File: parser.cpp

package info (click to toggle)
llama.cpp 7965%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 75,824 kB
  • sloc: cpp: 348,634; ansic: 49,792; python: 33,481; lisp: 10,836; sh: 6,289; objc: 1,392; javascript: 924; xml: 384; makefile: 233
file content (591 lines) | stat: -rw-r--r-- 22,558 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#include "lexer.h"
#include "runtime.h"
#include "parser.h"

#include <algorithm>
#include <memory>
#include <stdexcept>
#include <string>
#include <vector>

#define FILENAME "jinja-parser"

namespace jinja {

// Helper to check type without asserting (useful for logic)
template<typename T>
static bool is_type(const statement_ptr & ptr) {
    return dynamic_cast<const T*>(ptr.get()) != nullptr;
}

class parser {
    const std::vector<token> & tokens;
    size_t current = 0;

    std::string source; // for error reporting

public:
    parser(const std::vector<token> & t, const std::string & src) : tokens(t), source(src) {}

    program parse() {
        statements body;
        while (current < tokens.size()) {
            body.push_back(parse_any());
        }
        return program(std::move(body));
    }

    // NOTE: start_pos is the token index, used for error reporting
    template<typename T, typename... Args>
    std::unique_ptr<T> mk_stmt(size_t start_pos, Args&&... args) {
        auto ptr = std::make_unique<T>(std::forward<Args>(args)...);
        assert(start_pos < tokens.size());
        ptr->pos = tokens[start_pos].pos;
        return ptr;
    }

private:
    const token & peek(size_t offset = 0) const {
        if (current + offset >= tokens.size()) {
            static const token end_token{token::eof, "", 0};
            return end_token;
        }
        return tokens[current + offset];
    }

    token expect(token::type type, const std::string&  error) {
        const auto & t = peek();
        if (t.t != type) {
            throw parser_exception("Parser Error: " + error + " (Got " + t.value + ")", source, t.pos);
        }
        current++;
        return t;
    }

    void expect_identifier(const std::string & name) {
        const auto & t = peek();
        if (t.t != token::identifier || t.value != name) {
            throw parser_exception("Expected identifier: " + name, source, t.pos);
        }
        current++;
    }

    bool is(token::type type) const {
        return peek().t == type;
    }

    bool is_identifier(const std::string & name) const {
        return peek().t == token::identifier && peek().value == name;
    }

    bool is_statement(const std::vector<std::string> & names) const {
        if (peek(0).t != token::open_statement || peek(1).t != token::identifier) {
            return false;
        }
        std::string val = peek(1).value;
        return std::find(names.begin(), names.end(), val) != names.end();
    }

    statement_ptr parse_any() {
        size_t start_pos = current;
        switch (peek().t) {
            case token::comment:
                return mk_stmt<comment_statement>(start_pos, tokens[current++].value);
            case token::text:
                return mk_stmt<string_literal>(start_pos, tokens[current++].value);
            case token::open_statement:
                return parse_jinja_statement();
            case token::open_expression:
                return parse_jinja_expression();
            default:
                throw std::runtime_error("Unexpected token type");
        }
    }

    statement_ptr parse_jinja_expression() {
        // Consume {{ }} tokens
        expect(token::open_expression, "Expected {{");
        auto result = parse_expression();
        expect(token::close_expression, "Expected }}");
        return result;
    }

    statement_ptr parse_jinja_statement() {
        // Consume {% token
        expect(token::open_statement, "Expected {%");

        if (peek().t != token::identifier) {
            throw std::runtime_error("Unknown statement");
        }

        size_t start_pos = current;
        std::string name = peek().value;
        current++; // consume identifier

        statement_ptr result;
        if (name == "set") {
            result = parse_set_statement(start_pos);

        } else if (name == "if") {
            result = parse_if_statement(start_pos);
            // expect {% endif %}
            expect(token::open_statement, "Expected {%");
            expect_identifier("endif");
            expect(token::close_statement, "Expected %}");

        } else if (name == "macro") {
            result = parse_macro_statement(start_pos);
            // expect {% endmacro %}
            expect(token::open_statement, "Expected {%");
            expect_identifier("endmacro");
            expect(token::close_statement, "Expected %}");

        } else if (name == "for") {
            result = parse_for_statement(start_pos);
            // expect {% endfor %}
            expect(token::open_statement, "Expected {%");
            expect_identifier("endfor");
            expect(token::close_statement, "Expected %}");

        } else if (name == "break") {
            expect(token::close_statement, "Expected %}");
            result = mk_stmt<break_statement>(start_pos);

        } else if (name == "continue") {
            expect(token::close_statement, "Expected %}");
            result = mk_stmt<continue_statement>(start_pos);

        } else if (name == "call") {
            statements caller_args;
            // bool has_caller_args = false;
            if (is(token::open_paren)) {
                // Optional caller arguments, e.g. {% call(user) dump_users(...) %}
                caller_args = parse_args();
                // has_caller_args = true;
            }
            auto callee = parse_primary_expression();
            if (!is_type<identifier>(callee)) throw std::runtime_error("Expected identifier");

            auto call_args = parse_args();
            expect(token::close_statement, "Expected %}");

            statements body;
            while (!is_statement({"endcall"})) {
                body.push_back(parse_any());
            }

            expect(token::open_statement, "Expected {%");
            expect_identifier("endcall");
            expect(token::close_statement, "Expected %}");

            auto call_expr = mk_stmt<call_expression>(start_pos, std::move(callee), std::move(call_args));
            result = mk_stmt<call_statement>(start_pos, std::move(call_expr), std::move(caller_args), std::move(body));

        } else if (name == "filter") {
            auto filter_node = parse_primary_expression();
            if (is_type<identifier>(filter_node) && is(token::open_paren)) {
                filter_node = parse_call_expression(std::move(filter_node));
            }
            expect(token::close_statement, "Expected %}");

            statements body;
            while (!is_statement({"endfilter"})) {
                body.push_back(parse_any());
            }

            expect(token::open_statement, "Expected {%");
            expect_identifier("endfilter");
            expect(token::close_statement, "Expected %}");
            result = mk_stmt<filter_statement>(start_pos, std::move(filter_node), std::move(body));

        } else if (name == "generation" || name == "endgeneration") {
            // Ignore generation blocks (transformers-specific)
            // See https://github.com/huggingface/transformers/pull/30650 for more information.
            result = mk_stmt<noop_statement>(start_pos);
            current++;

        } else {
            throw std::runtime_error("Unknown statement: " + name);
        }
        return result;
    }

    statement_ptr parse_set_statement(size_t start_pos) {
        // NOTE: `set` acts as both declaration statement and assignment expression
        auto left = parse_expression_sequence();
        statement_ptr value = nullptr;
        statements body;

        if (is(token::equals)) {
            current++;
            value = parse_expression_sequence();
        } else {
            // parsing multiline set here
            expect(token::close_statement, "Expected %}");
            while (!is_statement({"endset"})) {
                body.push_back(parse_any());
            }
            expect(token::open_statement, "Expected {%");
            expect_identifier("endset");
        }
        expect(token::close_statement, "Expected %}");
        return mk_stmt<set_statement>(start_pos, std::move(left), std::move(value), std::move(body));
    }

    statement_ptr parse_if_statement(size_t start_pos) {
        auto test = parse_expression();
        expect(token::close_statement, "Expected %}");

        statements body;
        statements alternate;

        // Keep parsing 'if' body until we reach the first {% elif %} or {% else %} or {% endif %}
        while (!is_statement({"elif", "else", "endif"})) {
            body.push_back(parse_any());
        }

        if (is_statement({"elif"})) {
            size_t pos0 = current;
            ++current; // consume {%
            ++current; // consume 'elif'
            alternate.push_back(parse_if_statement(pos0)); // nested If
        } else if (is_statement({"else"})) {
            ++current; // consume {%
            ++current; // consume 'else'
            expect(token::close_statement, "Expected %}");

            // keep going until we hit {% endif %}
            while (!is_statement({"endif"})) {
                alternate.push_back(parse_any());
            }
        }
        return mk_stmt<if_statement>(start_pos, std::move(test), std::move(body), std::move(alternate));
    }

    statement_ptr parse_macro_statement(size_t start_pos) {
        auto name = parse_primary_expression();
        auto args = parse_args();
        expect(token::close_statement, "Expected %}");
        statements body;
        // Keep going until we hit {% endmacro
        while (!is_statement({"endmacro"})) {
            body.push_back(parse_any());
        }
        return mk_stmt<macro_statement>(start_pos, std::move(name), std::move(args), std::move(body));
    }

    statement_ptr parse_expression_sequence(bool primary = false) {
        size_t start_pos = current;
        statements exprs;
        exprs.push_back(primary ? parse_primary_expression() : parse_expression());
        bool is_tuple = is(token::comma);
        while (is(token::comma)) {
            current++; // consume comma
            exprs.push_back(primary ? parse_primary_expression() : parse_expression());
        }
        return is_tuple ? mk_stmt<tuple_literal>(start_pos, std::move(exprs)) : std::move(exprs[0]);
    }

    statement_ptr parse_for_statement(size_t start_pos) {
        // e.g., `message` in `for message in messages`
        auto loop_var = parse_expression_sequence(true); // should be an identifier/tuple
        if (!is_identifier("in")) throw std::runtime_error("Expected 'in'");
        current++;

        // `messages` in `for message in messages`
        auto iterable = parse_expression();
        expect(token::close_statement, "Expected %}");

        statements body;
        statements alternate;

        // Keep going until we hit {% endfor or {% else
        while (!is_statement({"endfor", "else"})) {
            body.push_back(parse_any());
        }

        if (is_statement({"else"})) {
            current += 2;
            expect(token::close_statement, "Expected %}");
            while (!is_statement({"endfor"})) {
                alternate.push_back(parse_any());
            }
        }
        return mk_stmt<for_statement>(
            start_pos,
            std::move(loop_var), std::move(iterable),
            std::move(body), std::move(alternate));
    }

    statement_ptr parse_expression() {
        // Choose parse function with lowest precedence
        return parse_if_expression();
    }

    statement_ptr parse_if_expression() {
        auto a = parse_logical_or_expression();
        if (is_identifier("if")) {
            // Ternary expression
            size_t start_pos = current;
            ++current; // consume 'if'
            auto test = parse_logical_or_expression();
            if (is_identifier("else")) {
                // Ternary expression with else
                size_t pos0 = current;
                ++current; // consume 'else'
                auto false_expr = parse_if_expression(); // recurse to support chained ternaries
                return mk_stmt<ternary_expression>(pos0, std::move(test), std::move(a), std::move(false_expr));
            } else {
                // Select expression on iterable
                return mk_stmt<select_expression>(start_pos, std::move(a), std::move(test));
            }
        }
        return a;
    }

    statement_ptr parse_logical_or_expression() {
        auto left = parse_logical_and_expression();
        while (is_identifier("or")) {
            size_t start_pos = current;
            token op = tokens[current++];
            left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_logical_and_expression());
        }
        return left;
    }

    statement_ptr parse_logical_and_expression() {
        auto left = parse_logical_negation_expression();
        while (is_identifier("and")) {
            size_t start_pos = current;
            auto op = tokens[current++];
            left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_logical_negation_expression());
        }
        return left;
    }

    statement_ptr parse_logical_negation_expression() {
        // Try parse unary operators
        if (is_identifier("not")) {
            size_t start_pos = current;
            auto op = tokens[current++];
            return mk_stmt<unary_expression>(start_pos, op, parse_logical_negation_expression());
        }
        return parse_comparison_expression();
    }

    statement_ptr parse_comparison_expression() {
        // NOTE: membership has same precedence as comparison
        // e.g., ('a' in 'apple' == 'b' in 'banana') evaluates as ('a' in ('apple' == ('b' in 'banana')))
        auto left = parse_additive_expression();
        while (true) {
            token op;
            size_t start_pos = current;
            if (is_identifier("not") && peek(1).t == token::identifier && peek(1).value == "in") {
                op = {token::identifier, "not in", tokens[current].pos};
                current += 2;
            } else if (is_identifier("in")) {
                op = tokens[current++];
            } else if (is(token::comparison_binary_operator)) {
                op = tokens[current++];
            } else break;
            left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_additive_expression());
        }
        return left;
    }

    statement_ptr parse_additive_expression() {
        auto left = parse_multiplicative_expression();
        while (is(token::additive_binary_operator)) {
            size_t start_pos = current;
            auto op = tokens[current++];
            left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_multiplicative_expression());
        }
        return left;
    }

    statement_ptr parse_multiplicative_expression() {
        auto left = parse_test_expression();
        while (is(token::multiplicative_binary_operator)) {
            size_t start_pos = current;
            auto op = tokens[current++];
            left = mk_stmt<binary_expression>(start_pos, op, std::move(left), parse_test_expression());
        }
        return left;
    }

    statement_ptr parse_test_expression() {
        auto operand = parse_filter_expression();
        while (is_identifier("is")) {
            size_t start_pos = current;
            current++;
            bool negate = false;
            if (is_identifier("not")) { current++; negate = true; }
            auto test_id = parse_primary_expression();
            // FIXME: tests can also be expressed like this: if x is eq 3
            if (is(token::open_paren)) test_id = parse_call_expression(std::move(test_id));
            operand = mk_stmt<test_expression>(start_pos, std::move(operand), negate, std::move(test_id));
        }
        return operand;
    }

    statement_ptr parse_filter_expression() {
        auto operand = parse_call_member_expression();
        while (is(token::pipe)) {
            size_t start_pos = current;
            current++;
            auto filter = parse_primary_expression();
            if (is(token::open_paren)) filter = parse_call_expression(std::move(filter));
            operand = mk_stmt<filter_expression>(start_pos, std::move(operand), std::move(filter));
        }
        return operand;
    }

    statement_ptr parse_call_member_expression() {
        // Handle member expressions recursively
        auto member = parse_member_expression(parse_primary_expression());
        return is(token::open_paren)
            ? parse_call_expression(std::move(member)) // foo.x()
            : std::move(member);
    }

    statement_ptr parse_call_expression(statement_ptr callee) {
        size_t start_pos = current;
        auto expr = mk_stmt<call_expression>(start_pos, std::move(callee), parse_args());
        auto member = parse_member_expression(std::move(expr)); // foo.x().y
        return is(token::open_paren)
            ? parse_call_expression(std::move(member)) // foo.x()()
            : std::move(member);
    }

    statements parse_args() {
        // comma-separated arguments list
        expect(token::open_paren, "Expected (");
        statements args;
        while (!is(token::close_paren)) {
            statement_ptr arg;
            // unpacking: *expr
            if (peek().t == token::multiplicative_binary_operator && peek().value == "*") {
                size_t start_pos = current;
                ++current; // consume *
                arg = mk_stmt<spread_expression>(start_pos, parse_expression());
            } else {
                arg = parse_expression();
                if (is(token::equals)) {
                    // keyword argument
                    // e.g., func(x = 5, y = a or b)
                    size_t start_pos = current;
                    ++current; // consume equals
                    arg = mk_stmt<keyword_argument_expression>(start_pos, std::move(arg), parse_expression());
                }
            }
            args.push_back(std::move(arg));
            if (is(token::comma)) {
                ++current; // consume comma
            }
        }
        expect(token::close_paren, "Expected )");
        return args;
    }

    statement_ptr parse_member_expression(statement_ptr object) {
        size_t start_pos = current;
        while (is(token::dot) || is(token::open_square_bracket)) {
            auto op = tokens[current++];
            bool computed = op.t == token::open_square_bracket;
            statement_ptr prop;
            if (computed) {
                prop = parse_member_expression_arguments();
                expect(token::close_square_bracket, "Expected ]");
            } else {
                prop = parse_primary_expression();
            }
            object = mk_stmt<member_expression>(start_pos, std::move(object), std::move(prop), computed);
        }
        return object;
    }

    statement_ptr parse_member_expression_arguments() {
        // NOTE: This also handles slice expressions colon-separated arguments list
        // e.g., ['test'], [0], [:2], [1:], [1:2], [1:2:3]
        statements slices;
        bool is_slice = false;
        size_t start_pos = current;
        while (!is(token::close_square_bracket)) {
            if (is(token::colon)) {
                // A case where a default is used
                // e.g., [:2] will be parsed as [undefined, 2]
                slices.push_back(nullptr);
                ++current; // consume colon
                is_slice = true;
            } else {
                slices.push_back(parse_expression());
                if (is(token::colon)) {
                    ++current; // consume colon after expression, if it exists
                    is_slice = true;
                }
            }
        }
        if (is_slice) {
            statement_ptr start = slices.size() > 0 ? std::move(slices[0]) : nullptr;
            statement_ptr stop = slices.size() > 1 ? std::move(slices[1]) : nullptr;
            statement_ptr step = slices.size() > 2 ? std::move(slices[2]) : nullptr;
            return mk_stmt<slice_expression>(start_pos, std::move(start), std::move(stop), std::move(step));
        }
        return std::move(slices[0]);
    }

    statement_ptr parse_primary_expression() {
        size_t start_pos = current;
        auto t = tokens[current++];
        switch (t.t) {
            case token::numeric_literal:
                if (t.value.find('.') != std::string::npos) {
                    return mk_stmt<float_literal>(start_pos, std::stod(t.value));
                } else {
                    return mk_stmt<integer_literal>(start_pos, std::stoll(t.value));
                }
            case token::string_literal: {
                std::string val = t.value;
                while (is(token::string_literal)) {
                    val += tokens[current++].value;
                }
                return mk_stmt<string_literal>(start_pos, val);
            }
            case token::identifier:
                return mk_stmt<identifier>(start_pos, t.value);
            case token::open_paren: {
                auto expr = parse_expression_sequence();
                expect(token::close_paren, "Expected )");
                return expr;
            }
            case token::open_square_bracket: {
                statements vals;
                while (!is(token::close_square_bracket)) {
                    vals.push_back(parse_expression());
                    if (is(token::comma)) current++;
                }
                current++;
                return mk_stmt<array_literal>(start_pos, std::move(vals));
            }
            case token::open_curly_bracket: {
                std::vector<std::pair<statement_ptr, statement_ptr>> pairs;
                while (!is(token::close_curly_bracket)) {
                    auto key = parse_expression();
                    expect(token::colon, "Expected :");
                    pairs.push_back({std::move(key), parse_expression()});
                    if (is(token::comma)) current++;
                }
                current++;
                return mk_stmt<object_literal>(start_pos, std::move(pairs));
            }
            default:
                throw std::runtime_error("Unexpected token: " + t.value + " of type " + std::to_string(t.t));
        }
    }
};

program parse_from_tokens(const lexer_result & lexer_res) {
    return parser(lexer_res.tokens, lexer_res.source).parse();
}

} // namespace jinja