1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
#include "lexer.h"
#include "runtime.h"
#include "parser.h"
#include <algorithm>
#include <memory>
#include <stdexcept>
#include <string>
#include <vector>
#define FILENAME "jinja-parser"
namespace jinja {
// Helper to check type without asserting (useful for logic)
template<typename T>
static bool is_type(const statement_ptr & ptr) {
return dynamic_cast<const T*>(ptr.get()) != nullptr;
}
class parser {
const std::vector<token> & tokens;
size_t current = 0;
std::string source; // for error reporting
public:
parser(const std::vector<token> & t, const std::string & src) : tokens(t), source(src) {}
program parse() {
statements body;
while (current < tokens.size()) {
body.push_back(parse_any());
}
return program(std::move(body));
}
// NOTE: start_pos is the token index, used for error reporting
template<typename T, typename... Args>
std::unique_ptr<T> mk_stmt(size_t start_pos, Args&&... args) {
auto ptr = std::make_unique<T>(std::forward<Args>(args)...);
assert(start_pos < tokens.size());
ptr->pos = tokens[start_pos].pos;
return ptr;
}
private:
const token & peek(size_t offset = 0) const {
if (current + offset >= tokens.size()) {
static const token end_token{token::eof, "", 0};
return end_token;
}
return tokens[current + offset];
}
token expect(token::type type, const std::string& error) {
const auto & t = peek();
if (t.t != type) {
throw parser_exception("Parser Error: " + error + " (Got " + t.value + ")", source, t.pos);
}
current++;
return t;
}
void expect_identifier(const std::string & name) {
const auto & t = peek();
if (t.t != token::identifier || t.value != name) {
throw parser_exception("Expected identifier: " + name, source, t.pos);
}
current++;
}
bool is(token::type type) const {
return peek().t == type;
}
bool is_identifier(const std::string & name) const {
return peek().t == token::identifier && peek().value == name;
}
bool is_statement(const std::vector<std::string> & names) const {
if (peek(0).t != token::open_statement || peek(1).t != token::identifier) {
return false;
}
std::string val = peek(1).value;
return std::find(names.begin(), names.end(), val) != names.end();
}
statement_ptr parse_any() {
size_t start_pos = current;
switch (peek().t) {
case token::comment:
return mk_stmt<comment_statement>(start_pos, tokens[current++].value);
case token::text:
return mk_stmt<string_literal>(start_pos, tokens[current++].value);
case token::open_statement:
return parse_jinja_statement();
case token::open_expression:
return parse_jinja_expression();
default:
throw std::runtime_error("Unexpected token type");
}
}
statement_ptr parse_jinja_expression() {
// Consume {{ }} tokens
expect(token::open_expression, "Expected {{");
auto result = parse_expression();
expect(token::close_expression, "Expected }}");
return result;
}
statement_ptr parse_jinja_statement() {
// Consume {% token
expect(token::open_statement, "Expected {%");
if (peek().t != token::identifier) {
throw std::runtime_error("Unknown statement");
}
size_t start_pos = current;
std::string name = peek().value;
current++; // consume identifier
statement_ptr result;
if (name == "set") {
result = parse_set_statement(start_pos);
} else if (name == "if") {
result = parse_if_statement(start_pos);
// expect {% endif %}
expect(token::open_statement, "Expected {%");
expect_identifier("endif");
expect(token::close_statement, "Expected %}");
} else if (name == "macro") {
result = parse_macro_statement(start_pos);
// expect {% endmacro %}
expect(token::open_statement, "Expected {%");
expect_identifier("endmacro");
expect(token::close_statement, "Expected %}");
} else if (name == "for") {
result = parse_for_statement(start_pos);
// expect {% endfor %}
expect(token::open_statement, "Expected {%");
expect_identifier("endfor");
expect(token::close_statement, "Expected %}");
} else if (name == "break") {
expect(token::close_statement, "Expected %}");
result = mk_stmt<break_statement>(start_pos);
} else if (name == "continue") {
expect(token::close_statement, "Expected %}");
result = mk_stmt<continue_statement>(start_pos);
} else if (name == "call") {
statements caller_args;
// bool has_caller_args = false;
if (is(token::open_paren)) {
// Optional caller arguments, e.g. {% call(user) dump_users(...) %}
caller_args = parse_args();
// has_caller_args = true;
}
auto callee = parse_primary_expression();
if (!is_type<identifier>(callee)) throw std::runtime_error("Expected identifier");
auto call_args = parse_args();
expect(token::close_statement, "Expected %}");
statements body;
while (!is_statement({"endcall"})) {
body.push_back(parse_any());
}
expect(token::open_statement, "Expected {%");
expect_identifier("endcall");
expect(token::close_statement, "Expected %}");
auto call_expr = mk_stmt<call_expression>(start_pos, std::move(callee), std::move(call_args));
result = mk_stmt<call_statement>(start_pos, std::move(call_expr), std::move(caller_args), std::move(body));
} else if (name == "filter") {
auto filter_node = parse_primary_expression();
if (is_type<identifier>(filter_node) && is(token::open_paren)) {
filter_node = parse_call_expression(std::move(filter_node));
}
expect(token::close_statement, "Expected %}");
statements body;
while (!is_statement({"endfilter"})) {
body.push_back(parse_any());
}
expect(token::open_statement, "Expected {%");
expect_identifier("endfilter");
expect(token::close_statement, "Expected %}");
result = mk_stmt<filter_statement>(start_pos, std::move(filter_node), std::move(body));
} else if (name == "generation" || name == "endgeneration") {
// Ignore generation blocks (transformers-specific)
// See https://github.com/huggingface/transformers/pull/30650 for more information.
result = mk_stmt<noop_statement>(start_pos);
current++;
} else {
throw std::runtime_error("Unknown statement: " + name);
}
return result;
}
statement_ptr parse_set_statement(size_t start_pos) {
// NOTE: `set` acts as both declaration statement and assignment expression
auto left = parse_expression_sequence();
statement_ptr value = nullptr;
statements body;
if (is(token::equals)) {
current++;
value = parse_expression_sequence();
} else {
// parsing multiline set here
expect(token::close_statement, "Expected %}");
while (!is_statement({"endset"})) {
body.push_back(parse_any());
}
expect(token::open_statement, "Expected {%");
expect_identifier("endset");
}
expect(token::close_statement, "Expected %}");
return mk_stmt<set_statement>(start_pos, std::move(left), std::move(value), std::move(body));
}
statement_ptr parse_if_statement(size_t start_pos) {
auto test = parse_expression();
expect(token::close_statement, "Expected %}");
statements body;
statements alternate;
// Keep parsing 'if' body until we reach the first {% elif %} or {% else %} or {% endif %}
while (!is_statement({"elif", "else", "endif"})) {
body.push_back(parse_any());
}
if (is_statement({"elif"})) {
size_t pos0 = current;
++current; // consume {%
++current; // consume 'elif'
alternate.push_back(parse_if_statement(pos0)); // nested If
} else if (is_statement({"else"})) {
++current; // consume {%
++current; // consume 'else'
expect(token::close_statement, "Expected %}");
// keep going until we hit {% endif %}
while (!is_statement({"endif"})) {
alternate.push_back(parse_any());
}
}
return mk_stmt<if_statement>(start_pos, std::move(test), std::move(body), std::move(alternate));
}
statement_ptr parse_macro_statement(size_t start_pos) {
auto name = parse_primary_expression();
auto args = parse_args();
expect(token::close_statement, "Expected %}");
statements body;
// Keep going until we hit {% endmacro
while (!is_statement({"endmacro"})) {
body.push_back(parse_any());
}
return mk_stmt<macro_statement>(start_pos, std::move(name), std::move(args), std::move(body));
}
statement_ptr parse_expression_sequence(bool primary = false) {
size_t start_pos = current;
statements exprs;
exprs.push_back(primary ? parse_primary_expression() : parse_expression());
bool is_tuple = is(token::comma);
while (is(token::comma)) {
current++; // consume comma
exprs.push_back(primary ? parse_primary_expression() : parse_expression());
}
return is_tuple ? mk_stmt<tuple_literal>(start_pos, std::move(exprs)) : std::move(exprs[0]);
}
statement_ptr parse_for_statement(size_t start_pos) {
// e.g., `message` in `for message in messages`
auto loop_var = parse_expression_sequence(true); // should be an identifier/tuple
if (!is_identifier("in")) throw std::runtime_error("Expected 'in'");
current++;
// `messages` in `for message in messages`
auto iterable = parse_expression();
expect(token::close_statement, "Expected %}");
statements body;
statements alternate;
// Keep going until we hit {% endfor or {% else
while (!is_statement({"endfor", "else"})) {
body.push_back(parse_any());
}
if (is_statement({"else"})) {
current += 2;
expect(token::close_statement, "Expected %}");
while (!is_statement({"endfor"})) {
alternate.push_back(parse_any());
}
}
return mk_stmt<for_statement>(
start_pos,
std::move(loop_var), std::move(iterable),
std::move(body), std::move(alternate));
}
statement_ptr parse_expression() {
// Choose parse function with lowest precedence
return parse_if_expression();
}
statement_ptr parse_if_expression() {
auto a = parse_logical_or_expression();
if (is_identifier("if")) {
// Ternary expression
size_t start_pos = current;
++current; // consume 'if'
auto test = parse_logical_or_expression();
if (is_identifier("else")) {
// Ternary expression with else
size_t pos0 = current;
++current; // consume 'else'
auto false_expr = parse_if_expression(); // recurse to support chained ternaries
return mk_stmt<ternary_expression>(pos0, std::move(test), std::move(a), std::move(false_expr));
} else {
// Select expression on iterable
return mk_stmt<select_expression>(start_pos, std::move(a), std::move(test));
}
}
return a;
}
statement_ptr parse_logical_or_expression() {
auto left = parse_logical_and_expression();
while (is_identifier("or")) {
size_t start_pos = current;
token op = tokens[current++];
left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_logical_and_expression());
}
return left;
}
statement_ptr parse_logical_and_expression() {
auto left = parse_logical_negation_expression();
while (is_identifier("and")) {
size_t start_pos = current;
auto op = tokens[current++];
left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_logical_negation_expression());
}
return left;
}
statement_ptr parse_logical_negation_expression() {
// Try parse unary operators
if (is_identifier("not")) {
size_t start_pos = current;
auto op = tokens[current++];
return mk_stmt<unary_expression>(start_pos, op, parse_logical_negation_expression());
}
return parse_comparison_expression();
}
statement_ptr parse_comparison_expression() {
// NOTE: membership has same precedence as comparison
// e.g., ('a' in 'apple' == 'b' in 'banana') evaluates as ('a' in ('apple' == ('b' in 'banana')))
auto left = parse_additive_expression();
while (true) {
token op;
size_t start_pos = current;
if (is_identifier("not") && peek(1).t == token::identifier && peek(1).value == "in") {
op = {token::identifier, "not in", tokens[current].pos};
current += 2;
} else if (is_identifier("in")) {
op = tokens[current++];
} else if (is(token::comparison_binary_operator)) {
op = tokens[current++];
} else break;
left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_additive_expression());
}
return left;
}
statement_ptr parse_additive_expression() {
auto left = parse_multiplicative_expression();
while (is(token::additive_binary_operator)) {
size_t start_pos = current;
auto op = tokens[current++];
left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_multiplicative_expression());
}
return left;
}
statement_ptr parse_multiplicative_expression() {
auto left = parse_test_expression();
while (is(token::multiplicative_binary_operator)) {
size_t start_pos = current;
auto op = tokens[current++];
left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_test_expression());
}
return left;
}
statement_ptr parse_test_expression() {
auto operand = parse_filter_expression();
while (is_identifier("is")) {
size_t start_pos = current;
current++;
bool negate = false;
if (is_identifier("not")) { current++; negate = true; }
auto test_id = parse_primary_expression();
// FIXME: tests can also be expressed like this: if x is eq 3
if (is(token::open_paren)) test_id = parse_call_expression(std::move(test_id));
operand = mk_stmt<test_expression>(start_pos, std::move(operand), negate, std::move(test_id));
}
return operand;
}
statement_ptr parse_filter_expression() {
auto operand = parse_call_member_expression();
while (is(token::pipe)) {
size_t start_pos = current;
current++;
auto filter = parse_primary_expression();
if (is(token::open_paren)) filter = parse_call_expression(std::move(filter));
operand = mk_stmt<filter_expression>(start_pos, std::move(operand), std::move(filter));
}
return operand;
}
statement_ptr parse_call_member_expression() {
// Handle member expressions recursively
auto member = parse_member_expression(parse_primary_expression());
return is(token::open_paren)
? parse_call_expression(std::move(member)) // foo.x()
: std::move(member);
}
statement_ptr parse_call_expression(statement_ptr callee) {
size_t start_pos = current;
auto expr = mk_stmt<call_expression>(start_pos, std::move(callee), parse_args());
auto member = parse_member_expression(std::move(expr)); // foo.x().y
return is(token::open_paren)
? parse_call_expression(std::move(member)) // foo.x()()
: std::move(member);
}
statements parse_args() {
// comma-separated arguments list
expect(token::open_paren, "Expected (");
statements args;
while (!is(token::close_paren)) {
statement_ptr arg;
// unpacking: *expr
if (peek().t == token::multiplicative_binary_operator && peek().value == "*") {
size_t start_pos = current;
++current; // consume *
arg = mk_stmt<spread_expression>(start_pos, parse_expression());
} else {
arg = parse_expression();
if (is(token::equals)) {
// keyword argument
// e.g., func(x = 5, y = a or b)
size_t start_pos = current;
++current; // consume equals
arg = mk_stmt<keyword_argument_expression>(start_pos, std::move(arg), parse_expression());
}
}
args.push_back(std::move(arg));
if (is(token::comma)) {
++current; // consume comma
}
}
expect(token::close_paren, "Expected )");
return args;
}
statement_ptr parse_member_expression(statement_ptr object) {
size_t start_pos = current;
while (is(token::dot) || is(token::open_square_bracket)) {
auto op = tokens[current++];
bool computed = op.t == token::open_square_bracket;
statement_ptr prop;
if (computed) {
prop = parse_member_expression_arguments();
expect(token::close_square_bracket, "Expected ]");
} else {
prop = parse_primary_expression();
}
object = mk_stmt<member_expression>(start_pos, std::move(object), std::move(prop), computed);
}
return object;
}
statement_ptr parse_member_expression_arguments() {
// NOTE: This also handles slice expressions colon-separated arguments list
// e.g., ['test'], [0], [:2], [1:], [1:2], [1:2:3]
statements slices;
bool is_slice = false;
size_t start_pos = current;
while (!is(token::close_square_bracket)) {
if (is(token::colon)) {
// A case where a default is used
// e.g., [:2] will be parsed as [undefined, 2]
slices.push_back(nullptr);
++current; // consume colon
is_slice = true;
} else {
slices.push_back(parse_expression());
if (is(token::colon)) {
++current; // consume colon after expression, if it exists
is_slice = true;
}
}
}
if (is_slice) {
statement_ptr start = slices.size() > 0 ? std::move(slices[0]) : nullptr;
statement_ptr stop = slices.size() > 1 ? std::move(slices[1]) : nullptr;
statement_ptr step = slices.size() > 2 ? std::move(slices[2]) : nullptr;
return mk_stmt<slice_expression>(start_pos, std::move(start), std::move(stop), std::move(step));
}
return std::move(slices[0]);
}
statement_ptr parse_primary_expression() {
size_t start_pos = current;
auto t = tokens[current++];
switch (t.t) {
case token::numeric_literal:
if (t.value.find('.') != std::string::npos) {
return mk_stmt<float_literal>(start_pos, std::stod(t.value));
} else {
return mk_stmt<integer_literal>(start_pos, std::stoll(t.value));
}
case token::string_literal: {
std::string val = t.value;
while (is(token::string_literal)) {
val += tokens[current++].value;
}
return mk_stmt<string_literal>(start_pos, val);
}
case token::identifier:
return mk_stmt<identifier>(start_pos, t.value);
case token::open_paren: {
auto expr = parse_expression_sequence();
expect(token::close_paren, "Expected )");
return expr;
}
case token::open_square_bracket: {
statements vals;
while (!is(token::close_square_bracket)) {
vals.push_back(parse_expression());
if (is(token::comma)) current++;
}
current++;
return mk_stmt<array_literal>(start_pos, std::move(vals));
}
case token::open_curly_bracket: {
std::vector<std::pair<statement_ptr, statement_ptr>> pairs;
while (!is(token::close_curly_bracket)) {
auto key = parse_expression();
expect(token::colon, "Expected :");
pairs.push_back({std::move(key), parse_expression()});
if (is(token::comma)) current++;
}
current++;
return mk_stmt<object_literal>(start_pos, std::move(pairs));
}
default:
throw std::runtime_error("Unexpected token: " + t.value + " of type " + std::to_string(t.t));
}
}
};
program parse_from_tokens(const lexer_result & lexer_res) {
return parser(lexer_res.tokens, lexer_res.source).parse();
}
} // namespace jinja
|