1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
#pragma once
#include "common.h"
#include "log.h"
#include "llama.h"
#include "chat.h"
#include "mtmd.h"
#define JSON_ASSERT GGML_ASSERT
#include <nlohmann/json.hpp>
#include <string>
#include <vector>
#include <cinttypes>
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
using json = nlohmann::ordered_json;
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_CNT(slot, fmt, ...) LOG_CNT("" fmt, __VA_ARGS__)
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_CNT(fmt, ...) LOG_CNT("" fmt, __VA_ARGS__)
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
using raw_buffer = std::vector<uint8_t>;
template <typename T>
static T json_value(const json & body, const std::string & key, const T & default_value) {
// Fallback null to default value
if (body.contains(key) && !body.at(key).is_null()) {
try {
return body.at(key);
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const & err) {
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value: %s\n", key.c_str(), json(default_value).type_name(), err.what());
return default_value;
}
} else {
return default_value;
}
}
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
enum error_type {
ERROR_TYPE_INVALID_REQUEST,
ERROR_TYPE_AUTHENTICATION,
ERROR_TYPE_SERVER,
ERROR_TYPE_NOT_FOUND,
ERROR_TYPE_PERMISSION,
ERROR_TYPE_UNAVAILABLE, // custom error
ERROR_TYPE_NOT_SUPPORTED, // custom error
ERROR_TYPE_EXCEED_CONTEXT_SIZE, // custom error
};
// thin wrapper around common_grammar_trigger with (de)serialization functions
struct server_grammar_trigger {
common_grammar_trigger value;
server_grammar_trigger() = default;
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
server_grammar_trigger(const json & in) {
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
value.value = in.at("value").get<std::string>();
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
value.token = (llama_token) in.at("token").get<int>();
}
}
json to_json() const {
json out {
{"type", (int) value.type},
{"value", value.value},
};
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) value.token;
}
return out;
}
};
json format_error_response(const std::string & message, const enum error_type type);
//
// random string / id
//
std::string random_string();
std::string gen_chatcmplid();
std::string gen_tool_call_id();
//
// lora utils
//
// check whether the given lora set has only aloras activated (empty => false)
bool lora_all_alora(const std::vector<common_adapter_lora_info> & loras);
// if the two sets of loras are different, they require a cache clear unless the
// change is only from aloras to aloras.
bool lora_should_clear_cache(
const std::vector<common_adapter_lora_info> & current,
const std::vector<common_adapter_lora_info> & next);
std::map<int, float> parse_lora_request(const json & data);
bool are_lora_equal(
const std::vector<common_adapter_lora_info> & l1,
const std::vector<common_adapter_lora_info> & l2);
// get the ids of all enabled loras
std::vector<size_t> lora_get_enabled_ids(const std::vector<common_adapter_lora_info> & loras);
//
// server_tokens
//
/**
* server_tokens is a helper to manage the input tokens and image for the server.
* it is made this way to simplify the logic of KV cache management.
*/
struct server_tokens {
bool has_mtmd = false;
private: // disallow accessing these members directly, risking out-of-sync
// map a **start** index in tokens to the image chunk
// note: the order need to be in-sync with tokens
std::map<size_t, mtmd::input_chunk_ptr> map_idx_to_media;
// list of tokens
// if the token is LLAMA_TOKEN_NULL, it indicates that this position is occupied by media chunk
// otherwise, it is a normal text token
// note: a non-text chunk can occupy multiple tokens (aka memory cells) in the token list
// note(2): for M-RoPE, an image can occupy different number of pos; do not assume 1-to-1 mapping tokens <-> pos
llama_tokens tokens;
// for ex. with input of 5 text tokens and 2 images (each image occupies 3 tokens and 2 pos):
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] [img1]
// idx 0 1 2 3 4 5 6 7 8 9 10
// pos 0 1 2 3 4 5 5 5 7 7 7
// map_idx_to_media will contain: {5, img0}, {8, img1}
public:
server_tokens() = default;
~server_tokens() = default;
// Prevent copying
// TODO: server_tokens should be copyable - remove this:
server_tokens(const server_tokens&) = delete;
server_tokens& operator=(const server_tokens&) = delete;
// Allow moving (usually implicitly generated if members are movable)
server_tokens(server_tokens&&) = default;
server_tokens& operator=(server_tokens&&) = default;
// Allow accessing elements using [] operator
llama_token operator[](size_t index) { return tokens[index]; }
const llama_token& operator[](size_t index) const { return tokens[index]; }
server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd);
server_tokens(const llama_tokens & tokens, bool has_mtmd);
// for debugging
std::string str() const;
llama_pos pos_next() const;
const mtmd::input_chunk_ptr & find_chunk(size_t idx) const;
void push_back(llama_token tok);
// will create a copy of the chunk if it contains non-text data
void push_back(const mtmd_input_chunk * chunk);
// appends server tokens, updates the media map. copies media chunks.
void push_back(server_tokens & tokens);
// for compatibility with context shift and prompt truncation
void insert(const llama_tokens & inp_tokens);
// for compatibility with speculative decoding, ctx shift, slot save/load
const llama_tokens & get_text_tokens() const;
// for compatibility with speculative decoding
void set_token(llama_pos pos, llama_token id);
size_t size() const { return tokens.size(); }
bool empty() const { return tokens.empty(); }
void clear() {
map_idx_to_media.clear();
tokens.clear();
}
void keep_first(size_t n);
std::string detokenize(const llama_context * ctx, bool special) const;
size_t get_common_prefix(const server_tokens & b) const;
// make sure all text tokens are within the vocab range
bool validate(const struct llama_context * ctx) const;
// encode and decode the image chunk
int32_t process_chunk(
llama_context * ctx,
mtmd_context * mctx,
size_t idx,
llama_pos pos,
int32_t seq_id,
size_t & n_tokens_out) const;
server_tokens clone() const;
};
//
// tokenizer and input processing utils
//
bool json_is_array_of_numbers(const json & data);
// is array having BOTH numbers & strings?
bool json_is_array_of_mixed_numbers_strings(const json & data);
// does array have any individual integers/tokens?
bool json_is_array_and_contains_numbers(const json & data);
// get value by path(key1 / key2)
json json_get_nested_values(const std::vector<std::string> & paths, const json & js);
/**
* this handles 2 cases:
* - only string, example: "string"
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
*/
llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special);
// return the last index of character that can form a valid string
// if the last character is potentially cut in half, return the index before the cut
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
size_t validate_utf8(const std::string& text);
// process mtmd prompt, return the server_tokens containing both text tokens and media chunks
server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files);
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56], { "prompt_string": "string", "multimodal_data": [ "base64" ]}]
*/
std::vector<server_tokens> tokenize_input_prompts(
const llama_vocab * vocab,
mtmd_context * mctx,
const json & json_prompt,
bool add_special,
bool parse_special);
//
// OAI utils
//
// used by /completions endpoint
json oaicompat_completion_params_parse(const json & body);
struct oaicompat_parser_options {
bool use_jinja;
bool prefill_assistant;
common_reasoning_format reasoning_format;
std::map<std::string,std::string> chat_template_kwargs;
common_chat_templates * tmpls;
bool allow_image;
bool allow_audio;
bool enable_thinking = true;
std::string media_path;
};
// used by /chat/completions endpoint
json oaicompat_chat_params_parse(
json & body, /* openai api json semantics */
const oaicompat_parser_options & opt,
std::vector<raw_buffer> & out_files);
// convert Anthropic Messages API format to OpenAI Chat Completions API format
json convert_anthropic_to_oai(const json & body);
// TODO: move it to server-task.cpp
json format_embeddings_response_oaicompat(
const json & request,
const std::string & model_name,
const json & embeddings,
bool use_base64 = false);
// TODO: move it to server-task.cpp
json format_response_rerank(
const json & request,
const std::string & model_name,
const json & ranks,
bool is_tei_format,
std::vector<std::string> & texts,
int top_n);
//
// other utils
//
std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx);
std::string safe_json_to_str(const json & data);
std::string tokens_to_str(llama_context * ctx, const llama_tokens & tokens);
std::string tokens_to_str(const llama_vocab * vocab, const llama_tokens & tokens);
// format incomplete utf-8 multibyte character for output
std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token);
// format server-sent event (SSE), return the formatted string to send
// note: if data is a json array, it will be sent as multiple events, one per item
std::string format_oai_sse(const json & data);
// format Anthropic-style SSE with event types
std::string format_anthropic_sse(const json & data);
bool is_valid_utf8(const std::string & str);
//
// formatting output responses
// TODO: move these to server-task.cpp
//
llama_tokens format_prompt_infill(
const llama_vocab * vocab,
const json & input_prefix,
const json & input_suffix,
const json & input_extra,
const int n_batch,
const int n_predict,
const int n_ctx,
const bool spm_infill,
const llama_tokens & tokens_prompt);
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
server_tokens format_prompt_rerank(
const struct llama_model * model,
const struct llama_vocab * vocab,
mtmd_context * mctx,
const std::string & query,
const std::string & doc);
|