template to the list of messages
    auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);

    /* Append assistant prefilled message */
    if (prefill_assistant_message) {
        if (!last_message.content_parts.empty()) {
            for (auto & p : last_message.content_parts) {
                chat_params.prompt += p.text;
            }
        } else {
            chat_params.prompt += last_message.content;
        }
    }

    llama_params["chat_format"]      = static_cast<int>(chat_params.format);
    llama_params["prompt"]           = chat_params.prompt;
    if (!chat_params.grammar.empty()) {
        llama_params["grammar"] = chat_params.grammar;
    }
    llama_params["grammar_lazy"]     = chat_params.grammar_lazy;
    auto grammar_triggers = json::array();
    for (const auto & trigger : chat_params.grammar_triggers) {
        server_grammar_trigger ct(trigger);
        grammar_triggers.push_back(ct.to_json());
    }
    llama_params["grammar_triggers"] = grammar_triggers;
    llama_params["preserved_tokens"] = chat_params.preserved_tokens;
    llama_params["thinking_forced_open"]     = chat_params.thinking_forced_open;
    for (const auto & stop : chat_params.additional_stops) {
        llama_params["stop"].push_back(stop);
    }
    if (!chat_params.parser.empty()) {
        llama_params["chat_parser"] = chat_params.parser;
    }

    // Handle "logprobs" field
    // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
    if (json_value(body, "logprobs", false)) {
        if (has_tools && stream) {
            throw std::invalid_argument("logprobs is not supported with tools + stream");
        }
        llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
    } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
        throw std::invalid_argument("top_logprobs requires logprobs to be set to true");
    }

    // Copy remaining properties to llama_params
    // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
    // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
    for (const auto & item : body.items()) {
        // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
        if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
            llama_params[item.key()] = item.value();
        }
    }

    return llama_params;
}

json convert_anthropic_to_oai(const json & body) {
    json oai_body;

    // Convert system prompt
    json oai_messages = json::array();
    auto system_param = json_value(body, "system", json());
    if (!system_param.is_null()) {
        std::string system_content;

        if (system_param.is_string()) {
            system_content = system_param.get<std::string>();
        } else if (system_param.is_array()) {
            for (const auto & block : system_param) {
                if (json_value(block, "type", std::string()) == "text") {
                    system_content += json_value(block, "text", std::string());
                }
            }
        }

        oai_messages.push_back({
            {"role", "system"},
            {"content", system_content}
        });
    }

    // Convert messages
    if (!body.contains("messages")) {
        throw std::runtime_error("'messages' is required");
    }
    const json & messages = body.at("messages");
    if (messages.is_array()) {
        for (const auto & msg : messages) {
            std::string role = json_value(msg, "role", std::string());

            if (!msg.contains("content")) {
                if (role == "assistant") {
                    continue;
                }
                oai_messages.push_back(msg);
                continue;
            }

            const json & content = msg.at("content");

            if (content.is_string()) {
                oai_messages.push_back(msg);
                continue;
            }

            if (!content.is_array()) {
                oai_messages.push_back(msg);
                continue;
            }

            json tool_calls = json::array();
            json converted_content = json::array();
            json tool_results = json::array();
            bool has_tool_calls = false;

            for (const auto & block : content) {
                std::string type = json_value(block, "type", std::string());

                if (type == "text") {
                    converted_content.push_back(block);
                } else if (type == "image") {
                    json source = json_value(block, "source", json::object());
                    std::string source_type = json_value(source, "type", std::string());

                    if (source_type == "base64") {
                        std::string media_type = json_value(source, "media_type", std::string("image/jpeg"));
                        std::string data = json_value(source, "data", std::string());
                        std::ostringstream ss;
                        ss << "data:" << media_type << ";base64," << data;

                        converted_content.push_back({
                            {"type", "image_url"},
                            {"image_url", {
                                {"url", ss.str()}
                            }}
                        });
                    } else if (source_type == "url") {
                        std::string url = json_value(source, "url", std::string());
                        converted_content.push_back({
                            {"type", "image_url"},
                            {"image_url", {
                                {"url", url}
                            }}
                        });
                    }
                } else if (type == "tool_use") {
                    tool_calls.push_back({
                        {"id", json_value(block, "id", std::string())},
                        {"type", "function"},
                        {"function", {
                            {"name", json_value(block, "name", std::string())},
                            {"arguments", json_value(block, "input", json::object()).dump()}
                        }}
                    });
                    has_tool_calls = true;
                } else if (type == "tool_result") {
                    std::string tool_use_id = json_value(block, "tool_use_id", std::string());

                    auto result_content = json_value(block, "content", json());
                    std::string result_text;
                    if (result_content.is_string()) {
                        result_text = result_content.get<std::string>();
                    } else if (result_content.is_array()) {
                        for (const auto & c : result_content) {
                            if (json_value(c, "type", std::string()) == "text") {
                                result_text += json_value(c, "text", std::string());
                            }
                        }
                    }

                    tool_results.push_back({
                        {"role", "tool"},
                        {"tool_call_id", tool_use_id},
                        {"content", result_text}
                    });
                }
            }

            if (!converted_content.empty() || has_tool_calls) {
                json new_msg = {{"role", role}};
                if (!converted_content.empty()) {
                    new_msg["content"] = converted_content;
                } else if (has_tool_calls) {
                    new_msg["content"] = "";
                }
                if (!tool_calls.empty()) {
                    new_msg["tool_calls"] = tool_calls;
                }
                oai_messages.push_back(new_msg);
            }

            for (const auto & tool_msg : tool_results) {
                oai_messages.push_back(tool_msg);
            }
        }
    }

    oai_body["messages"] = oai_messages;

    // Convert tools
    if (body.contains("tools")) {
        const json & tools = body.at("tools");
        if (tools.is_array()) {
            json oai_tools = json::array();
            for (const auto & tool : tools) {
                oai_tools.push_back({
                    {"type", "function"},
                    {"function", {
                        {"name", json_value(tool, "name", std::string())},
                        {"description", json_value(tool, "description", std::string())},
                        {"parameters", tool.contains("input_schema") ? tool.at("input_schema") : json::object()}
                    }}
                });
            }
            oai_body["tools"] = oai_tools;
        }
    }

    // Convert tool_choice
    if (body.contains("tool_choice")) {
        const json & tc = body.at("tool_choice");
        if (tc.is_object()) {
            std::string type = json_value(tc, "type", std::string());
            if (type == "auto") {
                oai_body["tool_choice"] = "auto";
            } else if (type == "any" || type == "tool") {
                oai_body["tool_choice"] = "required";
            }
        }
    }

    // Convert stop_sequences to stop
    if (body.contains("stop_sequences")) {
        oai_body["stop"] = body.at("stop_sequences");
    }

    // Handle max_tokens (required in Anthropic, but we're permissive)
    if (body.contains("max_tokens")) {
        oai_body["max_tokens"] = body.at("max_tokens");
    } else {
        oai_body["max_tokens"] = 4096;
    }

    // Pass through common params
    for (const auto & key : {"temperature", "top_p", "top_k", "stream"}) {
        if (body.contains(key)) {
            oai_body[key] = body.at(key);
        }
    }

    // Handle Anthropic-specific thinking param
    if (body.contains("thinking")) {
        json thinking = json_value(body, "thinking", json::object());
        std::string thinking_type = json_value(thinking, "type", std::string());
        if (thinking_type == "enabled") {
            int budget_tokens = json_value(thinking, "budget_tokens", 10000);
            oai_body["thinking_budget_tokens"] = budget_tokens;
        }
    }

    // Handle Anthropic-specific metadata param
    if (body.contains("metadata")) {
        json metadata = json_value(body, "metadata", json::object());
        std::string user_id = json_value(metadata, "user_id", std::string());
        if (!user_id.empty()) {
            oai_body["__metadata_user_id"] = user_id;
        }
    }

    return oai_body;
}

json format_embeddings_response_oaicompat(
        const json & request,
        const std::string & model_name,
        const json & embeddings,
        bool use_base64) {
    json data = json::array();
    int32_t n_tokens = 0;
    int i = 0;
    for (const auto & elem : embeddings) {
        json embedding_obj;

        if (use_base64) {
            const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
            const char* data_ptr = reinterpret_cast<const char*>(vec.data());
            size_t data_size = vec.size() * sizeof(float);
            embedding_obj = {
                {"embedding", base64::encode(data_ptr, data_size)},
                {"index", i++},
                {"object", "embedding"},
                {"encoding_format", "base64"}
            };
        } else {
            embedding_obj = {
                {"embedding", json_value(elem, "embedding", json::array())},
                {"index", i++},
                {"object", "embedding"}
            };
        }
        data.push_back(embedding_obj);

        n_tokens += json_value(elem, "tokens_evaluated", 0);
    }

    json res = json {
        {"model", json_value(request, "model", model_name)},
        {"object", "list"},
        {"usage", json {
            {"prompt_tokens", n_tokens},
            {"total_tokens", n_tokens}
        }},
        {"data", data}
    };

    return res;
}

json format_response_rerank(
        const json & request,
        const std::string & model_name,
        const json & ranks,
        bool is_tei_format,
        std::vector<std::string> & texts,
        int top_n) {
    int32_t n_tokens = 0;
    bool return_text = is_tei_format && json_value(request, "return_text", false);
    std::vector<json> elements; // Temporary vector to hold unsorted elements
    std::string score_label = is_tei_format ? "score" : "relevance_score";
    for (const auto & rank : ranks) {
        int index = json_value(rank, "index", 0);
        json elem = json{
            {"index", index},
            {score_label, json_value(rank, "score", 0.0)},
        };
        n_tokens += json_value(rank, "tokens_evaluated", 0);
        if (return_text) {
            elem["text"] = std::move(texts[index]);
        }
        elements.push_back(elem);
    }

    std::sort(elements.begin(), elements.end(), [score_label](const json& a, const json& b) {
        return json_value(a, score_label, 0.0) > json_value(b, score_label, 0.0);
    });

    elements.resize(std::min(top_n, (int)elements.size()));
    json results = elements;

    if (is_tei_format) return results;

    json res = json{
        {"model", json_value(request, "model", model_name)},
        {"object", "list"},
        {"usage", json{
            {"prompt_tokens", n_tokens},
            {"total_tokens", n_tokens}
        }},
        {"results", results}
    };

    return res;
}


//
// other utils
//

std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
    std::vector<llama_token_data> cur;
    const auto * logits = llama_get_logits_ith(ctx, idx);

    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);

    const int n_vocab = llama_vocab_n_tokens(vocab);

    cur.resize(n_vocab);
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
        cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
    }

    // sort tokens by logits
    std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
        return a.logit > b.logit;
    });

    // apply softmax
    float max_l = cur[0].logit;
    float cum_sum = 0.0f;
    for (size_t i = 0; i < cur.size(); ++i) {
        float p = expf(cur[i].logit - max_l);
        cur[i].p = p;
        cum_sum += p;
    }
    for (size_t i = 0; i < cur.size(); ++i) {
        cur[i].p /= cum_sum;
    }

    return cur;
}

std::string safe_json_to_str(const json & data) {
    return data.dump(-1, ' ', false, json::error_handler_t::replace);
}

// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(const llama_vocab * ctx, Iter begin, Iter end) {
    std::string ret;
    for (; begin != end; ++begin) {
        ret += common_token_to_piece(ctx, *begin);
    }

    return ret;
}

std::string tokens_to_str(llama_context * ctx, const llama_tokens & tokens) {
    auto model = llama_get_model(ctx);
    return tokens_to_str(llama_model_get_vocab(model), tokens.begin(), tokens.end());
}

std::string tokens_to_str(const llama_vocab * vocab, const llama_tokens & tokens) {
    return tokens_to_str(vocab, tokens.begin(), tokens.end());
}

// format incomplete utf-8 multibyte character for output
std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
    std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);

    // if the size is 1 and first bit is 1, meaning it's a partial character
    //   (size > 1 meaning it's already a known token)
    if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
        std::stringstream ss;
        ss << std::hex << (out[0] & 0xff);
        std::string res(ss.str());
        out = "byte: \\x" + res;
    }

    return out;
}

// format server-sent event (SSE), return the formatted string to send
// note: if data is a json array, it will be sent as multiple events, one per item
std::string format_oai_sse(const json & data) {
    std::ostringstream ss;
    auto send_single = [&ss](const json & data) {
        ss << "data: " <<
            safe_json_to_str(data) <<
            "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
    };

    if (data.is_array()) {
        for (const auto & item : data) {
            send_single(item);
        }
    } else {
        send_single(data);
    }

    return ss.str();
}

std::string format_anthropic_sse(const json & data) {
    std::ostringstream ss;

    auto send_event = [&ss](const json & event_obj) {
        if (event_obj.contains("event") && event_obj.contains("data")) {
            ss << "event: " << event_obj.at("event").get<std::string>() << "\n";
            ss << "data: " << safe_json_to_str(event_obj.at("data")) << "\n\n";
        } else {
            ss << "data: " << safe_json_to_str(event_obj) << "\n\n";
        }
    };

    if (data.is_array()) {
        for (const auto & event : data) {
            send_event(event);
        }
    } else {
        send_event(data);
    }

    return ss.str();
}

bool is_valid_utf8(const std::string & str) {
    const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
    const unsigned char* end = bytes + str.length();

    while (bytes < end) {
        if (*bytes <= 0x7F) {
            // 1-byte sequence (0xxxxxxx)
            bytes++;
        } else if ((*bytes & 0xE0) == 0xC0) {
            // 2-byte sequence (110xxxxx 10xxxxxx)
            if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
                return false;
            bytes += 2;
        } else if ((*bytes & 0xF0) == 0xE0) {
            // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
            if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
                return false;
            bytes += 3;
        } else if ((*bytes & 0xF8) == 0xF0) {
            // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
            if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
                (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
                return false;
            bytes += 4;
        } else {
            // Invalid UTF-8 lead byte
            return false;
        }
    }

    return true;
}

llama_tokens format_prompt_infill(
        const llama_vocab * vocab,
        const json & input_prefix,
        const json & input_suffix,
        const json & input_extra,
        const int n_batch,
        const int n_predict,
        const int n_ctx,
        const bool spm_infill,
        const llama_tokens & tokens_prompt
    ) {
    // TODO: optimize this block by reducing memory allocations and movement

    // use FIM repo-level pattern:
    // ref: https://arxiv.org/pdf/2409.12186
    //
    // [FIM_REP]myproject
    // [FIM_SEP]filename0
    // extra chunk 0
    // [FIM_SEP]filename1
    // extra chunk 1
    // ...
    // [FIM_SEP]filename
    // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
    //
    llama_tokens extra_tokens;
    extra_tokens.reserve(n_ctx);

    auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
    auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);

    if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
        // TODO: make project name an input
        static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);

        extra_tokens.push_back(llama_vocab_fim_rep(vocab));
        extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
    }
    for (const auto & chunk : input_extra) {
        // { "text": string, "filename": string }
        const std::string text     = json_value(chunk, "text",     std::string());
        const std::string filename = json_value(chunk, "filename", std::string("tmp"));

        if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
            const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);

            extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
            extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
        } else {
            // chunk separator in binary form to avoid confusing the AI
            static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
            static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);

            extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
        }

        const auto chunk_tokens = common_tokenize(vocab, text, false, false);
        extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
    }

    if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
        // TODO: current filename
        static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);

        extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
        extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
    }

    // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
    const int n_prefix_take = std::min<int>(tokens_prefix.size(),                3*(n_batch/4));
    const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));

    SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));

    // fill the rest of the context with extra chunks
    const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());

    tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
    tokens_suffix.resize(n_suffix_take);

    tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
    tokens_prefix.insert(tokens_prefix.end(),   tokens_prompt.begin(), tokens_prompt.end());
    tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));

    auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
    auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;

    if (llama_vocab_get_add_bos(vocab)) {
        embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
    }

    SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());

    // put the extra context before the FIM prefix
    embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());

    embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
    embd_inp.push_back(llama_vocab_fim_mid(vocab));

    return embd_inp;
}

server_tokens format_prompt_rerank(
        const struct llama_model * model,
        const struct llama_vocab * vocab,
        mtmd_context * mctx,
        const std::string & query,
        const std::string & doc) {
    server_tokens result = {};

    const char * rerank_prompt = llama_model_chat_template(model, "rerank");

    if (rerank_prompt != nullptr) {
        std::string prompt = rerank_prompt;
        string_replace_all(prompt, "{query}"   , query);
        string_replace_all(prompt, "{document}", doc  );
        server_tokens tokens = tokenize_input_subprompt(vocab, mctx, prompt, false, true);
        result.push_back(tokens);
    } else {
        // Get EOS token - use SEP token as fallback if EOS is not available
        server_tokens query_tokens = tokenize_input_subprompt(vocab, mctx, query, false, false);
        server_tokens doc_tokens   = tokenize_input_subprompt(vocab, mctx, doc,   false, false);
        llama_token eos_token = llama_vocab_eos(vocab);
        if (eos_token == LLAMA_TOKEN_NULL) {
            eos_token = llama_vocab_sep(vocab);
        }

        if (llama_vocab_get_add_bos(vocab)) {
            result.push_back(llama_vocab_bos(vocab));
        }
        result.push_back(query_tokens);
        if (llama_vocab_get_add_eos(vocab)) {
            result.push_back(eos_token);
        }
        if (llama_vocab_get_add_sep(vocab)) {
            result.push_back(llama_vocab_sep(vocab));
        }
        result.push_back(doc_tokens);
        if (llama_vocab_get_add_eos(vocab)) {
            result.push_back(eos_token);
        }
    }

    return result;
}