1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
|
#include "server-common.h"
#include "server-task.h"
#include "common.h"
#include "llama.h"
#include "chat.h"
#include "sampling.h"
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
//
// task_params
//
json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
json data = json::array();
for (const auto & lb : logit_bias) {
data.push_back(json{
{"bias", lb.bias},
{"token", lb.token},
});
}
return data;
}
json task_params::to_json(bool only_metrics) const {
std::vector<std::string> samplers;
samplers.reserve(sampling.samplers.size());
for (const auto & sampler : sampling.samplers) {
samplers.emplace_back(common_sampler_type_to_str(sampler));
}
json lora = json::array();
for (auto & it : this->lora) {
lora.push_back({{"id", it.first}, {"scale", it.second}});
}
if (only_metrics) {
return json {
{"seed", sampling.seed},
{"temperature", sampling.temp},
{"dynatemp_range", sampling.dynatemp_range},
{"dynatemp_exponent", sampling.dynatemp_exponent},
{"top_k", sampling.top_k},
{"top_p", sampling.top_p},
{"min_p", sampling.min_p},
{"top_n_sigma", sampling.top_n_sigma},
{"xtc_probability", sampling.xtc_probability},
{"xtc_threshold", sampling.xtc_threshold},
{"typical_p", sampling.typ_p},
{"repeat_last_n", sampling.penalty_last_n},
{"repeat_penalty", sampling.penalty_repeat},
{"presence_penalty", sampling.penalty_present},
{"frequency_penalty", sampling.penalty_freq},
{"dry_multiplier", sampling.dry_multiplier},
{"dry_base", sampling.dry_base},
{"dry_allowed_length", sampling.dry_allowed_length},
{"dry_penalty_last_n", sampling.dry_penalty_last_n},
{"mirostat", sampling.mirostat},
{"mirostat_tau", sampling.mirostat_tau},
{"mirostat_eta", sampling.mirostat_eta},
{"max_tokens", n_predict},
{"n_predict", n_predict}, // TODO: deduplicate?
{"n_keep", n_keep},
{"n_discard", n_discard},
{"ignore_eos", sampling.ignore_eos},
{"stream", stream},
{"n_probs", sampling.n_probs},
{"min_keep", sampling.min_keep},
{"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
{"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
{"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
{"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
{"samplers", samplers},
{"speculative.n_max", speculative.n_max},
{"speculative.n_min", speculative.n_min},
{"speculative.p_min", speculative.p_min},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
{"lora", lora},
};
}
auto grammar_triggers = json::array();
for (const auto & trigger : sampling.grammar_triggers) {
server_grammar_trigger ct(trigger);
grammar_triggers.push_back(ct.to_json());
}
return json {
{"seed", sampling.seed},
{"temperature", sampling.temp},
{"dynatemp_range", sampling.dynatemp_range},
{"dynatemp_exponent", sampling.dynatemp_exponent},
{"top_k", sampling.top_k},
{"top_p", sampling.top_p},
{"min_p", sampling.min_p},
{"top_n_sigma", sampling.top_n_sigma},
{"xtc_probability", sampling.xtc_probability},
{"xtc_threshold", sampling.xtc_threshold},
{"typical_p", sampling.typ_p},
{"repeat_last_n", sampling.penalty_last_n},
{"repeat_penalty", sampling.penalty_repeat},
{"presence_penalty", sampling.penalty_present},
{"frequency_penalty", sampling.penalty_freq},
{"dry_multiplier", sampling.dry_multiplier},
{"dry_base", sampling.dry_base},
{"dry_allowed_length", sampling.dry_allowed_length},
{"dry_penalty_last_n", sampling.dry_penalty_last_n},
{"dry_sequence_breakers", sampling.dry_sequence_breakers},
{"mirostat", sampling.mirostat},
{"mirostat_tau", sampling.mirostat_tau},
{"mirostat_eta", sampling.mirostat_eta},
{"stop", antiprompt},
{"max_tokens", n_predict},
{"n_predict", n_predict}, // TODO: deduplicate?
{"n_keep", n_keep},
{"n_discard", n_discard},
{"ignore_eos", sampling.ignore_eos},
{"stream", stream},
{"logit_bias", format_logit_bias(sampling.logit_bias)},
{"n_probs", sampling.n_probs},
{"min_keep", sampling.min_keep},
{"grammar", sampling.grammar},
{"grammar_lazy", sampling.grammar_lazy},
{"grammar_triggers", grammar_triggers},
{"preserved_tokens", sampling.preserved_tokens},
{"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
{"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
{"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
{"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
{"samplers", samplers},
{"speculative.n_max", speculative.n_max},
{"speculative.n_min", speculative.n_min},
{"speculative.p_min", speculative.p_min},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
{"lora", lora},
};
}
//
// server_task
//
task_params server_task::params_from_json_cmpl(
const llama_vocab * vocab,
const common_params & params_base,
const int n_ctx_slot,
const json & data) {
task_params params;
// Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
task_params defaults;
defaults.sampling = params_base.sampling;
defaults.speculative = params_base.speculative;
defaults.n_keep = params_base.n_keep;
defaults.n_predict = params_base.n_predict;
defaults.n_cache_reuse = params_base.n_cache_reuse;
defaults.antiprompt = params_base.antiprompt;
// enabling this will output extra debug information in the HTTP responses from the server
params.verbose = params_base.verbosity > 9;
params.timings_per_token = json_value(data, "timings_per_token", false);
params.stream = json_value(data, "stream", false);
auto stream_opt = json_value(data, "stream_options", json::object());
params.include_usage = json_value(stream_opt, "include_usage", false);
params.cache_prompt = json_value(data, "cache_prompt", true);
params.return_tokens = json_value(data, "return_tokens", false);
params.return_progress = json_value(data, "return_progress", false);
params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
params.n_indent = json_value(data, "n_indent", defaults.n_indent);
params.n_keep = json_value(data, "n_keep", defaults.n_keep);
params.n_discard = json_value(data, "n_discard", defaults.n_discard);
params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
params.n_cache_reuse = json_value(data, "n_cache_reuse", defaults.n_cache_reuse);
//params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
params.speculative.n_min = std::max(params.speculative.n_min, 0);
params.speculative.n_max = std::max(params.speculative.n_max, 0);
// Use OpenAI API logprobs only if n_probs wasn't provided
if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
}
if (data.contains("lora")) {
if (data.at("lora").is_array()) {
params.lora = parse_lora_request(data.at("lora"));
} else {
throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
}
} else {
params.lora = {};
}
// TODO: add more sanity checks for the input parameters
if (params.sampling.penalty_last_n < -1) {
throw std::runtime_error("Error: repeat_last_n must be >= -1");
}
if (params.sampling.dry_penalty_last_n < -1) {
throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
}
if (params.sampling.penalty_last_n == -1) {
// note: should be the slot's context and not the full context, but it's ok
params.sampling.penalty_last_n = n_ctx_slot;
}
if (params.sampling.dry_penalty_last_n == -1) {
params.sampling.dry_penalty_last_n = n_ctx_slot;
}
if (params.sampling.dry_base < 1.0f) {
params.sampling.dry_base = defaults.sampling.dry_base;
}
// sequence breakers for DRY
{
// Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
// Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
if (data.contains("dry_sequence_breakers")) {
params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
if (params.sampling.dry_sequence_breakers.empty()) {
throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
}
}
}
// process "json_schema" and "grammar"
if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
params.sampling.grammar = json_schema_to_grammar(schema);
SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
} catch (const std::exception & e) {
throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
}
} else {
params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
}
{
auto it = data.find("chat_format");
if (it != data.end()) {
params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
} else {
params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
}
common_reasoning_format reasoning_format = params_base.reasoning_format;
if (data.contains("reasoning_format")) {
reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
}
params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
if (data.contains("chat_parser")) {
params.oaicompat_chat_syntax.parser.load(data.at("chat_parser").get<std::string>());
}
}
{
const auto preserved_tokens = data.find("preserved_tokens");
if (preserved_tokens != data.end()) {
for (const auto & t : *preserved_tokens) {
auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
SRV_DBG("Preserved token: %d\n", ids[0]);
params.sampling.preserved_tokens.insert(ids[0]);
} else {
// This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
}
}
}
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
server_grammar_trigger ct(t);
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value.value;
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
auto token = ids[0];
if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
}
SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
common_grammar_trigger trigger;
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
trigger.value = word;
trigger.token = token;
params.sampling.grammar_triggers.push_back(std::move(trigger));
} else {
SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
}
} else {
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
} else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
} else {
throw std::runtime_error("Unknown grammar trigger type");
}
params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
}
}
}
if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
throw std::runtime_error("Error: no triggers set for lazy grammar!");
}
}
{
params.sampling.logit_bias.clear();
const auto & logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array()) {
const int n_vocab = llama_vocab_n_tokens(vocab);
for (const auto & el : *logit_bias) {
// TODO: we may want to throw errors here, in case "el" is incorrect
if (el.is_array() && el.size() == 2) {
float bias;
if (el[1].is_number()) {
bias = el[1].get<float>();
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
bias = -INFINITY;
} else {
continue;
}
if (el[0].is_number_integer()) {
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab) {
params.sampling.logit_bias.push_back({tok, bias});
}
} else if (el[0].is_string()) {
auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
for (auto tok : toks) {
params.sampling.logit_bias.push_back({tok, bias});
}
}
}
}
} else if (logit_bias != data.end() && logit_bias->is_object()) {
const int n_vocab = llama_vocab_n_tokens(vocab);
for (const auto & el : logit_bias->items()) {
float bias;
const auto & key = el.key();
const auto & value = el.value();
if (value.is_number()) {
bias = value.get<float>();
} else if (value.is_boolean() && !value.get<bool>()) {
bias = -INFINITY;
} else {
continue;
}
char *end;
llama_token tok = strtol(key.c_str(), &end, 10);
if (*end == 0) {
if (tok >= 0 && tok < n_vocab) {
params.sampling.logit_bias.push_back({tok, bias});
}
} else {
auto toks = common_tokenize(vocab, key, false);
for (auto tok : toks) {
params.sampling.logit_bias.push_back({tok, bias});
}
}
}
}
params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
if (params.sampling.ignore_eos) {
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
}
}
{
params.antiprompt.clear();
const auto & stop = data.find("stop");
if (stop != data.end() && stop->is_array()) {
for (const auto & word : *stop) {
if (!word.empty()) {
params.antiprompt.push_back(word);
}
}
}
// set reverse prompt from cli args if not set in the request
if (params.antiprompt.empty()) {
params.antiprompt = defaults.antiprompt;
}
}
{
const auto samplers = data.find("samplers");
if (samplers != data.end()) {
if (samplers->is_array()) {
params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
} else if (samplers->is_string()){
params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
}
} else {
params.sampling.samplers = defaults.sampling.samplers;
}
}
if (params.n_cmpl > params_base.n_parallel) {
throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
}
return params;
}
//
// result_timings
//
json result_timings::to_json() const {
json base = {
{"cache_n", cache_n},
{"prompt_n", prompt_n},
{"prompt_ms", prompt_ms},
{"prompt_per_token_ms", prompt_per_token_ms},
{"prompt_per_second", prompt_per_second},
{"predicted_n", predicted_n},
{"predicted_ms", predicted_ms},
{"predicted_per_token_ms", predicted_per_token_ms},
{"predicted_per_second", predicted_per_second},
};
if (draft_n > 0) {
base["draft_n"] = draft_n;
base["draft_n_accepted"] = draft_n_accepted;
}
return base;
}
//
// result_prompt_progress
//
json result_prompt_progress::to_json() const {
return json {
{"total", total},
{"cache", cache},
{"processed", processed},
{"time_ms", time_ms},
};
}
static inline std::string stop_type_to_str(stop_type type) {
switch (type) {
case STOP_TYPE_EOS: return "eos";
case STOP_TYPE_WORD: return "word";
case STOP_TYPE_LIMIT: return "limit";
default: return "none";
}
}
//
// completion_token_output
//
json completion_token_output::to_json(bool post_sampling_probs) const {
json probs_for_token = json::array();
for (const auto & p : probs) {
std::string txt(p.txt);
txt.resize(validate_utf8(txt));
probs_for_token.push_back(json {
{"id", p.tok},
{"token", txt},
{"bytes", str_to_bytes(p.txt)},
{
post_sampling_probs ? "prob" : "logprob",
post_sampling_probs ? p.prob : logarithm(p.prob)
},
});
}
return probs_for_token;
}
json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
json out = json::array();
for (const auto & p : probs) {
std::string txt(p.text_to_send);
txt.resize(validate_utf8(txt));
out.push_back(json {
{"id", p.tok},
{"token", txt},
{"bytes", str_to_bytes(p.text_to_send)},
{
post_sampling_probs ? "prob" : "logprob",
post_sampling_probs ? p.prob : logarithm(p.prob)
},
{
post_sampling_probs ? "top_probs" : "top_logprobs",
p.to_json(post_sampling_probs)
},
});
}
return out;
}
float completion_token_output::logarithm(float x) {
// nlohmann::json converts -inf to null, so we need to prevent that
return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
}
std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
std::vector<unsigned char> bytes;
for (unsigned char c : str) {
bytes.push_back(c);
}
return bytes;
}
//
// server_task_result_cmpl_final
//
json server_task_result_cmpl_final::to_json() {
GGML_ASSERT(is_updated && "update() must be called before to_json()");
switch (res_type) {
case TASK_RESPONSE_TYPE_NONE:
return to_json_non_oaicompat();
case TASK_RESPONSE_TYPE_OAI_CMPL:
return to_json_oaicompat();
case TASK_RESPONSE_TYPE_OAI_CHAT:
return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
case TASK_RESPONSE_TYPE_ANTHROPIC:
return stream ? to_json_anthropic_stream() : to_json_anthropic();
default:
GGML_ASSERT(false && "Invalid task_response_type");
}
}
json server_task_result_cmpl_final::to_json_non_oaicompat() {
json res = json {
{"index", index},
{"content", content},
{"tokens", tokens},
{"id_slot", id_slot},
{"stop", true},
{"model", oaicompat_model},
{"tokens_predicted", n_decoded},
{"tokens_evaluated", n_prompt_tokens},
{"generation_settings", generation_params.to_json()},
{"prompt", prompt},
{"has_new_line", has_new_line},
{"truncated", truncated},
{"stop_type", stop_type_to_str(stop)},
{"stopping_word", stopping_word},
{"tokens_cached", n_tokens_cached},
{"timings", timings.to_json()},
};
if (!stream && !probs_output.empty()) {
res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
}
return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
}
json server_task_result_cmpl_final::to_json_oaicompat() {
std::time_t t = std::time(0);
json logprobs = json(nullptr); // OAI default to null
if (!stream && probs_output.size() > 0) {
logprobs = json{
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
};
}
json finish_reason = "length";
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
finish_reason = "stop";
}
json res = json {
{"choices", json::array({
json{
{"text", content},
{"index", index},
{"logprobs", logprobs},
{"finish_reason", finish_reason},
}
})},
{"created", t},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "text_completion"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens}
}},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat();
}
if (timings.prompt_n >= 0) {
res.push_back({"timings", timings.to_json()});
}
return res;
}
json server_task_result_cmpl_final::to_json_oaicompat_chat() {
std::string finish_reason = "length";
common_chat_msg msg;
if (!oaicompat_msg.empty()) {
msg = oaicompat_msg;
} else {
msg.role = "assistant";
msg.content = content;
}
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
}
json choice {
{"finish_reason", finish_reason},
{"index", index},
{"message", msg.to_json_oaicompat<json>()},
};
if (!stream && probs_output.size() > 0) {
choice["logprobs"] = json{
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
};
}
std::time_t t = std::time(0);
json res = json {
{"choices", json::array({choice})},
{"created", t},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens}
}},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat();
}
if (timings.prompt_n >= 0) {
res.push_back({"timings", timings.to_json()});
}
return res;
}
common_chat_msg task_result_state::update_chat_msg(
const std::string & text_added,
bool is_partial,
std::vector<common_chat_msg_diff> & diffs) {
generated_text += text_added;
auto msg_prv_copy = chat_msg;
SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
auto new_msg = common_chat_parse(
generated_text,
is_partial,
oaicompat_chat_syntax);
if (!new_msg.empty()) {
new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
chat_msg = new_msg;
diffs = common_chat_msg_diff::compute_diffs(msg_prv_copy, new_msg.empty() ? msg_prv_copy : new_msg);
}
return chat_msg;
}
json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
std::time_t t = std::time(0);
std::string finish_reason = "length";
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
}
json deltas = json::array();
for (const auto & diff : oaicompat_msg_diffs) {
deltas.push_back({
{"choices", json::array({
json {
{"finish_reason", nullptr},
{"index", 0},
{"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
},
})},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion.chunk"},
});
}
deltas.push_back({
{"choices", json::array({
json {
{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()},
},
})},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion.chunk"},
});
if (include_usage) {
// OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
// https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
deltas.push_back({
{"choices", json::array()},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion.chunk"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens},
}},
});
}
if (timings.prompt_n >= 0) {
deltas.back().push_back({"timings", timings.to_json()});
}
// extra fields for debugging purposes
if (verbose && !deltas.empty()) {
deltas.front()["__verbose"] = to_json_non_oaicompat();
}
return deltas;
}
json server_task_result_cmpl_final::to_json_anthropic() {
std::string stop_reason = "max_tokens";
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
}
json content_blocks = json::array();
common_chat_msg msg;
if (!oaicompat_msg.empty()) {
msg = oaicompat_msg;
} else {
msg.role = "assistant";
msg.content = content;
}
if (!msg.content.empty()) {
content_blocks.push_back({
{"type", "text"},
{"text", msg.content}
});
}
for (const auto & tool_call : msg.tool_calls) {
json tool_use_block = {
{"type", "tool_use"},
{"id", tool_call.id},
{"name", tool_call.name}
};
try {
tool_use_block["input"] = json::parse(tool_call.arguments);
} catch (const std::exception &) {
tool_use_block["input"] = json::object();
}
content_blocks.push_back(tool_use_block);
}
json res = {
{"id", oaicompat_cmpl_id},
{"type", "message"},
{"role", "assistant"},
{"content", content_blocks},
{"model", oaicompat_model},
{"stop_reason", stop_reason},
{"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
{"usage", {
{"input_tokens", n_prompt_tokens},
{"output_tokens", n_decoded}
}}
};
return res;
}
json server_task_result_cmpl_final::to_json_anthropic_stream() {
json events = json::array();
std::string stop_reason = "max_tokens";
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
}
bool has_text = !oaicompat_msg.content.empty();
size_t num_tool_calls = oaicompat_msg.tool_calls.size();
bool text_block_started = false;
std::unordered_set<size_t> tool_calls_started;
for (const auto & diff : oaicompat_msg_diffs) {
if (!diff.content_delta.empty()) {
if (!text_block_started) {
events.push_back({
{"event", "content_block_start"},
{"data", {
{"type", "content_block_start"},
{"index", 0},
{"content_block", {
{"type", "text"},
{"text", ""}
}}
}}
});
text_block_started = true;
}
events.push_back({
{"event", "content_block_delta"},
{"data", {
{"type", "content_block_delta"},
{"index", 0},
{"delta", {
{"type", "text_delta"},
{"text", diff.content_delta}
}}
}}
});
}
if (diff.tool_call_index != std::string::npos) {
size_t content_block_index = (has_text ? 1 : 0) + diff.tool_call_index;
if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
events.push_back({
{"event", "content_block_start"},
{"data", {
{"type", "content_block_start"},
{"index", content_block_index},
{"content_block", {
{"type", "tool_use"},
{"id", full_tool_call.id},
{"name", full_tool_call.name}
}}
}}
});
tool_calls_started.insert(diff.tool_call_index);
}
if (!diff.tool_call_delta.arguments.empty()) {
events.push_back({
{"event", "content_block_delta"},
{"data", {
{"type", "content_block_delta"},
{"index", content_block_index},
{"delta", {
{"type", "input_json_delta"},
{"partial_json", diff.tool_call_delta.arguments}
}}
}}
});
}
}
}
if (has_text) {
events.push_back({
{"event", "content_block_stop"},
{"data", {
{"type", "content_block_stop"},
{"index", 0}
}}
});
}
for (size_t i = 0; i < num_tool_calls; i++) {
size_t content_block_index = (has_text ? 1 : 0) + i;
events.push_back({
{"event", "content_block_stop"},
{"data", {
{"type", "content_block_stop"},
{"index", content_block_index}
}}
});
}
events.push_back({
{"event", "message_delta"},
{"data", {
{"type", "message_delta"},
{"delta", {
{"stop_reason", stop_reason},
{"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
}},
{"usage", {
{"output_tokens", n_decoded}
}}
}}
});
events.push_back({
{"event", "message_stop"},
{"data", {
{"type", "message_stop"}
}}
});
return events;
}
//
// server_task_result_cmpl_partial
//
json server_task_result_cmpl_partial::to_json() {
GGML_ASSERT(is_updated && "update() must be called before to_json()");
switch (res_type) {
case TASK_RESPONSE_TYPE_NONE:
return to_json_non_oaicompat();
case TASK_RESPONSE_TYPE_OAI_CMPL:
return to_json_oaicompat();
case TASK_RESPONSE_TYPE_OAI_CHAT:
return to_json_oaicompat_chat();
case TASK_RESPONSE_TYPE_ANTHROPIC:
return to_json_anthropic();
default:
GGML_ASSERT(false && "Invalid task_response_type");
}
}
json server_task_result_cmpl_partial::to_json_non_oaicompat() {
// non-OAI-compat JSON
json res = json {
{"index", index},
{"content", content},
{"tokens", tokens},
{"stop", false},
{"id_slot", id_slot},
{"tokens_predicted", n_decoded},
{"tokens_evaluated", n_prompt_tokens},
};
// populate the timings object when needed (usually for the last response or with timings_per_token enabled)
if (timings.prompt_n > 0) {
res.push_back({"timings", timings.to_json()});
}
if (is_progress) {
res.push_back({"prompt_progress", progress.to_json()});
}
if (!prob_output.probs.empty()) {
res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
}
return res;
}
json server_task_result_cmpl_partial::to_json_oaicompat() {
std::time_t t = std::time(0);
json logprobs = json(nullptr); // OAI default to null
if (prob_output.probs.size() > 0) {
logprobs = json{
{"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
};
}
json res = json {
{"choices", json::array({
json{
{"text", content},
{"index", index},
{"logprobs", logprobs},
{"finish_reason", nullptr},
}
})},
{"created", t},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "text_completion"},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat();
}
if (timings.prompt_n >= 0) {
res.push_back({"timings", timings.to_json()});
}
if (is_progress) {
res.push_back({"prompt_progress", progress.to_json()});
}
return res;
}
json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
bool first = n_decoded == 1;
std::time_t t = std::time(0);
json choices;
std::vector<json> deltas;
auto add_delta = [&](const json & delta) {
deltas.push_back({
{"choices", json::array({
json {
{"finish_reason", nullptr},
{"index", index},
{"delta", delta},
},
})},
{"created", t},
{"id", oaicompat_cmpl_id},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion.chunk"},
});
};
// We have to send an initial update to conform to openai behavior
if (first || is_progress) {
add_delta({
{"role", "assistant"},
{"content", nullptr},
});
}
for (const auto & diff : oaicompat_msg_diffs) {
add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
}
if (!deltas.empty()) {
auto & last_json = deltas[deltas.size() - 1];
GGML_ASSERT(last_json.at("choices").size() >= 1);
if (prob_output.probs.size() > 0) {
last_json.at("choices").at(0)["logprobs"] = json {
{"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
};
}
if (timings.prompt_n >= 0) {
last_json.push_back({"timings", timings.to_json()});
}
if (is_progress) {
last_json.push_back({"prompt_progress", progress.to_json()});
}
}
return deltas;
}
//
// server_task_result_embd
//
json server_task_result_embd::to_json() {
return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
? to_json_oaicompat()
: to_json_non_oaicompat();
}
json server_task_result_embd::to_json_non_oaicompat() {
return json {
{"index", index},
{"embedding", embedding},
};
}
json server_task_result_embd::to_json_oaicompat() {
return json {
{"index", index},
{"embedding", embedding[0]},
{"tokens_evaluated", n_tokens},
};
}
//
// server_task_result_rerank
//
json server_task_result_rerank::to_json() {
return json {
{"index", index},
{"score", score},
{"tokens_evaluated", n_tokens},
};
}
json server_task_result_cmpl_partial::to_json_anthropic() {
json events = json::array();
bool first = (n_decoded == 1);
bool text_block_started = false;
if (first) {
text_block_started = false;
events.push_back({
{"event", "message_start"},
{"data", {
{"type", "message_start"},
{"message", {
{"id", oaicompat_cmpl_id},
{"type", "message"},
{"role", "assistant"},
{"content", json::array()},
{"model", oaicompat_model},
{"stop_reason", nullptr},
{"stop_sequence", nullptr},
{"usage", {
{"input_tokens", n_prompt_tokens},
{"output_tokens", 0}
}}
}}
}}
});
}
for (const auto & diff : oaicompat_msg_diffs) {
if (!diff.content_delta.empty()) {
if (!text_block_started) {
events.push_back({
{"event", "content_block_start"},
{"data", {
{"type", "content_block_start"},
{"index", 0},
{"content_block", {
{"type", "text"},
{"text", ""}
}}
}}
});
text_block_started = true;
}
events.push_back({
{"event", "content_block_delta"},
{"data", {
{"type", "content_block_delta"},
{"index", 0},
{"delta", {
{"type", "text_delta"},
{"text", diff.content_delta}
}}
}}
});
}
if (diff.tool_call_index != std::string::npos) {
size_t content_block_index = (text_block_started ? 1 : 0) + diff.tool_call_index;
if (!diff.tool_call_delta.name.empty()) {
events.push_back({
{"event", "content_block_start"},
{"data", {
{"type", "content_block_start"},
{"index", content_block_index},
{"content_block", {
{"type", "tool_use"},
{"id", diff.tool_call_delta.id},
{"name", diff.tool_call_delta.name}
}}
}}
});
}
if (!diff.tool_call_delta.arguments.empty()) {
events.push_back({
{"event", "content_block_delta"},
{"data", {
{"type", "content_block_delta"},
{"index", content_block_index},
{"delta", {
{"type", "input_json_delta"},
{"partial_json", diff.tool_call_delta.arguments}
}}
}}
});
}
}
}
return events;
}
//
// server_task_result_error
//
json server_task_result_error::to_json() {
json res = format_error_response(err_msg, err_type);
if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
res["n_prompt_tokens"] = n_prompt_tokens;
res["n_ctx"] = n_ctx;
}
return res;
}
//
// server_task_result_metrics
//
json server_task_result_metrics::to_json() {
return json {
{ "idle", n_idle_slots },
{ "processing", n_processing_slots },
{ "deferred", n_tasks_deferred },
{ "t_start", t_start },
{ "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
{ "t_tokens_generation_total", t_tokens_generation_total },
{ "n_tokens_predicted_total", n_tokens_predicted_total },
{ "t_prompt_processing_total", t_prompt_processing_total },
{ "n_tokens_max", n_tokens_max },
{ "n_prompt_tokens_processed", n_prompt_tokens_processed },
{ "t_prompt_processing", t_prompt_processing },
{ "n_tokens_predicted", n_tokens_predicted },
{ "t_tokens_generation", t_tokens_generation },
{ "n_decode_total", n_decode_total },
{ "n_busy_slots_total", n_busy_slots_total },
{ "slots", slots_data },
};
}
//
// server_task_result_slot_save_load
//
json server_task_result_slot_save_load::to_json() {
if (is_save) {
return json {
{ "id_slot", id_slot },
{ "filename", filename },
{ "n_saved", n_tokens },
{ "n_written", n_bytes },
{ "timings", {
{ "save_ms", t_ms }
}},
};
}
return json {
{ "id_slot", id_slot },
{ "filename", filename },
{ "n_restored", n_tokens },
{ "n_read", n_bytes },
{ "timings", {
{ "restore_ms", t_ms }
}},
};
}
//
// server_task_result_slot_erase
//
json server_task_result_slot_erase::to_json() {
return json {
{ "id_slot", id_slot },
{ "n_erased", n_erased },
};
}
//
// server_task_result_get_lora
//
json server_task_result_get_lora::to_json() {
json result = json::array();
for (size_t i = 0; i < loras.size(); ++i) {
auto & lora = loras[i];
json entry = {
{"id", i},
{"path", lora.info.path},
{"scale", lora.info.scale},
{"task_name", lora.info.task_name},
{"prompt_prefix", lora.info.prompt_prefix},
};
if (!lora.alora_invocation_tokens.empty()) {
entry["alora_invocation_string"] = lora.alora_invocation_string;
entry["alora_invocation_tokens"] = lora.alora_invocation_tokens;
}
result.push_back(std::move(entry));
}
return result;
}
//
// server_task_result_apply_lora
//
json server_task_result_apply_lora::to_json() {
return json {{ "success", true }};
}
//
// server_prompt_cache
//
size_t server_prompt_cache::size() const {
size_t res = 0;
for (const auto & state : states) {
res += state.size();
}
return res;
}
size_t server_prompt_cache::n_tokens() const {
size_t res = 0;
for (const auto & state : states) {
res += state.n_tokens();
}
return res;
}
server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
// first check if the current state is contained fully in the cache
for (auto it = states.begin(); it != states.end(); ++it) {
const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
if (cur_lcp_len == (int) prompt.tokens.size()) {
SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
return nullptr;
}
}
// next, remove any cached prompts that are fully contained in the current prompt
for (auto it = states.begin(); it != states.end();) {
const int len = it->tokens.get_common_prefix(prompt.tokens);
if (len == (int) it->tokens.size()) {
SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
it = states.erase(it);
} else {
++it;
}
}
std::vector<uint8_t> state_data;
// check if we can allocate enough memory for the new state
try {
state_data.resize(state_size);
} catch (const std::bad_alloc & e) {
SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
limit_size = std::max<size_t>(1, 0.4*size());
SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
update();
return nullptr;
}
// TODO: for some reason we can't copy server_tokens, so we have to do this workaround
auto & cur = states.emplace_back();
cur = {
/*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
/*.data =*/ std::move(state_data),
/*.checkpoints =*/ prompt.checkpoints,
};
return &cur;
}
bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
float f_keep_best = float(lcp_best) / prompt.tokens.size();
float sim_best = float(lcp_best) / tokens_new.size();
SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
auto it_best = states.end();
// find the most similar cached prompt, that would also preserve the most context
for (auto it = states.begin(); it != states.end(); ++it) {
const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
const float f_keep_cur = float(lcp_cur) / it->tokens.size();
const float sim_cur = float(lcp_cur) / tokens_new.size();
// don't trash large prompts
if (f_keep_cur < 0.25f) {
continue;
}
if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
f_keep_best = f_keep_cur;
sim_best = sim_cur;
it_best = it;
}
}
if (it_best != states.end()) {
SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
const size_t size = it_best->data.size();
const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
if (n != size) {
SRV_WRN("failed to restore state with size %zu\n", size);
return false;
}
it_best->data.clear();
it_best->data.shrink_to_fit();
prompt = std::move(*it_best);
states.erase(it_best);
}
return true;
}
void server_prompt_cache::update() {
if (limit_size > 0) {
// always keep at least one state, regardless of the limits
while (states.size() > 1 && size() > limit_size) {
if (states.empty()) {
break;
}
SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
states.pop_front();
}
}
// average size per token
const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
// dynamically increase the token limit if it can fit in the memory limit
const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
if (limit_tokens > 0) {
while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
if (states.empty()) {
break;
}
SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
states.pop_front();
}
}
SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
for (const auto & state : states) {
SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
(const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
}
}
|