File: server-context.cpp

package info (click to toggle)
llama.cpp 7593%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 71,012 kB
  • sloc: cpp: 329,391; ansic: 48,249; python: 32,103; lisp: 10,053; sh: 6,070; objc: 1,349; javascript: 924; xml: 384; makefile: 233
file content (3982 lines) | stat: -rw-r--r-- 162,686 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
#include "server-context.h"
#include "server-common.h"
#include "server-http.h"
#include "server-task.h"
#include "server-queue.h"

#include "arg.h"
#include "common.h"
#include "llama.h"
#include "log.h"
#include "sampling.h"
#include "speculative.h"
#include "mtmd.h"
#include "mtmd-helper.h"

#include <cstddef>
#include <cinttypes>
#include <memory>
#include <unordered_set>
#include <filesystem>

// fix problem with std::min and std::max
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <windows.h>
#endif

using json = nlohmann::ordered_json;

constexpr int HTTP_POLLING_SECONDS = 1;

// state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
enum slot_state {
    SLOT_STATE_IDLE,
    SLOT_STATE_WAIT_OTHER, // after assigning a task, but waiting for parent slot to process prompt
    SLOT_STATE_STARTED,    // after assigning a task and about to process prompt
    SLOT_STATE_PROCESSING_PROMPT,
    SLOT_STATE_DONE_PROMPT,
    SLOT_STATE_GENERATING,
};

enum server_state {
    SERVER_STATE_LOADING_MODEL,  // Server is starting up, model not fully loaded yet
    SERVER_STATE_READY,          // Server is ready and model is loaded
};

static bool server_task_type_need_embd(server_task_type task_type) {
    switch (task_type) {
        case SERVER_TASK_TYPE_EMBEDDING:
        case SERVER_TASK_TYPE_RERANK:
            return true;
        default:
            return false;
    }
}

static bool server_task_type_need_logits(server_task_type task_type) {
    switch (task_type) {
        case SERVER_TASK_TYPE_COMPLETION:
        case SERVER_TASK_TYPE_INFILL:
            return true;
        default:
            return false;
    }
}

struct server_slot {
    int id;

    llama_batch batch_spec = {};

    // TODO: change to unique_ptrs for consistency:
    llama_context * ctx = nullptr;
    llama_context * ctx_dft = nullptr;

    // multimodal
    mtmd_context * mctx = nullptr;

    common_speculative * spec = nullptr;

    std::unique_ptr<const server_task> task;
    std::unique_ptr<const server_task> task_prev; // used for debugging

    // used to determine the slot that has been used the longest
    int64_t t_last_used = -1;

    // generation props
    int32_t n_ctx       = 0;  // context size per slot
    int32_t n_keep      = 0;
    int32_t n_decoded   = 0;
    int32_t n_remaining = -1;
    int32_t i_batch     = -1;

    int32_t n_prompt_tokens_cache     = 0;
    int32_t n_prompt_tokens_processed = 0;

    size_t last_nl_pos = 0;

    std::string  generated_text;
    llama_tokens generated_tokens;

    // idx of draft tokens in the main batch
    // non-empty if we went to evaluate draft tokens
    // ref: https://github.com/ggml-org/llama.cpp/pull/17808
    std::vector<int32_t> i_batch_dft;

    std::vector<completion_token_output> generated_token_probs;

    bool has_next_token = true;
    bool has_new_line   = false;
    bool truncated      = false;

    stop_type stop;

    std::string stopping_word;

    // state
    slot_state state = SLOT_STATE_IDLE;

    server_prompt prompt;

    void prompt_save(server_prompt_cache & prompt_cache) const {
        GGML_ASSERT(prompt.data.size() == 0);

        const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0);

        SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n",
                (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0));

        auto * cur = prompt_cache.alloc(prompt, cur_size);
        if (cur == nullptr) {
            return;
        }

        llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0);
    }

    bool prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) {
        bool res = prompt_cache.load(prompt, tokens, ctx, id);
        if (!res) {
            SLT_WRN(*this, "%s", "failed to load prompt from cache\n");
        }

        return res;
    }

    std::vector<common_adapter_lora_info> lora;
    int32_t alora_invocation_start = -1;

    // sampling
    json json_schema;

    common_sampler_ptr smpl;

    llama_token sampled; // in speculative mode, this is the last accepted token
    llama_tokens drafted;

    // stats
    size_t n_sent_text = 0; // number of sent text character

    int64_t t_start_process_prompt;
    int64_t t_start_generation;

    double t_prompt_processing; // ms
    double t_token_generation;  // ms

    std::function<void(int)> callback_on_release;

    // Speculative decoding stats
    int32_t n_draft_total = 0;      // Total draft tokens generated
    int32_t n_draft_accepted = 0;   // Draft tokens actually accepted

    void reset() {
        SLT_DBG(*this, "%s", "\n");

        n_prompt_tokens_cache = 0;

        last_nl_pos    = 0;
        generated_text = "";
        has_new_line   = false;
        truncated      = false;
        stop           = STOP_TYPE_NONE;
        stopping_word  = "";
        n_sent_text    = 0;

        drafted.clear();
        i_batch_dft.clear();
        generated_tokens.clear();
        generated_token_probs.clear();
        json_schema = json();

        // clear speculative decoding stats
        n_draft_total = 0;
        n_draft_accepted = 0;

        task.reset();
        task_prev.reset();

        // clear alora start
        alora_invocation_start = -1;
    }

    bool need_embd() const {
        GGML_ASSERT(task);

        return server_task_type_need_embd(task->type);
    }

    bool need_logits() const {
        GGML_ASSERT(task);

        return server_task_type_need_logits(task->type);
    }

    // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
    // also we cannot split if the pooling would require any past tokens
    bool can_split() const {
        return
            !need_embd() ||
            (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
    }

    bool can_batch_with(server_slot & other_slot) const {
        GGML_ASSERT(task);

        return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora);
    }

    bool has_budget(const common_params & global_params) {
        GGML_ASSERT(task);

        if (task->params.n_predict == -1 && global_params.n_predict == -1) {
            return true; // limitless
        }

        n_remaining = -1;

        if (task->params.n_predict != -1) {
            n_remaining = task->params.n_predict - n_decoded;
        } else if (global_params.n_predict != -1) {
            n_remaining = global_params.n_predict - n_decoded;
        }

        return n_remaining > 0; // no budget
    }

    bool is_processing() const {
        return state != SLOT_STATE_IDLE;
    }

    bool can_speculate() const {
        return ctx_dft;
    }

    void add_token(const completion_token_output & token) {
        if (!is_processing()) {
            SLT_WRN(*this, "%s", "slot is not processing\n");
            return;
        }
        generated_token_probs.push_back(token);
    }

    int get_n_draft_max() const {
        if (!can_speculate()) {
            return 0;
        }

        // determine the max draft that fits the current slot state
        int n_draft_max = task->params.speculative.n_max;

        // note: slot.prompt is not yet expanded with the `id` token sampled above
        //       also, need to leave space for 1 extra token to allow context shifts
        n_draft_max = std::min(n_draft_max, n_ctx - prompt.n_tokens() - 2);

        if (n_remaining > 0) {
            n_draft_max = std::min(n_draft_max, n_remaining - 1);
        }

        SLT_DBG(*this, "max possible draft: %d\n", n_draft_max);

        if (n_draft_max < task->params.speculative.n_min) {
            SLT_DBG(*this, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, task->params.speculative.n_min);
            n_draft_max = 0;
        }
        return n_draft_max;
    }

    // note: a slot can also be either a parent or a child
    bool is_parent() const {
        return is_processing() && task->n_children > 0;
    }

    bool is_child() const {
        return is_processing() && task->id_parent >= 0;
    }

    void release() {
        if (is_processing()) {
            GGML_ASSERT(task);

            SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated);

            t_last_used = ggml_time_us();
            t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
            state = SLOT_STATE_IDLE;

            task_prev = std::move(task);
            task.reset();

            callback_on_release(id);
        }
    }

    result_timings get_timings() const {
        result_timings timings;
        timings.cache_n = n_prompt_tokens_cache;

        timings.prompt_n            = n_prompt_tokens_processed;
        timings.prompt_ms           = t_prompt_processing;
        timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
        timings.prompt_per_second   = 1e3 / t_prompt_processing * n_prompt_tokens_processed;

        timings.predicted_n            = n_decoded;
        timings.predicted_ms           = t_token_generation;
        timings.predicted_per_token_ms = t_token_generation / n_decoded;
        timings.predicted_per_second   = 1e3 / t_token_generation * n_decoded;

        // Add speculative metrics
        if (n_draft_total > 0) {
            timings.draft_n          = n_draft_total;
            timings.draft_n_accepted = n_draft_accepted;
        }

        return timings;
    }

    size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
        GGML_ASSERT(task);

        size_t stop_pos = std::string::npos;

        for (const std::string & word : task->params.antiprompt) {
            size_t pos;

            if (is_full_stop) {
                const size_t tmp      = word.size() + last_token_size;
                const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;

                pos = text.find(word, from_pos);
            } else {
                // otherwise, partial stop
                pos = string_find_partial_stop(text, word);
            }

            if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
                if (is_full_stop) {
                    stop           = STOP_TYPE_WORD;
                    stopping_word  = word;
                    has_next_token = false;
                }
                stop_pos = pos;
            }
        }

        return stop_pos;
    }

    void print_timings() const {
        const double t_prompt        =       t_prompt_processing / n_prompt_tokens_processed;
        const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;

        const double t_gen        =       t_token_generation / n_decoded;
        const double n_gen_second = 1e3 / t_token_generation * n_decoded;

        SLT_INF(*this,
                "\n"
                "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
                "       eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
                "      total time = %10.2f ms / %5d tokens\n",
                t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
                t_token_generation, n_decoded, t_gen, n_gen_second,
                t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);

        if (n_draft_total > 0) {
            const float draft_ratio = (float) n_draft_accepted / n_draft_total;
            SLT_CNT(*this,
                    "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
                    draft_ratio, n_draft_accepted, n_draft_total
            );
        }
    }

    json to_json(bool only_metrics = false) const {
        json res;

        res = {
            {"id",            id},
            {"n_ctx",         n_ctx},
            {"speculative",   can_speculate()},
            {"is_processing", is_processing()},
        };

        const auto & ptask = task ? task : task_prev;

        if (ptask) {
            res["id_task"] = ptask->id;
            res["params"] = ptask->params.to_json(only_metrics);
            res["next_token"] = {
                {
                    {"has_next_token", has_next_token},
                    {"has_new_line",   has_new_line},
                    {"n_remain",       n_remaining},
                    {"n_decoded",      n_decoded},
                }
            };

            if (!only_metrics) {
                res["prompt"] = ptask->tokens.detokenize(ctx, true);
                res["generated"] = generated_text;
            }
        }

        return res;
    }

    void copy_state_to(server_slot & other) const {
        llama_memory_seq_rm(llama_get_memory(ctx), other.id, 0, -1);
        llama_memory_seq_cp(llama_get_memory(ctx), id, other.id, 0, -1);
        other.n_decoded   = n_decoded;
        other.n_remaining = n_remaining;
        other.i_batch     = i_batch;
        other.n_prompt_tokens_cache     = n_prompt_tokens_cache;
        other.n_prompt_tokens_processed = n_prompt_tokens_processed;
        other.prompt = prompt.clone();
    }
};



//
// server_metrics
//

struct server_metrics {
    int64_t t_start = 0;

    uint64_t n_prompt_tokens_processed_total = 0;
    uint64_t t_prompt_processing_total       = 0;
    uint64_t n_tokens_predicted_total        = 0;
    uint64_t t_tokens_generation_total       = 0;

    uint64_t n_tokens_max = 0;

    uint64_t n_prompt_tokens_processed = 0;
    uint64_t t_prompt_processing       = 0;

    uint64_t n_tokens_predicted  = 0;
    uint64_t t_tokens_generation = 0;

    uint64_t n_decode_total     = 0;
    uint64_t n_busy_slots_total = 0;

    void init() {
        t_start = ggml_time_us();
    }

    void on_prompt_eval(const server_slot & slot) {
        n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
        n_prompt_tokens_processed       += slot.n_prompt_tokens_processed;
        t_prompt_processing             += slot.t_prompt_processing;
        t_prompt_processing_total       += slot.t_prompt_processing;

        n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
    }

    void on_prediction(const server_slot & slot) {
        n_tokens_predicted_total   += slot.n_decoded;
        n_tokens_predicted         += slot.n_decoded;
        t_tokens_generation        += slot.t_token_generation;
        t_tokens_generation_total  += slot.t_token_generation;
    }

    void on_decoded(const std::vector<server_slot> & slots) {
        n_decode_total++;
        for (const auto & slot : slots) {
            if (slot.is_processing()) {
                n_busy_slots_total++;
            }
            n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
        }
    }

    void reset_bucket() {
        n_prompt_tokens_processed = 0;
        t_prompt_processing       = 0;
        n_tokens_predicted        = 0;
        t_tokens_generation       = 0;
    }
};


//
// server_context_impl (private implementation)
//

struct server_context_impl {
    friend struct server_context;

public:
    // only use these pointers outside of this class:
    //  - when not in sleeping state
    //  - and, with thread-safe APIs (e.g., tokenizer calls)
    llama_model * model = nullptr;
    mtmd_context * mctx = nullptr;
    const llama_vocab * vocab = nullptr;

    server_queue    queue_tasks;
    server_response queue_results;

    common_chat_templates_ptr chat_templates;
    oaicompat_parser_options  oai_parser_opt;

    ~server_context_impl() {
        if (!sleeping) {
            // destroy() is already called when entering sleeping state
            // we don't call it again here to avoid double free
            destroy();
        }
    }

private:
    // note: accessing these fields outside of this class is not thread-safe
    // use server_context methods instead

    common_params params_base;

    // note: keep these alive - they determine the lifetime of the model, context, etc.
    common_init_result_ptr llama_init;
    common_init_result_ptr llama_init_dft;

    llama_context * ctx = nullptr;

    bool vocab_dft_compatible = true;

    llama_model * model_dft = nullptr;

    llama_context_params cparams_dft;

    llama_batch batch {};

    bool add_bos_token  = true;

    int32_t n_ctx; // total context for all clients / slots

    // slots / clients
    std::vector<server_slot> slots;

    int slots_debug = 0;

    std::unique_ptr<server_prompt_cache> prompt_cache;

    server_metrics metrics;

    json json_webui_settings = json::object();

    // Necessary similarity of prompt for slot selection
    float slot_prompt_similarity = 0.0f;

    std::string model_name; // name of the loaded model, to be used by API

    bool sleeping = false;

    void destroy() {
        llama_init.reset();
        ctx = nullptr;
        model = nullptr;

        mtmd_free(mctx);
        mctx = nullptr;

        // Clear any sampling context
        for (server_slot & slot : slots) {
            llama_free(slot.ctx_dft);
            slot.ctx_dft = nullptr;

            common_speculative_free(slot.spec);
            slot.spec = nullptr;

            llama_batch_free(slot.batch_spec);
        }

        llama_batch_free(batch);
    }

    void handle_sleeping_state(bool new_state) {
        GGML_ASSERT(sleeping != new_state);
        if (new_state) {
            SRV_INF("%s", "server is entering sleeping state\n");
            destroy();
        } else {
            SRV_INF("%s", "server is exiting sleeping state\n");
            if (!load_model(params_base)) {
                GGML_ABORT("failed to reload model after sleeping");
            }
        }
        sleeping = new_state;
    }

    // load the model and initialize llama_context
    // this may also be called to resume from sleeping state
    bool load_model(const common_params & params) {
        bool is_resume = sleeping;

        SRV_INF("loading model '%s'\n", params.model.path.c_str());

        params_base = params;

        llama_init = common_init_from_params(params_base);

        model = llama_init->model();
        ctx   = llama_init->context();

        if (model == nullptr) {
            SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
            return false;
        }

        vocab = llama_model_get_vocab(model);

        n_ctx = llama_n_ctx(ctx);

        add_bos_token = llama_vocab_get_add_bos(vocab);

        if (params_base.has_speculative()) {
            SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());

            auto params_dft = params_base;

            params_dft.devices      = params_base.speculative.devices;
            params_dft.model        = params_base.speculative.model;
            params_dft.n_ctx        = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx;
            params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
            params_dft.n_parallel   = 1;
            params_dft.cache_type_k = params_base.speculative.cache_type_k;
            params_dft.cache_type_v = params_base.speculative.cache_type_v;

            params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
            params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
            params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;

            llama_init_dft = common_init_from_params(params_dft);

            model_dft = llama_init_dft->model();

            if (model_dft == nullptr) {
                SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
                return false;
            }

            vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft->context());
            if (!vocab_dft_compatible) {
                SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
            }

            const int n_ctx_dft = llama_n_ctx(llama_init_dft->context());

            cparams_dft = common_context_params_to_llama(params_dft);
            cparams_dft.n_batch = n_ctx_dft;

            // the context is not needed - we will create one for each slot
            llama_init_dft->free_context();
        }

        chat_templates = common_chat_templates_init(model, params_base.chat_template);
        try {
            common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
        } catch (const std::exception & e) {
            SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
            SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
            chat_templates = common_chat_templates_init(model, "chatml");
        }

        std::string & mmproj_path = params_base.mmproj.path;
        if (!mmproj_path.empty()) {
            if (!is_resume) {
                mtmd_helper_log_set(common_log_default_callback, nullptr);
            }

            mtmd_context_params mparams = mtmd_context_params_default();
            mparams.use_gpu          = params_base.mmproj_use_gpu;
            mparams.print_timings    = false;
            mparams.n_threads        = params_base.cpuparams.n_threads;
            mparams.flash_attn_type  = params_base.flash_attn_type;
            mparams.warmup           = params_base.warmup;
            mparams.image_min_tokens = params_base.image_min_tokens;
            mparams.image_max_tokens = params_base.image_max_tokens;
            mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
            if (mctx == nullptr) {
                SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
                return false;
            }
            SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());

            if (params_base.ctx_shift) {
                params_base.ctx_shift = false;
                SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
            }

            if (params_base.n_cache_reuse) {
                params_base.n_cache_reuse = 0;
                SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
            }

            if (params_base.has_speculative()) {
                SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
                return false;
            }
        }

        if (!llama_memory_can_shift(llama_get_memory(ctx))) {
            if (params_base.ctx_shift) {
                params_base.ctx_shift = false;
                SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
            }

            if (params_base.n_cache_reuse) {
                params_base.n_cache_reuse = 0;
                SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
            }
        }

        // Necessary similarity of prompt for slot selection
        slot_prompt_similarity = params_base.slot_prompt_similarity;

        // setup slots
        SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);

        const int n_ctx_train = llama_model_n_ctx_train(model);

        int n_ctx_slot = llama_n_ctx_seq(ctx);
        if (n_ctx_slot > n_ctx_train) {
            SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train);
            n_ctx_slot = n_ctx_train;
        }

        slots.clear();
        for (int i = 0; i < params_base.n_parallel; i++) {
            server_slot slot;

            slot.id = i;
            slot.ctx = ctx;
            slot.n_ctx = n_ctx_slot;
            slot.mctx = mctx;
            slot.prompt.tokens.has_mtmd = mctx != nullptr;

            if (model_dft) {
                slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);

                // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
                slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
                if (slot.ctx_dft == nullptr) {
                    SRV_ERR("%s", "failed to create draft context\n");
                    return false;
                }

                slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
                if (slot.spec == nullptr) {
                    SRV_ERR("%s", "failed to create speculator\n");
                    return false;
                }
                for (auto & pair : params_base.speculative.replacements) {
                    common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
                }
            }

            SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);

            slot.callback_on_release = [this](int) {
                queue_tasks.pop_deferred_task();
            };

            slot.reset();

            slots.push_back(std::move(slot));
        }

        {
            const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG");
            slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0;

            if (slots_debug) {
                SRV_WRN("slots debug = %d\n", slots_debug);
            }
        }

        // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
        // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
        {
            const int32_t n_batch = llama_n_batch(ctx);
            batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
        }

        if (params_base.cache_ram_mib != 0) {
            if (params_base.cache_ram_mib < 0) {
                SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit");
            } else {
                SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib);
            }
            SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n");

            prompt_cache = std::make_unique<server_prompt_cache>(params_base.cache_ram_mib, n_ctx);
        } else {
            SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
        }
        SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n");

        if (!params_base.model_alias.empty()) {
            // user explicitly specified model name
            model_name = params_base.model_alias;
        } else if (!params_base.model.name.empty()) {
            // use model name in registry format (for models in cache)
            model_name = params_base.model.name;
        } else {
            // fallback: derive model name from file name
            auto model_path = std::filesystem::path(params_base.model.path);
            model_name = model_path.filename().string();
        }

        // thinking is enabled if:
        // 1. It's not explicitly disabled (reasoning_budget == 0)
        // 2. The chat template supports it
        const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
        SRV_INF("thinking = %d\n", enable_thinking);

        oai_parser_opt = {
            /* use_jinja             */ params_base.use_jinja,
            /* prefill_assistant     */ params_base.prefill_assistant,
            /* reasoning_format      */ params_base.reasoning_format,
            /* chat_template_kwargs  */ params_base.default_template_kwargs,
            /* common_chat_templates */ chat_templates.get(),
            /* allow_image           */ mctx ? mtmd_support_vision(mctx) : false,
            /* allow_audio           */ mctx ? mtmd_support_audio (mctx) : false,
            /* enable_thinking       */ enable_thinking,
            /* media_path            */ params_base.media_path,
        };

        // print sample chat example to make it clear which template is used
        LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
            common_chat_templates_source(chat_templates.get()),
            common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str());

        if (!is_resume) {
            return init();
        }

        return true;
    }

    // unlike load_model(), this is only called once during initialization
    bool init() {
        GGML_ASSERT(ctx != nullptr);
        GGML_ASSERT(model != nullptr);
        GGML_ASSERT(!sleeping);

        // wiring up server queues
        queue_tasks.on_new_task([this](server_task && task) {
            process_single_task(std::move(task));
        });
        queue_tasks.on_update_slots([this]() {
            update_slots();
        });
        queue_tasks.on_sleeping_state([this](bool sleeping) {
            handle_sleeping_state(sleeping);
        });

        metrics.init();

        // populate webui settings
        {
            if (!params_base.webui_config_json.empty()) {
                try {
                    json_webui_settings = json::parse(params_base.webui_config_json);
                } catch (const std::exception & e) {
                    SRV_ERR("%s: failed to parse webui config: %s\n", __func__, e.what());
                    return false;
                }
            }
        }

        return true;
    }

    server_slot * get_slot_by_id(int id) {
        for (server_slot & slot : slots) {
            if (slot.id == id) {
                return &slot;
            }
        }

        return nullptr;
    }

    server_slot * get_available_slot(const server_task & task) {
        server_slot * ret = nullptr;

        bool update_cache = false;

        // find the slot that has at least n% prompt similarity
        if (ret == nullptr && slot_prompt_similarity != 0.0f) {
            float sim_best = 0;

            for (server_slot & slot : slots) {
                // skip the slot if it is not available
                if (slot.is_processing()) {
                    continue;
                }

                const auto & tokens = slot.prompt.tokens;

                // skip the slot if it does not contains cached tokens
                if (tokens.empty()) {
                    continue;
                }

                // fraction of the Longest Common Prefix length with respect to the input prompt length
                const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size();

                // select the current slot if the criteria match
                if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
                    sim_best = sim_cur;

                    ret = &slot;
                }
            }

            if (ret != nullptr) {
                const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size();

                SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n",
                        sim_best, slot_prompt_similarity, f_keep);

                // if we are about to lose a large portion of the existing context - save it in the prompt cache
                if (f_keep < 0.5f) {
                    update_cache = true;
                }
            }
        }

        // find the slot that has been least recently used
        if (ret == nullptr) {
            int64_t t_last = -1;

            for (server_slot & slot : slots) {
                // skip the slot if it is not available
                if (slot.is_processing()) {
                    continue;
                }

                // select the current slot if the criteria match
                if (!ret || slot.t_last_used <= t_last) {
                    t_last = slot.t_last_used;
                    ret = &slot;
                }
            }

            if (ret != nullptr) {
                SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last);

                update_cache = true;
            }
        }

        if (ret) {
            const auto & tokens = ret->prompt.tokens;

            update_cache = update_cache && prompt_cache;

            // cache prompts only for completion tasks
            update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION;

            // don't update the cache if the slot's context is empty
            update_cache = update_cache && tokens.size() > 0;

            // TODO: mtmd does not support prompt cache
            update_cache = update_cache && (ret->mctx == nullptr);

            if (update_cache) {
                SRV_WRN("%s", "updating prompt cache\n");

                const int64_t t_start = ggml_time_us();

                ret->prompt_save(*prompt_cache);

                if (!ret->prompt_load(*prompt_cache, task.tokens)) {
                    clear_slot(*ret);
                }

                prompt_cache->update();

                SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
            }
        }

        return ret;
    }

    void clear_slot(server_slot & slot, bool allow_processing = false) const {
        if (!allow_processing) {
            GGML_ASSERT(!slot.is_processing());
        }

        SLT_WRN(slot, "clearing slot with %zu tokens\n", slot.prompt.tokens.size());

        llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
        slot.prompt.tokens.clear();
    }

    // return true if at least one slot has been cleared
    // TODO: improve logic
    //       - smarter decision which slot to clear (LRU or longest prompt?)
    //       - move slot to level 2 cache instead of removing?
    //       - instead of purging, try to store and resume later?
    bool try_clear_idle_slots() {
        bool res = false;

        if (!params_base.kv_unified) {
            return res;
        }

        for (auto & slot : slots) {
            if (slot.is_processing()) {
                continue;
            }

            if (slot.prompt.n_tokens() > 0) {
                SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size());

                clear_slot(slot);

                res = true;

                // clear slots one by one
                break;
            }
        }

        return res;
    }

    std::vector<common_adapter_lora_info> construct_lora_list(const std::map<int, float> & config) {
        std::vector<common_adapter_lora_info> output = params_base.lora_adapters; // copy
        for (size_t i = 0; i < output.size(); ++i) {
            auto it = config.find(i);
            if (it != config.end()) {
                output[i].scale = it->second;
            } else {
                output[i].scale = 0.0f;
            }
        }
        return output;
    }

    bool launch_slot_with_task(server_slot & slot, server_task && task) {
        slot.reset();

        // process per-request lora adapters
        if (!task.params.lora.empty()) {
            auto task_loras = construct_lora_list(task.params.lora);
            if (!are_lora_equal(task_loras, slot.lora)) {
                // if lora has changed, check to see if the cache should be cleared
                if (lora_should_clear_cache(slot.lora, task_loras)) {
                    SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size());
                    slot.prompt.tokens.clear();
                } else {
                    SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task_loras.size());
                }
                slot.lora = task_loras;
            }
        } else {
            slot.lora = params_base.lora_adapters;
        }

        // if using alora, make sure it's only a single one requested and active
        size_t alora_invocation_start = task.tokens.size();
        if (lora_all_alora(slot.lora)) {
            const auto & enabled_ids = lora_get_enabled_ids(slot.lora);
            // TODO: This will error out if a user requests two aloras, but only
            // provides the activation string for one. We could, instead search
            // for all requested alora activation strings and then either keep
            // only the last one, or reject if multiple are found.
            if (enabled_ids.size() != 1) {
                send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST);
                return false;
            }
            const auto & lora = slot.lora[enabled_ids[0]].ptr;

            // get the pointer and count for the invocation tokens
            const uint64_t      n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora);
            const llama_token * invocation_tokens   = llama_adapter_get_alora_invocation_tokens  (lora);

            // scan backwards through the prompt tokens to find the last
            // occurrence of the invocation sequence
            int match_idx = static_cast<int>(n_invocation_tokens) - 1;
            for (int i = task.tokens.size() - 1; i >= 0; --i) {
                // the token in this position matches the next token to find in
                // the invocation sequence
                if (task.tokens[i] == invocation_tokens[match_idx]) {
                    // if it's a full match, we've found the start
                    if (match_idx == 0) {
                        alora_invocation_start = i;
                        break;
                    }
                    // otherwise, check the next token in the sequence
                    --match_idx;
                } else {
                    // no match in this position, so start looking over again
                    match_idx = static_cast<int>(n_invocation_tokens) - 1;
                }
            }

            // if the activation string is not found, disable the alora
            if (alora_invocation_start == task.tokens.size()) {
                SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]);
                slot.lora[enabled_ids[0]].scale = 0.0f;
            } else {
                SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start);
                slot.alora_invocation_start = alora_invocation_start;
            }
        }

        if (!task.tokens.validate(ctx)) {
            send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
            return false;
        }

        SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());

        // initialize samplers
        {
            slot.smpl.reset(common_sampler_init(model, task.params.sampling));

            if (slot.smpl == nullptr) {
                // for now, the only error that may happen here is invalid grammar
                send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
                return false;
            }

            SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl.get()).c_str());
        }

        // initialize draft batch
        // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
        if (slot.ctx_dft) {
            llama_batch_free(slot.batch_spec);

            slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1);
        }

        slot.task = std::make_unique<const server_task>(std::move(task));

        slot.state = slot.is_child()
            ? SLOT_STATE_WAIT_OTHER // wait for the parent to process prompt
            : SLOT_STATE_STARTED;

        SLT_INF(slot, "%s", "processing task\n");

        return true;
    }

    bool process_token(completion_token_output & result, server_slot & slot) {
        // remember which tokens were sampled - used for repetition penalties during sampling
        const std::string token_str = result.text_to_send;
        slot.sampled = result.tok;

        slot.generated_text += token_str;
        if (slot.task->params.return_tokens) {
            slot.generated_tokens.push_back(result.tok);
        }
        slot.has_next_token = true;

        // check if there is incomplete UTF-8 character at the end
        bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();

        // search stop word and delete it
        if (!incomplete) {
            size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());

            const std::string str_test = slot.generated_text.substr(pos);
            bool send_text = true;

            size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
            if (stop_pos != std::string::npos) {
                slot.generated_text.erase(
                    slot.generated_text.begin() + pos + stop_pos,
                    slot.generated_text.end());
                pos = std::min(slot.n_sent_text, slot.generated_text.size());
            } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) {
                stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
                send_text = stop_pos == std::string::npos;
            }

            // check if there is any token to predict
            if (send_text) {
                // no send the stop word in the response
                result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
                slot.n_sent_text += result.text_to_send.size();
                // add the token to slot queue and cache
            } else {
                result.text_to_send = "";
            }

            slot.add_token(result);
            if (slot.task->params.stream) {
                send_partial_response(slot, result, false);
            }
        }

        if (incomplete) {
            slot.has_next_token = true;
        }

        // if context shifting is disabled, make sure that we don't run out of context
        if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
            slot.truncated      = true;
            slot.stop           = STOP_TYPE_LIMIT;
            slot.has_next_token = false;

            SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n",
                    slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx);
        }

        // check the limits
        if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
            slot.stop           = STOP_TYPE_LIMIT;
            slot.has_next_token = false;

            SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict);
        }

        if (slot.has_new_line) {
            // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
            if (slot.task->params.n_indent > 0) {
                // check the current indentation
                // TODO: improve by not doing it more than once for each new line
                if (slot.last_nl_pos > 0) {
                    size_t pos = slot.last_nl_pos;

                    int n_indent = 0;
                    while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
                        n_indent++;
                        pos++;
                    }

                    if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) {
                        slot.stop           = STOP_TYPE_LIMIT;
                        slot.has_next_token = false;

                        // cut the last line
                        slot.generated_text.erase(pos, std::string::npos);

                        SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
                    }
                }

                // find the next new line
                {
                    const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);

                    if (pos != std::string::npos) {
                        slot.last_nl_pos = pos + 1;
                    }
                }
            }
        }

        // check if there is a new line in the generated text
        if (result.text_to_send.find('\n') != std::string::npos) {
            slot.has_new_line = true;

            // if we have seen a new line, we stop after a certain time limit, but only upon another new line
            if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) {
                slot.stop           = STOP_TYPE_LIMIT;
                slot.has_next_token = false;

                SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms);
            }
        }

        if (llama_vocab_is_eog(vocab, result.tok)) {
            slot.stop           = STOP_TYPE_EOS;
            slot.has_next_token = false;

            SLT_DBG(slot, "%s", "stopped by EOS\n");
        }

        SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());

        return slot.has_next_token; // continue
    }

    void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
        const size_t n_probs = slot.task->params.sampling.n_probs;

        if (post_sampling) {
            const auto * cur_p = common_sampler_get_candidates(slot.smpl.get(), true);
            const size_t max_probs = cur_p->size;

            // set probability for sampled token
            for (size_t i = 0; i < max_probs; i++) {
                if (cur_p->data[i].id == result.tok) {
                    result.prob = cur_p->data[i].p;
                    break;
                }
            }

            // set probability for top n_probs tokens
            result.probs.reserve(max_probs);
            for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
                result.probs.push_back({
                    cur_p->data[i].id,
                    common_token_to_piece(ctx, cur_p->data[i].id, special),
                    cur_p->data[i].p
                });
            }
        } else {
            // TODO: optimize this with min-p optimization
            std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);

            // set probability for sampled token
            for (size_t i = 0; i < cur.size(); i++) {
                // set probability for sampled token
                if (cur[i].id == result.tok) {
                    result.prob = cur[i].p;
                    break;
                }
            }

            // set probability for top n_probs tokens
            result.probs.reserve(n_probs);
            for (size_t i = 0; i < std::min(cur.size(), n_probs); i++) {
                result.probs.push_back({
                    cur[i].id,
                    common_token_to_piece(ctx, cur[i].id, special),
                    cur[i].p
                });
            }
        }
    }

    void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
        send_error(task.id, error, type);
    }

    void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
        send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx);
    }

    void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) {
        SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());

        if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
            GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0);
        }

        auto res = std::make_unique<server_task_result_error>();
        res->id              = id_task;
        res->err_type        = type;
        res->err_msg         = error;
        res->n_prompt_tokens = n_prompt_tokens;
        res->n_ctx           = n_ctx;

        queue_results.send(std::move(res));
    }

    // if multimodal is enabled, send an error and return false
    bool check_no_mtmd(const int id_task) {
        if (mctx) {
            send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
            return false;
        }
        return true;
    }

    void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
        auto res = std::make_unique<server_task_result_cmpl_partial>();

        res->id    = slot.task->id;
        res->index = slot.task->index;

        if (is_progress) {
            res->is_progress        = true;
            res->progress.total     = slot.task->n_tokens();
            res->progress.cache     = slot.n_prompt_tokens_cache;
            res->progress.processed = slot.prompt.tokens.size();
            res->progress.time_ms   = (ggml_time_us() - slot.t_start_process_prompt) / 1000;
        } else {
            res->content = tkn.text_to_send;
            res->tokens  = { tkn.tok };
        }

        res->n_decoded           = slot.n_decoded;
        res->n_prompt_tokens     = slot.task->n_tokens();
        res->post_sampling_probs = slot.task->params.post_sampling_probs;

        res->verbose           = slot.task->params.verbose;
        res->res_type          = slot.task->params.res_type;
        res->oaicompat_model   = slot.task->params.oaicompat_model;
        res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;

        // populate res.probs_output
        if (slot.task->params.sampling.n_probs > 0) {
            res->prob_output = tkn; // copy the token probs
        }

        // populate timings if this is final response or timings_per_token is enabled
        if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) {
            res->timings = slot.get_timings();
        }

        queue_results.send(std::move(res));
    }

    void send_final_response(server_slot & slot) {
        auto res = std::make_unique<server_task_result_cmpl_final>();

        res->id      = slot.task->id;
        res->id_slot = slot.id;

        res->index           = slot.task->index;
        // in stream mode, content and tokens are already in last partial chunk
        if (slot.task->params.stream) {
            res->content     = "";
            res->tokens      = llama_tokens{};
        } else {
            res->content     = std::move(slot.generated_text);
            res->tokens      = std::move(slot.generated_tokens);
        }
        res->timings         = slot.get_timings();
        res->prompt          = slot.task->tokens.detokenize(ctx, true);
        res->response_fields = std::move(slot.task->params.response_fields);

        res->truncated           = slot.truncated;
        res->n_decoded           = slot.n_decoded;
        res->n_prompt_tokens     = slot.task->n_tokens();
        res->n_tokens_cached     = slot.prompt.n_tokens();
        res->has_new_line        = slot.has_new_line;
        res->stopping_word       = slot.stopping_word;
        res->stop                = slot.stop;
        res->post_sampling_probs = slot.task->params.post_sampling_probs;

        res->verbose           = slot.task->params.verbose;
        res->stream            = slot.task->params.stream;
        res->include_usage     = slot.task->params.include_usage;
        res->res_type          = slot.task->params.res_type;
        res->oaicompat_model   = slot.task->params.oaicompat_model;
        res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;

        // populate res.probs_output
        if (slot.task->params.sampling.n_probs > 0) {
            if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) {
                const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);

                size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
                res->probs_output = std::vector<completion_token_output>(
                        slot.generated_token_probs.begin(),
                        slot.generated_token_probs.end() - safe_offset);
            } else {
                res->probs_output = std::vector<completion_token_output>(
                        slot.generated_token_probs.begin(),
                        slot.generated_token_probs.end());
            }
        }

        res->generation_params = slot.task->params; // copy the parameters

        queue_results.send(std::move(res));
    }

    void send_embedding(const server_slot & slot, const llama_batch & batch) {
        auto res = std::make_unique<server_task_result_embd>();
        res->id        = slot.task->id;
        res->index     = slot.task->index;
        res->n_tokens  = slot.task->n_tokens();
        res->res_type  = slot.task->params.res_type;

        const int n_embd = llama_model_n_embd(model);

        std::vector<float> embd_res(n_embd, 0.0f);

        for (int i = 0; i < batch.n_tokens; ++i) {
            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
                continue;
            }

            const float * embd = nullptr;
            if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
                embd = llama_get_embeddings_ith(ctx, i);
            } else {
                embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
            }

            if (embd == nullptr) {
                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);

                res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
                continue;
            }

            // normalize only when there is pooling
            if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
                common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize);
                res->embedding.push_back(embd_res);
                break;
            }

            res->embedding.emplace_back(embd, embd + n_embd);
        }

        SLT_DBG(slot, "%s", "sending embeddings\n");

        queue_results.send(std::move(res));
    }

    void send_rerank(const server_slot & slot, const llama_batch & batch) {
        auto res = std::make_unique<server_task_result_rerank>();
        res->id       = slot.task->id;
        res->index    = slot.task->index;
        res->n_tokens = slot.task->n_tokens();

        for (int i = 0; i < batch.n_tokens; ++i) {
            if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
                continue;
            }

            const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
            if (embd == NULL) {
                embd = llama_get_embeddings_ith(ctx, i);
            }

            if (embd == NULL) {
                SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);

                res->score = -1e6;
                continue;
            }

            res->score = embd[0];
        }

        SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);

        queue_results.send(std::move(res));
    }

    //
    // Functions to process the task
    //

    // tokenize the input if it's set by CLI, return false on error
    bool tokenize_cli_input(server_task & task) {
        if (task.cli_input == nullptr) {
            return true; // nothing to do
        }
        try {
            auto & opt = oai_parser_opt;
            common_chat_templates_inputs inputs;
            inputs.messages              = common_chat_msgs_parse_oaicompat(task.cli_input);
            inputs.tools                 = {}; // TODO
            inputs.tool_choice           = COMMON_CHAT_TOOL_CHOICE_NONE;
            inputs.json_schema           = ""; // TODO
            inputs.grammar               = ""; // TODO
            inputs.use_jinja             = opt.use_jinja;
            inputs.parallel_tool_calls   = false;
            inputs.add_generation_prompt = true;
            inputs.reasoning_format      = opt.reasoning_format;
            inputs.enable_thinking       = opt.enable_thinking;

            // Apply chat template to the list of messages
            auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);

            // tokenize the resulting prompt
            auto & prompt = chat_params.prompt;
            if (mctx != nullptr) {
                task.tokens = process_mtmd_prompt(mctx, prompt, task.cli_files);
            } else {
                task.tokens = std::move(tokenize_input_prompts(vocab, mctx, prompt, true, true)[0]);
            }
            task.cli_input.clear();
            task.cli_files.clear();
        } catch (const std::exception & e) {
            send_error(task, std::string("Failed to format input: ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
            return false;
        }
        return true;
    }

    void process_single_task(server_task && task) {
        switch (task.type) {
            case SERVER_TASK_TYPE_COMPLETION:
            case SERVER_TASK_TYPE_INFILL:
            case SERVER_TASK_TYPE_EMBEDDING:
            case SERVER_TASK_TYPE_RERANK:
                {
                    if (!tokenize_cli_input(task)) {
                        break;
                    }

                    const int id_slot = task.id_slot;

                    server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);

                    if (slot == nullptr) {
                        // if no slot is available, we defer this task for processing later
                        SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(std::move(task));
                        break;
                    }

                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(std::move(task));
                        break;
                    }

                    if (!launch_slot_with_task(*slot, std::move(task))) {
                        SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
                        break;
                    }
                } break;
            case SERVER_TASK_TYPE_CANCEL:
                {
                    // release slot linked with the task id
                    for (auto & slot : slots) {
                        if (slot.task && slot.task->id == task.id_target) {
                            slot.release();
                            break;
                        }
                    }
                } break;
            case SERVER_TASK_TYPE_NEXT_RESPONSE:
                {
                    // do nothing
                } break;
            case SERVER_TASK_TYPE_METRICS:
                {
                    json slots_data = json::array();

                    int n_idle_slots       = 0;
                    int n_processing_slots = 0;

                    for (server_slot & slot : slots) {
                        json slot_data = slot.to_json(slots_debug == 0);

                        if (slot.is_processing()) {
                            n_processing_slots++;
                        } else {
                            n_idle_slots++;
                        }

                        slots_data.push_back(slot_data);
                    }
                    SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);

                    auto res = std::make_unique<server_task_result_metrics>();
                    res->id                  = task.id;
                    res->slots_data          = std::move(slots_data);
                    res->n_idle_slots        = n_idle_slots;
                    res->n_processing_slots  = n_processing_slots;
                    res->n_tasks_deferred    = queue_tasks.queue_tasks_deferred_size();
                    res->t_start             = metrics.t_start;

                    res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
                    res->t_prompt_processing_total       = metrics.t_prompt_processing_total;
                    res->n_tokens_predicted_total        = metrics.n_tokens_predicted_total;
                    res->t_tokens_generation_total       = metrics.t_tokens_generation_total;

                    res->n_tokens_max = metrics.n_tokens_max;

                    res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
                    res->t_prompt_processing       = metrics.t_prompt_processing;
                    res->n_tokens_predicted        = metrics.n_tokens_predicted;
                    res->t_tokens_generation       = metrics.t_tokens_generation;

                    res->n_decode_total          = metrics.n_decode_total;
                    res->n_busy_slots_total      = metrics.n_busy_slots_total;

                    if (task.metrics_reset_bucket) {
                        metrics.reset_bucket();
                    }
                    queue_results.send(std::move(res));
                } break;
            case SERVER_TASK_TYPE_SLOT_SAVE:
                {
                    if (!check_no_mtmd(task.id)) {
                        break;
                    }

                    int id_slot = task.slot_action.slot_id;
                    server_slot * slot = get_slot_by_id(id_slot);
                    if (slot == nullptr) {
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(std::move(task));
                        break;
                    }

                    const size_t token_count = slot->prompt.tokens.size();
                    const int64_t t_start = ggml_time_us();

                    std::string filename = task.slot_action.filename;
                    std::string filepath = task.slot_action.filepath;

                    const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens();
                    const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);

                    const int64_t t_end = ggml_time_us();
                    const double t_save_ms = (t_end - t_start) / 1000.0;

                    auto res = std::make_unique<server_task_result_slot_save_load>();
                    res->id       = task.id;
                    res->id_slot  = id_slot;
                    res->filename = filename;
                    res->is_save  = true;
                    res->n_tokens = token_count;
                    res->n_bytes  = nwrite;
                    res->t_ms     = t_save_ms;
                    queue_results.send(std::move(res));
                } break;
            case SERVER_TASK_TYPE_SLOT_RESTORE:
                {
                    if (!check_no_mtmd(task.id)) break;
                    int id_slot = task.slot_action.slot_id;
                    server_slot * slot = get_slot_by_id(id_slot);
                    if (slot == nullptr) {
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(std::move(task));
                        break;
                    }

                    const int64_t t_start = ggml_time_us();

                    std::string filename = task.slot_action.filename;
                    std::string filepath = task.slot_action.filepath;

                    llama_tokens tokens;
                    tokens.resize(slot->n_ctx);
                    size_t token_count = 0;
                    size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
                    if (nread == 0) {
                        slot->prompt.tokens.clear(); // KV may already been invalidated?
                        send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    tokens.resize(token_count);
                    slot->prompt.tokens.clear();
                    slot->prompt.tokens.insert(tokens);

                    const int64_t t_end = ggml_time_us();
                    const double t_restore_ms = (t_end - t_start) / 1000.0;

                    auto res = std::make_unique<server_task_result_slot_save_load>();
                    res->id       = task.id;
                    res->id_slot  = id_slot;
                    res->filename = filename;
                    res->is_save  = false;
                    res->n_tokens = token_count;
                    res->n_bytes  = nread;
                    res->t_ms     = t_restore_ms;
                    queue_results.send(std::move(res));
                } break;
            case SERVER_TASK_TYPE_SLOT_ERASE:
                {
                    if (!check_no_mtmd(task.id)) {
                        break;
                    }
                    int id_slot = task.slot_action.slot_id;
                    server_slot * slot = get_slot_by_id(id_slot);
                    if (slot == nullptr) {
                        send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
                        break;
                    }
                    if (slot->is_processing()) {
                        // if requested slot is unavailable, we defer this task for processing later
                        SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
                        queue_tasks.defer(std::move(task));
                        break;
                    }

                    // Erase token cache
                    const size_t n_erased = slot->prompt.tokens.size();

                    clear_slot(*slot);

                    auto res = std::make_unique<server_task_result_slot_erase>();
                    res->id       = task.id;
                    res->id_slot  = id_slot;
                    res->n_erased = n_erased;
                    queue_results.send(std::move(res));
                } break;
            case SERVER_TASK_TYPE_GET_LORA:
                {
                    // TODO @ngxson : make lora_adapters a dedicated member of server_context
                    auto & loras = params_base.lora_adapters;
                    auto res = std::make_unique<server_task_result_get_lora>();
                    res->id = task.id;
                    for (size_t i = 0; i < loras.size(); ++i) {
                        auto & lora = loras[i];
                        std::string alora_invocation_string = "";
                        const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr);
                        llama_tokens alora_invocation_tokens;
                        if (n_alora_tokens) {
                            const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr);
                            for (uint64_t j = 0; j < n_alora_tokens; ++j) {
                                alora_invocation_string += common_token_to_piece(vocab, alora_tokens[j]);
                                alora_invocation_tokens.push_back(alora_tokens[j]);
                            }
                        }
                        res->loras.push_back(server_task_result_get_lora::lora{
                            lora,
                            alora_invocation_string,
                            alora_invocation_tokens,
                        });
                    }
                    queue_results.send(std::move(res));
                } break;
            case SERVER_TASK_TYPE_SET_LORA:
                {
                    auto new_loras = construct_lora_list(task.set_lora);
                    // logging
                    for (size_t i = 0; i < new_loras.size(); ++i) {
                        SRV_INF("set lora adapter idx=%zu scale=%f\n", i, new_loras[i].scale);
                    }
                    // TODO @ngxson : make lora_adapters a dedicated member of server_context
                    params_base.lora_adapters = new_loras;
                    auto res = std::make_unique<server_task_result_apply_lora>();
                    res->id = task.id;
                    queue_results.send(std::move(res));
                } break;
        }
    }

    void update_slots() {
        // check if all slots are idle
        {
            bool all_idle = true;

            for (auto & slot : slots) {
                if (slot.is_processing()) {
                    all_idle = false;
                    break;
                }
            }

            if (all_idle) {
                SRV_INF("%s", "all slots are idle\n");

                return;
            }
        }

        {
            SRV_DBG("%s", "posting NEXT_RESPONSE\n");

            server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
            task.id = queue_tasks.get_new_id();
            queue_tasks.post(std::move(task));
        }

        // apply context-shift if needed
        // TODO: simplify and improve
        for (server_slot & slot : slots) {
            if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
                if (!params_base.ctx_shift) {
                    // this check is redundant (for good)
                    // we should never get here, because generation should already stopped in process_token()
                    send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
                    slot.release();
                    continue;
                }

                if (mctx) {
                    // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
                    // we don't support ctx_shift because an image chunk may contains multiple tokens
                    GGML_ABORT("not supported by multimodal");
                }

                if (slot.is_parent() || slot.is_child()) {
                    send_error(slot, "context shift cannot be used for shared prompt", ERROR_TYPE_SERVER);
                    slot.release();
                    continue;
                }

                // Shift context
                int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;

                if (add_bos_token) {
                    n_keep += 1;
                }

                n_keep = std::min(slot.n_ctx - 4, n_keep);

                const int n_left    = slot.prompt.n_tokens() - n_keep;
                const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2);

                SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);

                llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep            , n_keep + n_discard);
                llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard);

                // add generated tokens to cache
                // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481
                {
                    GGML_ASSERT(!slot.prompt.tokens.has_mtmd);

                    llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy
                    for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
                        new_tokens[i - n_discard] = new_tokens[i];
                    }

                    new_tokens.resize(slot.prompt.tokens.size() - n_discard);

                    slot.prompt.tokens.clear();
                    slot.prompt.tokens.insert(new_tokens);
                }

                slot.truncated = true;
            }
        }

        // start populating the batch for this iteration
        common_batch_clear(batch);

        // track if given slot can be batched with slots already in the batch
        server_slot * slot_batched = nullptr;

        auto accept_special_token = [&](server_slot & slot, llama_token token) {
            return params_base.special ||
                slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end();
        };

        // first, add sampled tokens from any ongoing sequences
        for (auto & slot : slots) {
            if (slot.state != SLOT_STATE_GENERATING) {
                continue;
            }

            // check if we can batch this slot with the previous one
            if (!slot_batched) {
                slot_batched = &slot;
            } else if (!slot_batched->can_batch_with(slot)) {
                continue;
            }

            // generate draft tokens in speculative decoding mode
            // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
            //       perform the speculative drafting for all sequences at the same time in a single batch
            int n_draft_max = slot.get_n_draft_max();
            if (n_draft_max > 0) {
                if (mctx) {
                    // we should never reach this, as speculative is automatically disabled if mmproj is loaded
                    GGML_ABORT("not supported by multimodal");
                }

                struct common_speculative_params params_spec;
                params_spec.n_draft = n_draft_max;
                params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
                params_spec.p_min   = slot.task->params.speculative.p_min;
                const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
                llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, slot.sampled);

                // add the sampled token to the batch
                slot.i_batch_dft.push_back(batch.n_tokens);
                common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
                slot.prompt.tokens.push_back(slot.sampled);

                if (slot.task->params.speculative.n_min > (int) draft.size()) {
                    SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
                    // fallback to normal decoding
                    slot.i_batch = slot.i_batch_dft[0];
                    slot.drafted.clear();
                    slot.i_batch_dft.clear();
                } else {
                    // keep track of total number of drafted tokens tested
                    slot.n_draft_total += draft.size();

                    // add all drafted tokens to the batch
                    for (size_t i = 0; i < draft.size(); i++) {
                        slot.i_batch_dft.push_back(batch.n_tokens);
                        common_batch_add(batch, draft[i], slot.prompt.tokens.pos_next(), { slot.id }, true);
                        slot.prompt.tokens.push_back(draft[i]);
                    }
                    slot.drafted = std::move(draft);
                }
            } else {
                // no speculative decoding
                slot.i_batch = batch.n_tokens;

                common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);

                slot.prompt.tokens.push_back(slot.sampled);

                SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
                        slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
            }
        }

        // process in chunks of params.n_batch
        int32_t n_batch  = llama_n_batch(ctx);
        int32_t n_ubatch = llama_n_ubatch(ctx);

        float  alora_scale       = -1.0f;
        size_t alora_disabled_id = 0;

        // next, batch any pending prompts without exceeding n_batch
        if (params_base.cont_batching || batch.n_tokens == 0) {
            for (auto & slot : slots) {
                if (!slot.is_processing()) {
                    continue;
                }

                // check if we can batch this slot with the previous one
                if (slot_batched && !slot_batched->can_batch_with(slot)) {
                    continue;
                }

                // this slot still has a prompt to be processed
                if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
                    const auto & input_tokens = slot.task->tokens;

                    // TODO: maybe move branch to outside of this loop in the future
                    if (slot.state == SLOT_STATE_STARTED) {
                        slot.t_start_process_prompt = ggml_time_us();
                        slot.t_start_generation = 0;

                        slot.state = SLOT_STATE_PROCESSING_PROMPT;

                        SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n",
                                slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens());

                        // print prompt tokens (for debugging)
                        /*if (1) {
                            // first 16 tokens (avoid flooding logs)
                            for (int i = 0; i < std::min<int>(16, input_tokens.size()); i++) {
                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
                            }
                        } else {
                            // all
                            for (int i = 0; i < (int) input_tokens.size(); i++) {
                                SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
                            }
                        }*/

                        // keep track how many tokens we can reuse from the previous state
                        int n_past = 0;

                        // empty prompt passed -> release the slot and send empty response
                        if (input_tokens.empty()) {
                            SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");

                            slot.print_timings();
                            send_final_response(slot);
                            slot.release();

                            continue;
                        }

                        // TODO: support memory-less logits computation
                        if (slot.need_logits() && !llama_get_memory(ctx)) {
                            send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
                            slot.release();
                            continue;
                        }

                        if (!slot.can_split()) {
                            if (slot.task->n_tokens() > n_ubatch) {
                                send_error(slot,
                                           string_format(
                                               "input (%d tokens) is too large to process. increase the physical batch "
                                               "size (current batch size: %d)",
                                               slot.task->n_tokens(), n_ubatch),
                                           ERROR_TYPE_SERVER);
                                slot.release();
                                continue;
                            }

                            if (slot.task->n_tokens() > slot.n_ctx) {
                                send_error(
                                    slot,
                                    string_format(
                                        "input (%d tokens) is larger than the max context size (%d tokens). skipping",
                                        slot.task->n_tokens(), slot.n_ctx),
                                    ERROR_TYPE_EXCEED_CONTEXT_SIZE);
                                slot.release();
                                continue;
                            }
                        } else {
                            if (slot.task->n_tokens() >= slot.n_ctx) {
                                send_error(slot,
                                           string_format("request (%d tokens) exceeds the available context size (%d "
                                                         "tokens), try increasing it",
                                                         slot.task->n_tokens(), slot.n_ctx),
                                           ERROR_TYPE_EXCEED_CONTEXT_SIZE);
                                slot.release();
                                continue;
                            }

                            if (slot.task->params.cache_prompt) {
                                // reuse any previously computed tokens that are common with the new prompt
                                n_past = slot.prompt.tokens.get_common_prefix(input_tokens);

                                // if there is an alora invoked, don't cache after the invocation start
                                if (slot.alora_invocation_start > 0) {
                                    SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start);
                                    n_past = std::min(n_past, slot.alora_invocation_start - 1);
                                }

                                const auto n_cache_reuse = slot.task->params.n_cache_reuse;

                                const bool can_cache_reuse =
                                    llama_memory_can_shift(llama_get_memory(ctx)) &&
                                    !slot.prompt.tokens.has_mtmd;

                                if (!can_cache_reuse && n_cache_reuse > 0) {
                                    SLT_WRN(slot, "cache reuse is not supported - ignoring n_cache_reuse = %d\n", n_cache_reuse);
                                }

                                // reuse chunks from the cached prompt by shifting their KV cache in the new position
                                if (can_cache_reuse && n_cache_reuse > 0) {
                                    GGML_ASSERT(!slot.prompt.tokens.has_mtmd);

                                    size_t head_c = n_past; // cache
                                    size_t head_p = n_past; // current prompt

                                    if (mctx) {
                                        // we should never reach this
                                        GGML_ABORT("not supported by multimodal");
                                    }

                                    SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", n_cache_reuse, n_past);

                                    while (head_c < slot.prompt.tokens.size() &&
                                           head_p < input_tokens.size()) {

                                        size_t n_match = 0;
                                        while (head_c + n_match < slot.prompt.tokens.size() &&
                                               head_p + n_match < input_tokens.size()       &&
                                               slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) {
                                            n_match++;
                                        }

                                        if (n_match >= (size_t) n_cache_reuse) {
                                            SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
                                            //for (size_t i = head_p; i < head_p + n_match; i++) {
                                            //    SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
                                            //}

                                            const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;

                                            llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
                                            llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);

                                            for (size_t i = 0; i < n_match; i++) {
                                                slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]);
                                                n_past++;
                                            }

                                            head_c += n_match;
                                            head_p += n_match;
                                        } else {
                                            head_c += 1;
                                        }
                                    }

                                    SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past);
                                }
                            } else {
                                // if we don't cache the prompt, we have to remove all previous tokens
                                n_past = 0;
                            }

                            // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1
                            const auto n_swa = std::max(1, llama_model_n_swa(model));

                            // the largest pos_min required for a checkpoint to be useful
                            const auto pos_min_thold = std::max(0, n_past - n_swa);

                            // note: disallow with mtmd contexts for now
                            //       https://github.com/ggml-org/llama.cpp/issues/17043
                            if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) {
                                const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
                                if (pos_min == -1) {
                                    SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
                                    GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
                                }

                                // when the prompt prefix does not match, print the tokens around the mismatch
                                // this is useful for debugging prompt caching
                                if (slots_debug) {
                                    const int np0 = std::max<int>(n_past - 4, 0);
                                    const int np1 = std::min<int>(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size()));

                                    std::stringstream ss0;
                                    std::stringstream ss1;

                                    std::stringstream st0;
                                    std::stringstream st1;

                                    ss0 << "old: ... ";
                                    ss1 << "new: ... ";

                                    for (int i = np0; i < np1; i++) {
                                        if (i == n_past) {
                                            ss0 << " | ";
                                            ss1 << " | ";
                                        }

                                        {
                                            const auto token = slot.prompt.tokens[i];
                                            const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
                                            ss0 << piece;
                                            st0 << std::setw(8) << token;
                                        }

                                        {
                                            const auto token = slot.task->tokens[i];
                                            const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
                                            ss1 << piece;
                                            st1 << std::setw(8) << token;
                                        }
                                    }

                                    SLT_WRN(slot, "%s\n", ss0.str().c_str());
                                    SLT_WRN(slot, "%s\n", ss1.str().c_str());

                                    SLT_WRN(slot, "%s\n", st0.str().c_str());
                                    SLT_WRN(slot, "%s\n", st1.str().c_str());
                                }

                                if (pos_min > pos_min_thold) {
                                    // TODO: support can be added in the future when corresponding vision models get released
                                    GGML_ASSERT(!slot.prompt.tokens.has_mtmd);

                                    SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);

                                    // search for a context checkpoint
                                    const auto it = std::find_if(
                                        slot.prompt.checkpoints.rbegin(),
                                        slot.prompt.checkpoints.rend(),
                                        [&](const auto & cur) {
                                            // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS]
                                            return cur.pos_min < pos_min_thold;
                                        }
                                    );

                                    bool do_reset = it == slot.prompt.checkpoints.rend();

                                    if (!do_reset) {
                                        // restore the context checkpoint
                                        const size_t checkpoint_size = it->data.size();
                                        const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);

                                        if (n != checkpoint_size) {
                                            SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
                                            do_reset = true;
                                            //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint");
                                        } else {
                                            n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max));
                                            SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
                                        }
                                    }

                                    if (do_reset) {
                                        SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n",
                                                "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
                                        n_past = 0;
                                    }
                                }
                            }

                            {
                                // erase any checkpoints with pos_min > pos_min_thold
                                for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) {
                                    const auto & cur = *it;
                                    if (cur.pos_min > pos_min_thold) {
                                        SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024);
                                        it = slot.prompt.checkpoints.erase(it);
                                    } else {
                                        ++it;
                                    }
                                }
                            }
                        }

                        // [TAG_PROMPT_LOGITS]
                        if (n_past == slot.task->n_tokens() && n_past > 0) {
                            SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens());
                            n_past--;
                            SLT_WRN(slot, "n_past was set to %d\n", n_past);
                        }

                        slot.n_prompt_tokens_cache     = n_past;
                        slot.n_prompt_tokens_processed = 0;

                        slot.prompt.tokens.keep_first(n_past);

                        // send initial 0% progress update if needed
                        // this is to signal the client that the request has started processing
                        if (slot.task->params.stream && slot.task->params.return_progress) {
                            send_partial_response(slot, {}, true);
                        }
                    }

                    if (!slot.can_split()) {
                        // cannot fit the prompt in the current batch - will try next iter
                        if (batch.n_tokens + slot.task->n_tokens() > n_batch) {
                            continue;
                        }
                    }

                    // truncate any tokens that are beyond n_past for this slot
                    const llama_pos p0 = slot.prompt.tokens.pos_next();

                    SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0);

                    if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) {
                        SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0);

                        clear_slot(slot, /*allow_processing=*/true);

                        // there is no common part left
                        slot.n_prompt_tokens_cache = 0;
                    }

                    // check if we should process the image
                    if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) {
                        // process the image
                        size_t n_tokens_out = 0;
                        int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out);
                        if (res != 0) {
                            SLT_ERR(slot, "failed to process image, res = %d\n", res);
                            send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
                            slot.release();
                            continue;
                        }

                        slot.n_prompt_tokens_processed += n_tokens_out;

                        // add the image chunk to cache
                        {
                            const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens());
                            slot.prompt.tokens.push_back(chunk.get()); // copy
                        }
                    }

                    // If using an alora, there may be uncached tokens that come
                    // before the invocation sequence. When this happens, the
                    // tokens before the invocation sequence need to be
                    // processed without the adapter in a separate batch, then
                    // the adapter needs to be enabled for the remaining tokens.
                    if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) {
                        SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
                        const auto & enabled_loras = lora_get_enabled_ids(slot.lora);
                        GGML_ASSERT(enabled_loras.size() == 1);
                        alora_scale = slot.lora[enabled_loras[0]].scale;
                        slot.lora[enabled_loras[0]].scale = 0.0f;
                        alora_disabled_id = enabled_loras[0];
                    }

                    bool do_checkpoint = params_base.n_ctx_checkpoints > 0;

                    // make checkpoints only for completion tasks
                    do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION;

                    // make a checkpoint of the parts of the memory that cannot be rolled back.
                    // checkpoints are created only if:
                    // - the model uses SWA and we are not using `swa_full`
                    // - the model architecture is marked as recurrent or hybrid
                    //
                    // TODO: try to make this conditional on the context or the memory module, instead of the model type
                    do_checkpoint = do_checkpoint && (
                            llama_model_is_recurrent(model) ||
                            llama_model_is_hybrid(model) ||
                            (llama_model_n_swa(model) > 0 && !params_base.swa_full)
                            );

                    // add prompt tokens for processing in the current batch
                    while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) {
                        // get next token to process
                        llama_token cur_tok = input_tokens[slot.prompt.n_tokens()];
                        if (cur_tok == LLAMA_TOKEN_NULL) {
                            break; // end of text chunk
                        }

                        // if this is an alora request with pre-invocation
                        // tokens that are not cached, we need to stop filling
                        // this batch at those pre-invocation tokens.
                        if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) {
                            SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
                            break;
                        }

                        // embedding requires all tokens in the batch to be output
                        common_batch_add(batch,
                            cur_tok,
                            slot.prompt.tokens.pos_next(),
                            { slot.id },
                            slot.need_embd());
                        slot.prompt.tokens.push_back(cur_tok);

                        slot.n_prompt_tokens_processed++;

                        // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created.
                        if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) {
                            break;
                        }
                    }

                    // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str());

                    SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens());

                    // entire prompt has been processed
                    if (slot.prompt.n_tokens() == slot.task->n_tokens()) {
                        slot.state = SLOT_STATE_DONE_PROMPT;

                        GGML_ASSERT(batch.n_tokens > 0);

                        common_sampler_reset(slot.smpl.get());

                        // Process all prompt tokens through sampler system
                        for (int i = 0; i < slot.task->n_tokens(); ++i) {
                            llama_token id = input_tokens[i];
                            if (id != LLAMA_TOKEN_NULL) {
                                common_sampler_accept(slot.smpl.get(), id, false);
                            }
                        }

                        // extract the logits only for the last token
                        batch.logits[batch.n_tokens - 1] = true;

                        slot.n_decoded = 0;
                        slot.i_batch   = batch.n_tokens - 1;

                        SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens);

                        const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
                        const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id);

                        // no need for empty or small checkpoints
                        do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64);

                        // no need to create checkpoints that are too close together
                        do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64);

                        if (do_checkpoint) {
                            while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) {
                                // make room for the new checkpoint, if needed
                                const auto & cur = slot.prompt.checkpoints.front();

                                SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
                                        cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);

                                slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin());
                            }

                            const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);

                            auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{
                                /*.pos_min = */ pos_min,
                                /*.pos_max = */ pos_max,
                                /*.data    = */ std::vector<uint8_t>(checkpoint_size),
                            });

                            llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);

                            SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
                                    (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
                        }
                    }
                }

                if (!slot_batched) {
                    slot_batched = &slot;
                }

                if (batch.n_tokens >= n_batch) {
                    break;
                }
            }
        }

        if (batch.n_tokens == 0) {
            SRV_WRN("%s", "no tokens to decode\n");
            return;
        }

        SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);

        if (slot_batched) {
            // apply lora, only need to do it once per batch
            common_set_adapter_lora(ctx, slot_batched->lora);

            // if the lora is temporarily disabled for an alora, re-enable it
            // for next time
            if (alora_scale > 0.0f) {
                SRV_DBG("re-enabling alora with scale %f\n", alora_scale);
                slot_batched->lora[alora_disabled_id].scale = alora_scale;
            }

            llama_set_embeddings(ctx, slot_batched->need_embd());
        }

        int32_t i_next = 0;

        // process the created batch of tokens
        for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
            const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);

            llama_batch batch_view = {
                n_tokens,
                batch.token    + i,
                nullptr,
                batch.pos      + i,
                batch.n_seq_id + i,
                batch.seq_id   + i,
                batch.logits   + i,
            };

            const int ret = llama_decode(ctx, batch_view);

            metrics.on_decoded(slots);

            if (ret != 0) {
                {
                    std::string err;

                    if (n_batch == 1 && ret == 1) {
                        // TODO: try to terminate only the largest active slot/sequence and continue with the rest
                        //       need to remove the tokens from the current batch too
                        err = "Context size has been exceeded.";
                    }

                    if (ret == -1) {
                        err = "Invalid input batch.";
                    }

                    if (ret < -1) {
                        // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
                        err = "Compute error.";
                    }

                    // TODO: handle ret == 2 (abort) when we start aborting

                    if (!err.empty()) {
                        SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);

                        for (auto & slot : slots) {
                            if (slot.is_processing()) {
                                send_error(slot, err);
                                slot.release();

                                // note: it's complicated to keep track of how much of the current batch has been
                                //       processed before the error occurred, so we simply clear the entire context
                                clear_slot(slot);
                            }
                        }

                        break;
                    }
                }

                // retry with half the batch size to try to find a free slot in the KV cache
                if (!try_clear_idle_slots()) {
                    n_batch /= 2;
                }

                SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);

                continue; // continue loop of n_batch
            }

            // move the head of the batch forward with the number of tokens we just processed
            i_next = i + n_tokens;

            // on successful decode, restore the original batch size
            n_batch = llama_n_batch(ctx);

            // technically, measuring the time here excludes the sampling time for the last batch
            // but on the other hand, we don't want to do too many system calls to measure the time, so it's ok
            const int64_t t_current = ggml_time_us();

            for (auto & slot : slots) {
                // may need to copy state to other slots
                if (slot.state == SLOT_STATE_DONE_PROMPT && slot.is_parent()) {
                    std::vector<server_slot *> child_slots;
                    for (auto & other : slots) {
                        if (other.state == SLOT_STATE_WAIT_OTHER && slot.task->id == other.task->id_parent) {
                            child_slots.push_back(&other);
                        }
                    }

                    // we can only proceed if all child slots are having the correct tasks
                    if (child_slots.size() == slot.task->n_children) {
                        // copy state to the child slots
                        for (auto & child : child_slots) {
                            SLT_INF(slot, "copying state to child %d\n", child->id);
                            slot.copy_state_to(*child);
                            child->state = SLOT_STATE_DONE_PROMPT;
                        }
                    }
                }

                // optionally send prompt processing progress
                if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
                    if (slot.task->params.stream && slot.task->params.return_progress) {
                        send_partial_response(slot, {}, true);
                    }
                }

                if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
                    continue; // continue loop of slots
                }

                if (slot.state == SLOT_STATE_DONE_PROMPT) {
                    if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) {
                        // prompt evaluated for embedding
                        send_embedding(slot, batch_view);
                        slot.release();
                        slot.i_batch = -1;
                        continue; // continue loop of slots
                    }

                    if (slot.task->type == SERVER_TASK_TYPE_RERANK) {
                        send_rerank(slot, batch_view);
                        slot.release();
                        slot.i_batch = -1;
                        continue; // continue loop of slots
                    }

                    // prompt evaluated for next-token prediction
                    slot.state = SLOT_STATE_GENERATING;
                } else if (slot.state != SLOT_STATE_GENERATING) {
                    continue; // continue loop of slots
                }

                if (slot.i_batch_dft.size() > 0) {
                    continue; // sample using speculative decoding
                }

                const int tok_idx = slot.i_batch - i;

                llama_token id = common_sampler_sample(slot.smpl.get(), ctx, tok_idx);

                slot.i_batch = -1;

                common_sampler_accept(slot.smpl.get(), id, true);

                slot.n_decoded += 1;

                if (slot.n_decoded == 1) {
                    slot.t_start_generation = t_current;
                    slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
                    metrics.on_prompt_eval(slot);
                }

                slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;

                completion_token_output result;
                result.tok          = id;
                result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
                result.prob         = 1.0f; // TODO: set it here instead of doing inside populate_token_probs

                if (slot.task->params.sampling.n_probs > 0) {
                    populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx);
                }

                if (!process_token(result, slot)) {
                    // release slot because of stop condition
                    slot.print_timings();
                    send_final_response(slot);
                    metrics.on_prediction(slot);
                    slot.release();

                    continue;
                }
            }

            // speculative decoding - main model sample and accept
            for (auto & slot : slots) {
                if (slot.state != SLOT_STATE_GENERATING || slot.i_batch_dft.empty()) {
                    continue;
                }

                size_t n_draft = slot.drafted.size();

                // the accepted tokens from the speculation
                const auto ids = common_sampler_sample_and_accept_n(slot.smpl.get(), ctx, slot.i_batch_dft, slot.drafted);
                slot.i_batch_dft.clear();
                slot.drafted.clear();

                slot.n_decoded += ids.size();

                slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;

                // update how many tokens out of those tested were accepted
                slot.n_draft_accepted += ids.size() - 1;

                // rollback to the state before sampling the draft tokens
                slot.prompt.tokens.keep_first(slot.prompt.n_tokens() - n_draft);

                // add accepted tokens to the prompt
                slot.prompt.tokens.insert({ids.begin(), ids.end() - 1});
                slot.sampled = ids.back(); // last accepted token

                llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1);

                for (size_t i = 0; i < ids.size(); ++i) {
                    completion_token_output result;

                    result.tok          = ids[i];
                    result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
                    result.prob         = 1.0f; // set later

                    // TODO: set result.probs

                    if (!process_token(result, slot)) {
                        slot.print_timings();
                        send_final_response(slot);
                        metrics.on_prediction(slot);
                        slot.release();

                        break;
                    }
                }

                SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) n_draft, slot.prompt.n_tokens());
            }
        }

        SRV_DBG("%s", "run slots completed\n");
    }

    int get_slot_n_ctx() {
        return slots.back().n_ctx;
    }

    server_response_reader get_response_reader() {
        return server_response_reader(queue_tasks, queue_results, HTTP_POLLING_SECONDS);
    }
};

//
// server_context (public API)
//

server_context::server_context() : impl(new server_context_impl()) {}
server_context::~server_context() = default;

bool server_context::load_model(const common_params & params) {
    return impl->load_model(params);
}

void server_context::start_loop() {
    auto & params = impl->params_base;
    impl->queue_tasks.start_loop(params.sleep_idle_seconds * 1000);
}

void server_context::terminate() {
    impl->queue_tasks.terminate();
}

llama_context * server_context::get_llama_context() const {
    return impl->ctx;
}

server_response_reader server_context::get_response_reader() {
    return impl->get_response_reader();
}

server_context_meta server_context::get_meta() const {
    auto tool_use_src = common_chat_templates_source(impl->chat_templates.get(), "tool_use");

    auto bos_id = llama_vocab_bos(impl->vocab);
    auto eos_id = llama_vocab_eos(impl->vocab);
    auto bos_token_str = bos_id != LLAMA_TOKEN_NULL ? common_token_to_piece(impl->ctx, bos_id, true) : "";
    auto eos_token_str = eos_id != LLAMA_TOKEN_NULL ? common_token_to_piece(impl->ctx, eos_id, true) : "";

    return server_context_meta {
        /* build_info             */ build_info,
        /* model_name             */ impl->model_name,
        /* model_path             */ impl->params_base.model.path,
        /* has_mtmd               */ impl->mctx != nullptr,
        /* has_inp_image          */ impl->oai_parser_opt.allow_image,
        /* has_inp_audio          */ impl->oai_parser_opt.allow_audio,
        /* json_webui_settings    */ impl->json_webui_settings,
        /* slot_n_ctx             */ impl->get_slot_n_ctx(),
        /* pooling_type           */ llama_pooling_type(impl->ctx),

        /* chat_template          */ common_chat_templates_source(impl->chat_templates.get()),
        /* chat_template_tool_use */ tool_use_src ? tool_use_src : "",

        /* bos_token_str          */ bos_token_str,
        /* eos_token_str          */ eos_token_str,
        /* fim_pre_token          */ llama_vocab_fim_pre(impl->vocab),
        /* fim_sub_token          */ llama_vocab_fim_suf(impl->vocab),
        /* fim_mid_token          */ llama_vocab_fim_mid(impl->vocab),

        /* model_vocab_type       */ llama_vocab_type(impl->vocab),
        /* model_vocab_n_tokens   */ llama_vocab_n_tokens(impl->vocab),
        /* model_n_ctx_train      */ llama_model_n_ctx_train(impl->model),
        /* model_n_embd_inp       */ llama_model_n_embd(impl->model),
        /* model_n_params         */ llama_model_n_params(impl->model),
        /* model_size             */ llama_model_size(impl->model),
    };
}



// generator-like API for HTTP response generation
// may have bypass_sleep = true if the task does not use ctx_server
struct server_res_generator : server_http_res {
    server_response_reader rd;
    server_res_generator(server_queue & queue_tasks, server_response & queue_results, int sleep_idle_seconds, bool bypass_sleep = false)
            : rd(queue_tasks, queue_results, HTTP_POLLING_SECONDS) {
        // fast path in case sleeping is disabled
        bypass_sleep |= sleep_idle_seconds < 0;
        if (!bypass_sleep) {
            queue_tasks.wait_until_no_sleep();
        }
    }
    void ok(const json & response_data) {
        status = 200;
        data = safe_json_to_str(response_data);
    }
    void error(const json & error_data) {
        status = json_value(error_data, "code", 500);
        data = safe_json_to_str({{ "error", error_data }});
    }
};



//
// server_routes
//

std::unique_ptr<server_res_generator> server_routes::handle_completions_impl(
            const server_http_req & req,
            server_task_type type,
            const json & data,
            const std::vector<raw_buffer> & files,
            task_response_type res_type) {
    GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);

    auto res = create_response();
    auto completion_id = gen_chatcmplid();
    auto & rd = res->rd;

    try {
        std::vector<server_task> tasks;

        const auto & prompt = data.at("prompt");
        // TODO: this log can become very long, put it behind a flag or think about a more compact format
        //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());

        // process prompt
        std::vector<server_tokens> inputs;

        if (res_type != TASK_RESPONSE_TYPE_NONE && ctx_server.mctx != nullptr) {
            // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
            inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
        } else {
            // Everything else, including multimodal completions.
            inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
        }
        tasks.reserve(inputs.size());
        for (size_t i = 0; i < inputs.size(); i++) {
            server_task task = server_task(type);

            task.id = rd.get_new_id();

            task.tokens = std::move(inputs[i]);
            task.params = server_task::params_from_json_cmpl(
                    ctx_server.vocab,
                    params,
                    meta->slot_n_ctx,
                    data);
            task.id_slot = json_value(data, "id_slot", -1);

            // OAI-compat
            task.params.res_type          = res_type;
            task.params.oaicompat_cmpl_id = completion_id;
            task.params.oaicompat_model   = meta->model_name;

            if (task.params.n_cmpl > 1) {
                task.n_children = task.params.n_cmpl - 1;
                for (size_t j = 0; j < task.n_children; j++) {
                    server_task child = task.create_child(
                        task.id,
                        rd.get_new_id());
                    tasks.push_back(std::move(child));
                }
            }

            tasks.push_back(std::move(task));
        }

        rd.post_tasks(std::move(tasks));
    } catch (const std::exception & e) {
        res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
        return res;
    }

    bool stream = json_value(data, "stream", false);

    if (!stream) {
        // non-stream, wait for the results
        auto all_results = rd.wait_for_all(req.should_stop);
        if (all_results.is_terminated) {
            return res; // connection is closed
        } else if (all_results.error) {
            res->error(all_results.error->to_json());
            return res;
        } else {
            json arr = json::array();
            for (auto & res : all_results.results) {
                GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
                arr.push_back(res->to_json());
            }
            GGML_ASSERT(!arr.empty() && "empty results");
            if (arr.size() == 1) {
                // if single request, return single object instead of array
                res->ok(arr[0]);
            } else if (res_type == TASK_RESPONSE_TYPE_OAI_CHAT || res_type == TASK_RESPONSE_TYPE_OAI_CMPL) {
                // if multiple results in OAI format, we need to re-format them
                json & choices = arr[0]["choices"];
                for (size_t i = 1; i < arr.size(); i++) {
                    choices.push_back(std::move(arr[i]["choices"][0]));
                }
                res->ok(arr[0]);
            } else {
                // multi-results, non-OAI compat
                res->ok(arr);
            }
        }
    } else {
        // in streaming mode, the first error must be treated as non-stream response
        // this is to match the OAI API behavior
        // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309
        auto first_result = rd.next(req.should_stop);
        if (first_result == nullptr) {
            GGML_ASSERT(req.should_stop());
            return res; // connection is closed
        }

        if (first_result->is_error()) {
            res->error(first_result->to_json());
            return res;
        }

        GGML_ASSERT(
            dynamic_cast<server_task_result_cmpl_partial*>(first_result.get()) != nullptr ||
            dynamic_cast<server_task_result_cmpl_final*>  (first_result.get()) != nullptr
        );

        // next responses are streamed
        // to be sent immediately
        json first_result_json = first_result->to_json();
        if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
            res->data = format_anthropic_sse(first_result_json);
        } else {
            res->data = format_oai_sse(first_result_json);
        }
        res->status = 200;
        res->content_type = "text/event-stream";
        res->next = [res_this = res.get(), res_type, &req](std::string & output) -> bool {
            static auto format_error = [](task_response_type res_type, const json & res_json) {
                if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
                    return format_anthropic_sse({
                        {"event", "error"},
                        {"data", res_json},
                    });
                } else {
                    return format_oai_sse(json {{ "error", res_json }});
                }
            };

            try {
                if (req.should_stop()) {
                    SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
                    return false; // should_stop condition met
                }

                if (!res_this->data.empty()) {
                    // flush the first chunk
                    output = std::move(res_this->data);
                    res_this->data.clear();
                    return true;
                }

                server_response_reader & rd = res_this->rd;

                // check if there is more data
                if (!rd.has_next()) {
                    if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
                        // Anthropic doesn't send [DONE], message_stop was already sent
                        output = "";
                    } else if (res_type != TASK_RESPONSE_TYPE_NONE) {
                        output = "data: [DONE]\n\n";
                    } else {
                        output = "";
                    }
                    SRV_DBG("%s", "all results received, terminating stream\n");
                    return false; // no more data, terminate
                }

                // receive subsequent results
                auto result = rd.next(req.should_stop);
                if (result == nullptr) {
                    SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
                    GGML_ASSERT(req.should_stop());
                    return false; // should_stop condition met
                }

                // send the results
                if (result->is_error()) {
                    json res_json = result->to_json();
                    output = format_error(res_type, res_json);
                    SRV_DBG("%s", "error received during streaming, terminating stream\n");
                    return false; // terminate on error
                } else {
                    GGML_ASSERT(
                        dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
                        || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
                    );
                    json res_json = result->to_json();
                    if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
                        output = format_anthropic_sse(res_json);
                    } else {
                        output = format_oai_sse(res_json);
                    }
                }

                // has next data, continue
                return true;

            } catch (const std::exception & e) {
                json error_json = format_error_response(e.what(), ERROR_TYPE_SERVER);
                output = format_error(res_type, error_json);

                // terminate on exception
                return false;
            }
        };
    }

    return res;
}

std::unique_ptr<server_res_generator> server_routes::create_response(bool bypass_sleep) {
    return std::make_unique<server_res_generator>(queue_tasks, queue_results, params.sleep_idle_seconds, bypass_sleep);
}

server_routes::server_routes(const common_params & params, server_context & ctx_server)
        : params(params),
          ctx_server(*ctx_server.impl),
          queue_tasks(ctx_server.impl->queue_tasks),
          queue_results(ctx_server.impl->queue_results) {
    init_routes();
}

void server_routes::init_routes() {
    // IMPORTANT: all lambda functions must start with create_response()
    // this is to ensure that the server_res_generator can handle sleeping case correctly

    this->get_health = [this](const server_http_req &) {
        // error and loading states are handled by middleware
        auto res = create_response(true);

        // this endpoint can be accessed during sleeping
        // the next LOC is to avoid someone accidentally use ctx_server
        bool server_ctx; // do NOT delete this line
        GGML_UNUSED(server_ctx);

        res->ok({{"status", "ok"}});
        return res;
    };

    this->get_metrics = [this](const server_http_req & req) {
        auto res = create_response();
        if (!params.endpoint_metrics) {
            res->error(format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
            return res;
        }

        // request slots data using task queue
        {
            server_task task(SERVER_TASK_TYPE_METRICS);
            task.id = res->rd.get_new_id();
            res->rd.post_task(std::move(task), true); // high-priority task
        }

        // get the result
        auto result = res->rd.next(req.should_stop);
        if (!result) {
            // connection was closed
            GGML_ASSERT(req.should_stop());
            return res;
        }

        if (result->is_error()) {
            res->error(result->to_json());
            return res;
        }

        // TODO: get rid of this dynamic_cast
        auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
        GGML_ASSERT(res_task != nullptr);

        // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
        json all_metrics_def = json {
            {"counter", {{
                    {"name",  "prompt_tokens_total"},
                    {"help",  "Number of prompt tokens processed."},
                    {"value",  (uint64_t) res_task->n_prompt_tokens_processed_total}
            }, {
                    {"name",  "prompt_seconds_total"},
                    {"help",  "Prompt process time"},
                    {"value",  (uint64_t) res_task->t_prompt_processing_total / 1.e3}
            }, {
                    {"name",  "tokens_predicted_total"},
                    {"help",  "Number of generation tokens processed."},
                    {"value",  (uint64_t) res_task->n_tokens_predicted_total}
            }, {
                    {"name",  "tokens_predicted_seconds_total"},
                    {"help",  "Predict process time"},
                    {"value",  (uint64_t) res_task->t_tokens_generation_total / 1.e3}
            }, {
                    {"name",  "n_decode_total"},
                    {"help",  "Total number of llama_decode() calls"},
                    {"value",  res_task->n_decode_total}
            }, {
                    {"name",  "n_tokens_max"},
                    {"help",  "Largest observed n_tokens."},
                    {"value",  res_task->n_tokens_max}
            }, {
                    {"name",  "n_busy_slots_per_decode"},
                    {"help",  "Average number of busy slots per llama_decode() call"},
                    {"value",  (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)}
            }}},
            {"gauge", {{
                    {"name",  "prompt_tokens_seconds"},
                    {"help",  "Average prompt throughput in tokens/s."},
                    {"value",  res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.}
            },{
                    {"name",  "predicted_tokens_seconds"},
                    {"help",  "Average generation throughput in tokens/s."},
                    {"value",  res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.}
            },{
                    {"name",  "requests_processing"},
                    {"help",  "Number of requests processing."},
                    {"value",  (uint64_t) res_task->n_processing_slots}
            },{
                    {"name",  "requests_deferred"},
                    {"help",  "Number of requests deferred."},
                    {"value",  (uint64_t) res_task->n_tasks_deferred}
            }}}
        };

        std::stringstream prometheus;

        for (const auto & el : all_metrics_def.items()) {
            const auto & type        = el.key();
            const auto & metrics_def = el.value();

            for (const auto & metric_def : metrics_def) {
                const std::string name = metric_def.at("name");
                const std::string help = metric_def.at("help");

                auto value = json_value(metric_def, "value", 0.);
                prometheus << "# HELP llamacpp:" << name << " " << help  << "\n"
                            << "# TYPE llamacpp:" << name << " " << type  << "\n"
                            << "llamacpp:"        << name << " " << value << "\n";
            }
        }

        res->headers["Process-Start-Time-Unix"] = std::to_string(res_task->t_start);
        res->content_type = "text/plain; version=0.0.4";
        res->status = 200;
        res->data = prometheus.str();
        return res;
    };

    this->get_slots = [this](const server_http_req & req) {
        auto res = create_response();
        if (!params.endpoint_slots) {
            res->error(format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
            return res;
        }

        // request slots data using task queue
        {
            server_task task(SERVER_TASK_TYPE_METRICS);
            task.id = res->rd.get_new_id();
            res->rd.post_task(std::move(task), true); // high-priority task
        }

        // get the result
        auto result = res->rd.next(req.should_stop);
        if (!result) {
            // connection was closed
            GGML_ASSERT(req.should_stop());
            return res;
        }

        if (result->is_error()) {
            res->error(result->to_json());
            return res;
        }

        // TODO: get rid of this dynamic_cast
        auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
        GGML_ASSERT(res_task != nullptr);

        // optionally return "fail_on_no_slot" error
        if (!req.get_param("fail_on_no_slot").empty()) {
            if (res_task->n_idle_slots == 0) {
                res->error(format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
                return res;
            }
        }

        res->ok(res_task->slots_data);
        return res;
    };

    this->post_slots = [this](const server_http_req & req) {
        auto res = create_response();
        if (params.slot_save_path.empty()) {
            res->error(format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
            return res;
        }

        std::string id_slot_str = req.get_param("id_slot");
        int id_slot;

        try {
            id_slot = std::stoi(id_slot_str);
        } catch (const std::exception &) {
            res->error(format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }

        std::string action = req.get_param("action");

        if (action == "save") {
            return handle_slots_save(req, id_slot);
        } else if (action == "restore") {
            return handle_slots_restore(req, id_slot);
        } else if (action == "erase") {
            return handle_slots_erase(req, id_slot);
        } else {
            res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }
    };

    this->get_props = [this](const server_http_req &) {
        auto res = create_response(true);

        // this endpoint can be accessed during sleeping
        // the next LOC is to avoid someone accidentally use ctx_server
        bool server_ctx; // do NOT delete this line
        GGML_UNUSED(server_ctx);

        task_params tparams;
        tparams.sampling = params.sampling;
        json default_generation_settings_for_props = json {
            { "params", tparams.to_json(true) },
            { "n_ctx",  meta->slot_n_ctx },
        };

        json props = {
            { "default_generation_settings", default_generation_settings_for_props },
            { "total_slots",                 params.n_parallel },
            { "model_alias",                 meta->model_name },
            { "model_path",                  meta->model_path },
            { "modalities",                  json {
                {"vision", meta->has_inp_image},
                {"audio",  meta->has_inp_audio},
            } },
            { "endpoint_slots",              params.endpoint_slots },
            { "endpoint_props",              params.endpoint_props },
            { "endpoint_metrics",            params.endpoint_metrics },
            { "webui",                       params.webui },
            { "webui_settings",              meta->json_webui_settings },
            { "chat_template",               meta->chat_template },
            { "bos_token",                   meta->bos_token_str },
            { "eos_token",                   meta->eos_token_str },
            { "build_info",                  meta->build_info },
            { "is_sleeping",                 queue_tasks.is_sleeping() },
        };
        if (params.use_jinja) {
            if (!meta->chat_template_tool_use.empty()) {
                props["chat_template_tool_use"] = meta->chat_template_tool_use;
            }
        }
        res->ok(props);
        return res;
    };

    this->post_props = [this](const server_http_req &) {
        auto res = create_response();
        if (!params.endpoint_props) {
            res->error(format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
            return res;
        }
        // update any props here

        res->ok({{ "success", true }});
        return res;
    };

    this->get_api_show = [this](const server_http_req &) {
        auto res = create_response();
        json data = {
            {
                "model_info", {
                    { "llama.context_length", meta->slot_n_ctx },
                }
            },
            {"modelfile", ""},
            {"parameters", ""},
            {"template", meta->chat_template},
            {"details", {
                {"parent_model", ""},
                {"format", "gguf"},
                {"family", ""},
                {"families", {""}},
                {"parameter_size", ""},
                {"quantization_level", ""}
            }},
            {"model_info", ""},
            {"capabilities", meta->has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
        };

        res->ok(data);
        return res;
    };

    this->post_infill = [this](const server_http_req & req) {
        auto res = create_response();
        // check model compatibility
        std::string err;
        if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
            err += "prefix token is missing. ";
        }
        if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
            err += "suffix token is missing. ";
        }
        if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
            err += "middle token is missing. ";
        }
        if (!err.empty()) {
            res->error(format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
            return res;
        }

        // validate input
        json data = json::parse(req.body);
        if (data.contains("prompt") && !data.at("prompt").is_string()) {
            // prompt is optional
            res->error(format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
        }

        if (!data.contains("input_prefix")) {
            res->error(format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
        }

        if (!data.contains("input_suffix")) {
            res->error(format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
        }

        if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
            // input_extra is optional
            res->error(format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }

        json input_extra = json_value(data, "input_extra", json::array());
        for (const auto & chunk : input_extra) {
            // { "text": string, "filename": string }
            if (!chunk.contains("text") || !chunk.at("text").is_string()) {
                res->error(format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
                return res;
            }
            // filename is optional
            if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
                res->error(format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
                return res;
            }
        }
        data["input_extra"] = input_extra; // default to empty array if it's not exist

        std::string prompt = json_value(data, "prompt", std::string());
        std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
        SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
        data["prompt"] = format_prompt_infill(
            ctx_server.vocab,
            data.at("input_prefix"),
            data.at("input_suffix"),
            data.at("input_extra"),
            params.n_batch,
            params.n_predict,
            meta->slot_n_ctx,
            params.spm_infill,
            tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
        );

        std::vector<raw_buffer> files; // dummy
        return handle_completions_impl(
            req,
            SERVER_TASK_TYPE_INFILL,
            data,
            files,
            TASK_RESPONSE_TYPE_NONE); // infill is not OAI compatible
    };

    this->post_completions = [this](const server_http_req & req) {
        auto res = create_response();
        std::vector<raw_buffer> files; // dummy
        const json body = json::parse(req.body);
        return handle_completions_impl(
            req,
            SERVER_TASK_TYPE_COMPLETION,
            body,
            files,
            TASK_RESPONSE_TYPE_NONE);
    };

    this->post_completions_oai = [this](const server_http_req & req) {
        auto res = create_response();
        std::vector<raw_buffer> files; // dummy
        const json body = json::parse(req.body);
        return handle_completions_impl(
            req,
            SERVER_TASK_TYPE_COMPLETION,
            body,
            files,
            TASK_RESPONSE_TYPE_OAI_CMPL);
    };

    this->post_chat_completions = [this](const server_http_req & req) {
        auto res = create_response();
        std::vector<raw_buffer> files;
        json body = json::parse(req.body);
        json body_parsed = oaicompat_chat_params_parse(
            body,
            ctx_server.oai_parser_opt,
            files);
        return handle_completions_impl(
            req,
            SERVER_TASK_TYPE_COMPLETION,
            body_parsed,
            files,
            TASK_RESPONSE_TYPE_OAI_CHAT);
    };

    this->post_anthropic_messages = [this](const server_http_req & req) {
        auto res = create_response();
        std::vector<raw_buffer> files;
        json body = convert_anthropic_to_oai(json::parse(req.body));
        json body_parsed = oaicompat_chat_params_parse(
            body,
            ctx_server.oai_parser_opt,
            files);
        return handle_completions_impl(
            req,
            SERVER_TASK_TYPE_COMPLETION,
            body_parsed,
            files,
            TASK_RESPONSE_TYPE_ANTHROPIC);
    };

    this->post_anthropic_count_tokens = [this](const server_http_req & req) {
        auto res = create_response();
        std::vector<raw_buffer> files;
        json body = convert_anthropic_to_oai(json::parse(req.body));
        json body_parsed = oaicompat_chat_params_parse(
            body,
            ctx_server.oai_parser_opt,
            files);

        json prompt = body_parsed.at("prompt");
        llama_tokens tokens = tokenize_mixed(ctx_server.vocab, prompt, true, true);
        res->ok({{"input_tokens", static_cast<int>(tokens.size())}});
        return res;
    };

    // same with handle_chat_completions, but without inference part
    this->post_apply_template = [this](const server_http_req & req) {
        auto res = create_response();
        std::vector<raw_buffer> files; // dummy, unused
        json body = json::parse(req.body);
        json data = oaicompat_chat_params_parse(
            body,
            ctx_server.oai_parser_opt,
            files);
        res->ok({{ "prompt", std::move(data.at("prompt")) }});
        return res;
    };

    this->get_models = [this](const server_http_req &) {
        auto res = create_response(true);

        // this endpoint can be accessed during sleeping
        // the next LOC is to avoid someone accidentally use ctx_server
        bool server_ctx; // do NOT delete this line
        GGML_UNUSED(server_ctx);

        json models = {
            {"models", {
                {
                    {"name",  meta->model_name},
                    {"model", meta->model_name},
                    {"modified_at", ""},
                    {"size", ""},
                    {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
                    {"type", "model"},
                    {"description", ""},
                    {"tags", {""}},
                    {"capabilities", meta->has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
                    {"parameters", ""},
                    {"details", {
                        {"parent_model", ""},
                        {"format", "gguf"},
                        {"family", ""},
                        {"families", {""}},
                        {"parameter_size", ""},
                        {"quantization_level", ""}
                    }}
                }
            }},
            {"object", "list"},
            {"data", {
                {
                    {"id",       meta->model_name},
                    {"object",   "model"},
                    {"created",  std::time(0)},
                    {"owned_by", "llamacpp"},
                    {"meta",     {
                        {"vocab_type",  meta->model_vocab_type},
                        {"n_vocab",     meta->model_vocab_n_tokens},
                        {"n_ctx_train", meta->model_n_ctx_train},
                        {"n_embd",      meta->model_n_embd_inp},
                        {"n_params",    meta->model_n_params},
                        {"size",        meta->model_size},
                    }},
                },
            }}
        };

        res->ok(models);
        return res;
    };

    this->post_tokenize = [this](const server_http_req & req) {
        auto res = create_response();
        const json body = json::parse(req.body);
        json tokens_response = json::array();
        if (body.count("content") != 0) {
            const bool add_special = json_value(body, "add_special", false);
            const bool parse_special = json_value(body, "parse_special", true);
            const bool with_pieces = json_value(body, "with_pieces", false);

            llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);

            if (with_pieces) {
                for (const auto& token : tokens) {
                    std::string piece = common_token_to_piece(ctx_server.vocab, token);
                    json piece_json;

                    // Check if the piece is valid UTF-8
                    if (is_valid_utf8(piece)) {
                        piece_json = piece;
                    } else {
                        // If not valid UTF-8, store as array of byte values
                        piece_json = json::array();
                        for (unsigned char c : piece) {
                            piece_json.push_back(static_cast<int>(c));
                        }
                    }

                    tokens_response.push_back({
                        {"id", token},
                        {"piece", piece_json}
                    });
                }
            } else {
                tokens_response = tokens;
            }
        }

        res->ok(json{{"tokens", std::move(tokens_response)}});
        return res;
    };

    this->post_detokenize = [this](const server_http_req & req) {
        auto res = create_response();
        const json body = json::parse(req.body);

        std::string content;
        if (body.count("tokens") != 0) {
            const llama_tokens tokens = body.at("tokens");
            content = tokens_to_str(ctx_server.vocab, tokens);
        }

        res->ok(json{{"content", std::move(content)}});
        return res;
    };

    this->post_embeddings = [this](const server_http_req & req) {
        return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_NONE);
    };

    this->post_embeddings_oai = [this](const server_http_req & req) {
        return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_OAI_EMBD);
    };

    this->post_rerank = [this](const server_http_req & req) {
        auto res = create_response();
        if (!params.embedding || params.pooling_type != LLAMA_POOLING_TYPE_RANK) {
            res->error(format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
            return res;
        }

        const json body = json::parse(req.body);

        // if true, use TEI API format, otherwise use Jina API format
        // Jina: https://jina.ai/reranker/
        // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
        bool is_tei_format = body.contains("texts");

        json query;
        if (body.count("query") == 1) {
            query = body.at("query");
            if (!query.is_string()) {
                res->error(format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
                return res;
            }
        } else {
            res->error(format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }

        std::vector<std::string> documents = json_value(body, "documents",
                                             json_value(body, "texts", std::vector<std::string>()));
        if (documents.empty()) {
            res->error(format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }

        int top_n = json_value(body, "top_n", (int)documents.size());

        // create and queue the task
        json responses = json::array();
        auto & rd = res->rd;
        {
            std::vector<server_task> tasks;
            tasks.reserve(documents.size());
            for (size_t i = 0; i < documents.size(); i++) {
                auto tmp = format_prompt_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
                server_task task = server_task(SERVER_TASK_TYPE_RERANK);
                task.id     = rd.get_new_id();
                task.tokens = std::move(tmp);
                tasks.push_back(std::move(task));
            }
            rd.post_tasks(std::move(tasks));
        }

        // wait for the results
        auto all_results = rd.wait_for_all(req.should_stop);

        // collect results
        if (all_results.is_terminated) {
            return res; // connection is closed
        } else if (all_results.error) {
            res->error(all_results.error->to_json());
            return res;
        } else {
            for (auto & res : all_results.results) {
                GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
                responses.push_back(res->to_json());
            }
        }

        // write JSON response
        json root = format_response_rerank(
            body,
            meta->model_name,
            responses,
            is_tei_format,
            documents,
            top_n);

        res->ok(root);
        return res;
    };

    this->get_lora_adapters = [this](const server_http_req & req) {
        auto res = create_response();

        auto & rd = res->rd;
        {
            server_task task(SERVER_TASK_TYPE_GET_LORA);
            task.id = rd.get_new_id();
            rd.post_task(std::move(task));
        }

        // get the result
        auto result = rd.next(req.should_stop);
        if (!result) {
            // connection was closed
            GGML_ASSERT(req.should_stop());
            return res;
        }

        if (result->is_error()) {
            res->error(result->to_json());
            return res;
        }

        GGML_ASSERT(dynamic_cast<server_task_result_get_lora*>(result.get()) != nullptr);
        res->ok(result->to_json());
        return res;
    };

    this->post_lora_adapters = [this](const server_http_req & req) {
        auto res = create_response();
        const json body = json::parse(req.body);
        if (!body.is_array()) {
            res->error(format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }

        auto & rd = res->rd;
        {
            server_task task(SERVER_TASK_TYPE_SET_LORA);
            task.id = rd.get_new_id();
            task.set_lora = parse_lora_request(body);
            rd.post_task(std::move(task));
        }

        // get the result
        auto result = rd.next(req.should_stop);
        if (!result) {
            // connection was closed
            GGML_ASSERT(req.should_stop());
            return res;
        }

        if (result->is_error()) {
            res->error(result->to_json());
            return res;
        }

        GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
        res->ok(result->to_json());
        return res;
    };
}

std::unique_ptr<server_res_generator> server_routes::handle_slots_save(const server_http_req & req, int id_slot) {
    auto res = create_response();
    const json request_data = json::parse(req.body);
    std::string filename = request_data.at("filename");
    if (!fs_validate_filename(filename)) {
        res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
        return res;
    }
    std::string filepath = params.slot_save_path + filename;

    auto & rd = res->rd;
    {
        server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
        task.id = rd.get_new_id();
        task.slot_action.slot_id  = id_slot;
        task.slot_action.filename = filename;
        task.slot_action.filepath = filepath;
        rd.post_task(std::move(task));
    }

    auto result = rd.next(req.should_stop);
    if (!result) {
        // connection was closed
        GGML_ASSERT(req.should_stop());
        return res;
    }

    if (result->is_error()) {
        res->error(result->to_json());
        return res;
    }

    res->ok(result->to_json());
    return res;
}

std::unique_ptr<server_res_generator> server_routes::handle_slots_restore(const server_http_req & req, int id_slot) {
    auto res = create_response();
    const json request_data = json::parse(req.body);
    std::string filename = request_data.at("filename");
    if (!fs_validate_filename(filename)) {
        res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
        return res;
    }
    std::string filepath = params.slot_save_path + filename;

    auto & rd = res->rd;
    {
        server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
        task.id = rd.get_new_id();
        task.slot_action.slot_id  = id_slot;
        task.slot_action.filename = filename;
        task.slot_action.filepath = filepath;
        rd.post_task(std::move(task));
    }

    auto result = rd.next(req.should_stop);
    if (!result) {
        // connection was closed
        GGML_ASSERT(req.should_stop());
        return res;
    }

    if (result->is_error()) {
        res->error(result->to_json());
        return res;
    }

    GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
    res->ok(result->to_json());
    return res;
}

std::unique_ptr<server_res_generator> server_routes::handle_slots_erase(const server_http_req & req, int id_slot) {
    auto res = create_response();
    auto & rd = res->rd;
    {
        server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
        task.id = rd.get_new_id();
        task.slot_action.slot_id = id_slot;
        rd.post_task(std::move(task));
    }

    auto result = rd.next(req.should_stop);
    if (!result) {
        // connection was closed
        GGML_ASSERT(req.should_stop());
        return res;
    }

    if (result->is_error()) {
        res->error(result->to_json());
        return res;
    }

    GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
    res->ok(result->to_json());
    return res;
}

std::unique_ptr<server_res_generator> server_routes::handle_embeddings_impl(const server_http_req & req, task_response_type res_type) {
    auto res = create_response();
    if (!params.embedding) {
        res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
        return res;
    }

    if (res_type != TASK_RESPONSE_TYPE_NONE && meta->pooling_type == LLAMA_POOLING_TYPE_NONE) {
        res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
        return res;
    }

    const json body = json::parse(req.body);

    // for the shape of input/content, see tokenize_input_prompts()
    json prompt;
    if (body.count("input") != 0) {
        prompt = body.at("input");
    } else if (body.contains("content")) {
        res_type = TASK_RESPONSE_TYPE_NONE; // "content" field is not OAI compatible
        prompt = body.at("content");
    } else {
        res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
        return res;
    }

    bool use_base64 = false;
    if (body.count("encoding_format") != 0) {
        const std::string & format = body.at("encoding_format");
        if (format == "base64") {
            use_base64 = true;
        } else if (format != "float") {
            res->error(format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }
    }

    auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
    for (const auto & tokens : tokenized_prompts) {
        // this check is necessary for models that do not add BOS token to the input
        if (tokens.empty()) {
            res->error(format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
            return res;
        }
    }

    int embd_normalize = 2; // default to Euclidean/L2 norm
    if (body.count("embd_normalize") != 0) {
        embd_normalize = body.at("embd_normalize");
        if (meta->pooling_type == LLAMA_POOLING_TYPE_NONE) {
            SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", meta->pooling_type);
        }
    }

    // create and queue the task
    json responses = json::array();
    auto & rd = res->rd;
    {
        std::vector<server_task> tasks;
        for (size_t i = 0; i < tokenized_prompts.size(); i++) {
            server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);

            task.id     = rd.get_new_id();
            task.tokens = std::move(tokenized_prompts[i]);

            // OAI-compat
            task.params.res_type = res_type;
            task.params.embd_normalize = embd_normalize;

            tasks.push_back(std::move(task));
        }
        rd.post_tasks(std::move(tasks));
    }

    // wait for the results
    auto all_results = rd.wait_for_all(req.should_stop);

    // collect results
    if (all_results.is_terminated) {
        return res; // connection is closed
    } else if (all_results.error) {
        res->error(all_results.error->to_json());
        return res;
    } else {
        for (auto & res : all_results.results) {
            GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
            responses.push_back(res->to_json());
        }
    }

    // write JSON response
    json root = res_type == TASK_RESPONSE_TYPE_OAI_EMBD
        ? format_embeddings_response_oaicompat(body, meta->model_name, responses, use_base64)
        : json(responses);
    res->ok(root);
    return res;
}