1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
|
#include "speculative.h"
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include "log.h"
#include "ngram-cache.h"
#include "ngram-map.h"
#include "ngram-mod.h"
#include "sampling.h"
#include <algorithm>
#include <cstring>
#include <iomanip>
#include <map>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
const std::vector<enum common_speculative_type> common_speculative_types = {
COMMON_SPECULATIVE_TYPE_NONE,
COMMON_SPECULATIVE_TYPE_DRAFT,
COMMON_SPECULATIVE_TYPE_EAGLE3,
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V,
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE
};
const std::map<std::string, enum common_speculative_type> common_speculative_type_from_name_map = {
{"none", COMMON_SPECULATIVE_TYPE_NONE},
{"draft", COMMON_SPECULATIVE_TYPE_DRAFT},
{"eagle3", COMMON_SPECULATIVE_TYPE_EAGLE3},
{"ngram_simple", COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE},
{"ngram_map_k", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K},
{"ngram_map_k4v", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V},
{"ngram_mod", COMMON_SPECULATIVE_TYPE_NGRAM_MOD},
{"ngram_cache", COMMON_SPECULATIVE_TYPE_NGRAM_CACHE}
};
struct common_speculative_config {
common_speculative_type type;
common_params_speculative params;
common_speculative_config(common_speculative_type t,
const common_params_speculative & p = common_params_speculative{}) : type(t), params(p) {}
};
static bool common_speculative_are_compatible(
const llama_model * model_tgt,
const llama_model * model_dft) {
const llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
const llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
const bool vocab_type_dft = llama_vocab_type(vocab_dft);
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) {
LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__);
LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
return false;
}
if (
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
) {
LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__);
return false;
}
{
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
const int vocab_diff = n_vocab_tgt > n_vocab_dft
? n_vocab_tgt - n_vocab_dft
: n_vocab_dft - n_vocab_tgt;
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__);
LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return false;
}
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
common_token_to_piece(vocab_tgt, i).c_str(),
common_token_to_piece(vocab_dft, i).c_str());
return false;
}
}
}
return true;
}
// state of an implementation of speculative decoding
//
// each implementation has a unique type and a state that is implementation-specific
// in a subclass of common_speculative_state
struct common_speculative_state {
const enum common_speculative_type type;
// TODO: rename to n_call_draft, n_gen_drafts, n_acc_drafts, n_gen_tokens, n_acc_tokens
// TODO: add n_call_begin, n_call_accept
size_t drafts_call_count = 0; // number of times this implementation was called.
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
size_t drafts_generated_tokens = 0; // number of tokens generated by this implementation.
size_t drafts_accepted_tokens = 0; // number of tokens accepted by the target model.
// TODO: track performance of most recent calls
const bool gen_perf = true; // whether to generate performance stats.
int64_t t_begin_us = 0; // total time spent in refresh of this implementation in microseconds.
int64_t t_draft_us = 0; // total time spent in generating drafts in this implementation in microseconds.
int64_t t_accept_us = 0; // total time spent in accumulation of this implementation in microseconds.
common_speculative_state(enum common_speculative_type type) : type(type) {}
virtual ~common_speculative_state() = default;
virtual void begin(const llama_tokens & prompt) = 0;
virtual void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) = 0;
virtual void accept(uint16_t n_accepted) = 0;
};
struct common_speculative_state_draft : public common_speculative_state {
llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
llama_context * ctx_dft;
common_sampler * smpl;
llama_batch batch;
llama_tokens prompt_dft;
bool vocab_cmpt = true; // whether retokenization is needed
std::unordered_map<std::string, std::string> vocab_map;
common_speculative_state_draft(
enum common_speculative_type type,
llama_context * ctx_tgt,
llama_context * ctx_dft,
const std::vector<std::pair<std::string, std::string>> & replacements)
: common_speculative_state(type)
, ctx_tgt(ctx_tgt)
, ctx_dft(ctx_dft)
{
batch = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
smpl = nullptr;
// TODO: optimize or pass from outside?
// {
// common_params_sampling params;
// params.no_perf = false;
//
// params.top_k = 40;
// params.top_p = 0.9;
//
// params.samplers = {
// COMMON_SAMPLER_TYPE_TOP_K,
// COMMON_SAMPLER_TYPE_TOP_P,
// COMMON_SAMPLER_TYPE_INFILL,
// };
//
// result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
// }
{
common_params_sampling params;
params.no_perf = false;
params.top_k = 10;
params.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
};
smpl = common_sampler_init(llama_get_model(ctx_dft), params);
}
vocab_cmpt = common_speculative_are_compatible(llama_get_model(ctx_tgt), llama_get_model(ctx_dft));
LOG_DBG("vocab_cmpt = %d\n", vocab_cmpt);
if (!vocab_cmpt) {
LOG_WRN("the target and draft vocabs are not compatible - tokens will be translated between the two\n");
for (const auto & pair : replacements) {
vocab_map[pair.first] = pair.second;
}
}
}
~common_speculative_state_draft() override {
llama_perf_context_print(ctx_dft);
llama_free(ctx_dft);
common_sampler_free(smpl);
llama_batch_free(batch);
}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
auto * spec = this;
auto & batch = spec->batch;
auto & ctx_tgt = spec->ctx_tgt;
auto & ctx_dft = spec->ctx_dft;
auto & smpl = spec->smpl;
auto & prompt_dft = spec->prompt_dft;
auto * mem_dft = llama_get_memory(ctx_dft);
int reuse_i = 0;
int reuse_n = 0;
const int n_ctx = llama_n_ctx(ctx_dft) - params.n_max;
llama_tokens prompt_cnv;
if (!spec->vocab_cmpt) {
std::string text;
text = common_detokenize(ctx_tgt, prompt_tgt, true);
text = replace_to_dft(text);
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
prompt_cnv = common_tokenize(ctx_dft, text, false, true);
// convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
const auto * model_tgt = llama_get_model(ctx_tgt);
const auto * vocab_tgt = llama_model_get_vocab(model_tgt);
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
text.resize(-n_chars);
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
text = replace_to_dft(text);
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
id_last = common_tokenize(ctx_dft, text, false, true)[0];
}
const llama_tokens & prompt_cur = spec->vocab_cmpt ? prompt_tgt : prompt_cnv;
const int i_start = std::max<int>(0, (int) prompt_cur.size() - n_ctx);
// reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
for (int i = 0; i < (int) prompt_dft.size(); ++i) {
int cur = 0;
while (i_start + cur < (int) prompt_cur.size() &&
i + cur < (int) prompt_dft.size() &&
prompt_cur[i_start + cur] == prompt_dft[i + cur]) {
cur++;
}
if ((cur >= 256 || n_ctx >= (int) prompt_cur.size()) && cur > reuse_n) {
reuse_i = i;
reuse_n = cur;
}
}
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size());
result.clear();
result.reserve(params.n_max);
if (reuse_n == 0) {
llama_memory_clear(mem_dft, false);
prompt_dft.clear();
} else {
// this happens when a previous draft has been discarded (for example, due to being too small), but the
// target model agreed with it. in this case, we simply pass back the previous results to save compute
if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) {
for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) {
result.push_back(prompt_dft[i]);
if (params.n_max <= (int) result.size()) {
break;
}
}
return;
}
if (reuse_i > 0) {
llama_memory_seq_rm (mem_dft, 0, 0, reuse_i);
llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i);
prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i);
}
if (reuse_n < (int) prompt_dft.size()) {
llama_memory_seq_rm (mem_dft, 0, reuse_n, -1);
prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end());
}
}
// prepare a batch to evaluate any new tokens in the prompt
common_batch_clear(batch);
for (size_t i = i_start + reuse_n; i < prompt_cur.size(); ++i) {
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_cur[i]);
common_batch_add(batch, prompt_cur[i], i - i_start, { 0 }, false);
prompt_dft.push_back(prompt_cur[i]);
}
// we should rarely end-up here during normal decoding
if (batch.n_tokens > 0) {
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
llama_decode(ctx_dft, batch);
}
const llama_pos n_past = prompt_dft.size();
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true);
prompt_dft.push_back(id_last);
LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str());
llama_decode(ctx_dft, batch);
common_sampler_reset(smpl);
// sample n_draft tokens from the draft model
for (int i = 0; i < params.n_max; ++i) {
common_batch_clear(batch);
common_sampler_sample(smpl, ctx_dft, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl, true);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
}
// add drafted token for each sequence
const llama_token id = cur_p->data[0].id;
common_sampler_accept(smpl, id, true);
result.push_back(id);
if (params.n_max <= (int) result.size()) {
break;
}
// only collect very high-confidence draft tokens
if (cur_p->data[0].p < params.p_min) {
break;
}
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model
llama_decode(ctx_dft, batch);
prompt_dft.push_back(id);
}
if (!spec->vocab_cmpt) {
std::string detokenized = common_detokenize(ctx_dft, result, true);
detokenized = replace_to_tgt(detokenized);
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
result = common_tokenize(ctx_tgt, detokenized, false, true);
if (result.size() > (size_t)params.n_max) {
result.resize(params.n_max);
}
}
}
void accept(uint16_t n_accepted) override {
// noop
GGML_UNUSED(n_accepted);
}
std::string replace_to_dft(const std::string & input) const {
std::string result = input;
for (const auto & pair : this->vocab_map) {
size_t pos = result.find(pair.first);
while (pos != std::string::npos) {
result.replace(pos, pair.first.length(), pair.second);
pos = result.find(pair.first, pos + pair.second.length());
}
}
return result;
}
std::string replace_to_tgt(const std::string & input) const {
std::string result = input;
for (const auto & pair : this->vocab_map) {
size_t pos = result.find(pair.second);
while (pos != std::string::npos) {
result.replace(pos, pair.second.length(), pair.first);
pos = result.find(pair.second, pos + pair.first.length());
}
}
return result;
}
};
struct common_speculative_state_eagle3 : public common_speculative_state {
common_speculative_state_eagle3(enum common_speculative_type type) : common_speculative_state(type) {}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & draft_tokens) override {
// TODO: implement
GGML_UNUSED(params);
GGML_UNUSED(prompt_tgt);
GGML_UNUSED(id_last);
GGML_UNUSED(draft_tokens);
}
void accept(uint16_t n_accepted) override {
// noop
GGML_UNUSED(n_accepted);
}
};
// state of self-speculation (simple implementation, not ngram-map)
struct common_speculative_state_ngram_simple : public common_speculative_state {
common_ngram_simple_config config;
uint16_t check_id = 0; // used to control the frequency of generating drafts
common_speculative_state_ngram_simple(
enum common_speculative_type type,
common_ngram_simple_config config)
: common_speculative_state(type), config(config) {}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
++check_id;
if (check_id < config.check_rate) {
return;
}
check_id = 0;
result = common_ngram_simple_draft(config, prompt_tgt, id_last);
GGML_UNUSED(params);
}
void accept(uint16_t n_accepted) override {
// noop
GGML_UNUSED(n_accepted);
}
};
struct common_speculative_state_ngram_map_k : public common_speculative_state {
// draft ngram map for speculative decoding without draft model
common_ngram_map map;
common_speculative_state_ngram_map_k(
enum common_speculative_type type,
common_ngram_map map)
: common_speculative_state(type), map(std::move(map)) {}
void begin(const llama_tokens & prompt) override {
common_ngram_map_begin(map, prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
common_ngram_map_draft(map, prompt_tgt, id_last, result);
GGML_UNUSED(params);
}
void accept(uint16_t n_accepted) override {
common_ngram_map_accept(map, n_accepted);
}
};
struct common_speculative_state_ngram_mod : public common_speculative_state {
common_ngram_mod & mod;
// the last position in the prompt that was added to the ngram container
size_t i_last = 0;
// length of the last drafted n‑gram (number of tokens returned by draft)
size_t n_draft_last = 0;
// consecutive accept rounds with low acceptance fraction (< 0.5)
int n_low = 0;
// enable trace logging if LLAMA_TRACE is set
const bool verbose;
common_speculative_state_ngram_mod(enum common_speculative_type type, common_ngram_mod & mod)
: common_speculative_state(type), mod(mod), verbose(std::getenv("LLAMA_TRACE") != nullptr) {
static_assert(sizeof(llama_token) == sizeof(common_ngram_mod::entry_t));
}
void begin(const llama_tokens & prompt) override {
i_last = 0;
n_draft_last = 0;
const size_t n = mod.get_n();
if (prompt.size() < n) {
return;
}
for (size_t i = 0; i < prompt.size() - n; ++i) {
mod.add(prompt.data() + i);
}
i_last = prompt.size() - n;
const double f = (double)mod.get_used() / (double)mod.size();
LOG_INF("%s: ngram_mod occupancy = %zu/%zu (%.2f)\n", __func__, mod.get_used(), mod.size(), f);
constexpr double f_thold = 0.25;
if (f > f_thold) {
LOG_WRN("%s: ngram_mod occupancy %.2f exceeds threshold (%.2f) - resetting\n", __func__, f, f_thold);
mod.reset();
}
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
GGML_UNUSED(params);
n_draft_last = 0;
const size_t cur_len = prompt_tgt.size();
if (cur_len < mod.get_n()) {
return;
}
const size_t n = mod.get_n();
// add new ngrams in chunks
if (i_last + 32 < cur_len) {
for (size_t i = i_last; i < cur_len - n; ++i) {
mod.add(prompt_tgt.data() + i);
}
i_last = cur_len - n;
}
result.resize(n + params.n_max);
for (size_t i = 0; i < n - 1; ++i) {
result[i] = prompt_tgt[cur_len - n + 1 + i];
}
result[n - 1] = id_last;
for (int i = 0; i < params.n_max; ++i) {
const llama_token token = mod.get(result.data() + i);
if (token == common_ngram_mod::EMPTY) {
if (i < params.n_min) {
result.clear();
return;
}
result.resize(n + i);
break;
}
result[n + i] = token;
}
// only return the m tokens that were drafted
for (size_t i = 0; n + i < result.size(); ++i) {
result[i] = result[n + i];
}
result.resize(result.size() - n);
// store length of drafted n‑gram for later acceptance analysis
n_draft_last = result.size();
}
void accept(uint16_t n_accepted) override {
if (verbose) {
LOG_INF("%s: accepted %d tokens from %zu drafted tokens\n", __func__, n_accepted, n_draft_last);
}
// compute acceptance fraction if we have a recorded draft length
if (n_draft_last > 0) {
const double f_acc = (double)n_accepted / (double)n_draft_last;
if (f_acc < 0.5) {
n_low++;
if (n_low >= 3) {
LOG_WRN("%s: low acceptance streak (%d) – resetting ngram_mod\n", __func__, n_low);
mod.reset();
n_low = 0;
}
} else {
n_low = 0;
}
}
}
};
struct common_speculative_state_ngram_cache : public common_speculative_state {
uint16_t n_draft;
bool save_dynamic;
bool save_static;
common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic;
common_ngram_cache ngram_cache_static;
size_t cache_size = 0; // number of tokens in n-gram cache
common_speculative_state_ngram_cache(
const enum common_speculative_type type,
const std::string & path_static,
const std::string & path_dynamic,
uint16_t n_draft,
bool save_dynamic,
bool save_static)
: common_speculative_state(type)
, n_draft(n_draft)
, save_dynamic(save_dynamic)
, save_static(save_static)
{
if (!path_static.empty()) {
try {
ngram_cache_static = common_ngram_cache_load(path_static);
} catch (...) {
LOG_ERR("failed to open static lookup cache: %s", path_static.c_str());
GGML_ABORT("Couldn't read static lookup cache");
}
}
if (!path_dynamic.empty()) {
try {
ngram_cache_dynamic = common_ngram_cache_load(path_dynamic);
} catch (...) {
LOG_ERR("failed to open dynamic lookup cache: %s", path_dynamic.c_str());
GGML_ABORT("Couldn't read dynamic lookup cache");
}
}
}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
GGML_UNUSED(params);
if (cache_size < prompt_tgt.size() + 1) {
llama_tokens tokens_new;
tokens_new.reserve(prompt_tgt.size() + 1 - cache_size);
for (size_t j = cache_size; j < prompt_tgt.size(); ++j) {
tokens_new.push_back(prompt_tgt[j]);
}
tokens_new.push_back(id_last); // add the last token
// Update context ngram cache with new prompt_tgt:
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX,
tokens_new, tokens_new.size(), false);
cache_size = prompt_tgt.size() + 1;
}
llama_tokens inp;
inp.reserve(prompt_tgt.size() + 1);
for (size_t j = 0; j < prompt_tgt.size(); ++j) {
inp.push_back(prompt_tgt[j]);
}
inp.push_back(id_last);
result.push_back(id_last);
common_ngram_cache_draft(inp, result, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX,
ngram_cache_context,
ngram_cache_dynamic,
ngram_cache_static);
if (result.size() > 0) {
// delete first token in result (which is the id_last token)
result.erase(result.begin());
}
}
void accept(uint16_t n_accepted) override {
// TODO: noop
GGML_UNUSED(n_accepted);
}
};
struct common_speculative {
std::vector<std::unique_ptr<common_speculative_state>> impls; // list of implementations to use and their states
common_speculative_state * curr_impl = nullptr; // current implementation in use (for stats)
};
static common_ngram_map get_common_ngram_map(const common_speculative_config & config) {
uint16_t size_key = config.params.ngram_size_n;
uint16_t size_value = config.params.ngram_size_m;
bool key_only = (config.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
uint16_t check_rate = config.params.ngram_check_rate;
uint16_t min_hits = config.params.ngram_min_hits;
return common_ngram_map(size_key, size_value, key_only, check_rate, min_hits);
}
static common_speculative_state_ngram_cache create_state_ngram_cache(
const std::string & path_static, const std::string & path_dynamic,
const common_speculative_config & config) {
uint16_t n_draft = 8; // TODO get from config?
// TODO bool param in common/common.h to set save_static/save_dynamic?
bool save_static = false;
bool save_dynamic = false;
common_speculative_state_ngram_cache state(config.type, path_static, path_dynamic, n_draft, save_static, save_dynamic);
return state;
}
std::string common_speculative_type_name_str() {
std::string result;
for (size_t i = 0; i < common_speculative_types.size(); i++) {
if (i > 0) {
result += ", ";
}
result += common_speculative_type_to_str(common_speculative_types[i]);
}
return result;
}
std::string common_speculative_type_to_str(enum common_speculative_type type) {
switch (type) {
case COMMON_SPECULATIVE_TYPE_NONE: return "none";
case COMMON_SPECULATIVE_TYPE_DRAFT: return "draft";
case COMMON_SPECULATIVE_TYPE_EAGLE3: return "eagle3";
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: return "ngram_simple";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K: return "ngram_map_k";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: return "ngram_map_k4v";
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: return "ngram_mod";
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: return "ngram_cache";
default: return "unknown";
}
}
enum common_speculative_type common_speculative_type_from_name(const std::string & name) {
const auto it = common_speculative_type_from_name_map.find(name);
if (it == common_speculative_type_from_name_map.end()) {
return COMMON_SPECULATIVE_TYPE_COUNT;
}
return it->second;
}
bool common_speculative_is_compat(llama_context * ctx_tgt) {
auto * mem = llama_get_memory(ctx_tgt);
if (mem == nullptr) {
return false;
}
bool res = true;
llama_memory_clear(mem, true);
// eval 2 tokens to check if the context is compatible
std::vector<llama_token> tmp;
tmp.push_back(0);
tmp.push_back(0);
int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size()));
if (ret != 0) {
LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret);
res = false;
goto done;
}
// try to remove the last tokens
if (!llama_memory_seq_rm(mem, 0, 1, -1)) {
LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__);
res = false;
goto done;
}
done:
llama_memory_clear(mem, true);
llama_synchronize(ctx_tgt);
return res;
}
// initialization of the speculative decoding system
//
common_speculative * common_speculative_init(
common_params_speculative & params,
llama_context * ctx_tgt) {
llama_context * ctx_dft = nullptr;
if (params.model_dft) {
ctx_dft = llama_init_from_model(params.model_dft, params.cparams_dft);
if (ctx_dft == nullptr) {
LOG_ERR("%s", "failed to create draft context\n");
return nullptr;
}
}
// Compute the implementations to use based on the config and their order of preference
std::vector<common_speculative_config> configs = {}; // list of speculative configs to try
{
bool has_draft = !params.mparams_dft.path.empty();
bool has_draft_eagle3 = false; // TODO PR-18039: if params.speculative.eagle3
bool has_ngram_cache = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_CACHE);
bool has_ngram_simple = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE);
bool has_ngram_map_k = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
bool has_ngram_map_k4v = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V);
bool has_ngram_mod = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MOD);
// In a more complex implementation we could use the same implementation but with different parameters.
// This was initially used in PR-18471 but removed to simplify the code.
if (has_ngram_simple) {
// This implementation can guess a lot of tokens without any draft model.
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, params));
}
if (has_ngram_map_k) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, params));
}
if (has_ngram_map_k4v) {
// This implementation can guess tokens with high acceptance rate but is more expensive.
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, params));
}
if (has_ngram_mod) {
// shared instance for all speculative decoding contexts
if (!params.ngram_mod) {
params.ngram_mod = std::make_shared<common_ngram_mod>(params.ngram_size_n, 4*1024*1024);
LOG_INF("%s: initialized ngram_mod with n=%d, size=%zu (%.3f MB)\n", __func__,
params.ngram_size_n, params.ngram_mod->size(),
(float)(params.ngram_mod->size_bytes())/1024/1024);
if (params.ngram_size_n < 16) {
LOG_WRN("%s: ngram_mod n=%d is too small - poor quality is possible, see: https://github.com/ggml-org/llama.cpp/pull/19164\n", __func__, params.ngram_size_n);
}
}
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MOD, params));
}
if (has_ngram_cache) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, params));
}
if (has_draft) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_DRAFT, params));
}
if (has_draft_eagle3) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_EAGLE3, params));
}
}
std::vector<std::unique_ptr<common_speculative_state>> impls = {};
for (const common_speculative_config & config : configs) {
LOG_DBG("%s: adding implementation %s\n", __func__, common_speculative_type_to_str(config.type).c_str());
switch (config.type) {
case COMMON_SPECULATIVE_TYPE_NONE:
break;
case COMMON_SPECULATIVE_TYPE_DRAFT: {
impls.push_back(std::make_unique<common_speculative_state_draft>(config.type,
/* .ctx_tgt = */ ctx_tgt,
/* .ctx_dft = */ ctx_dft,
/* .replacements = */ params.replacements
));
break;
}
case COMMON_SPECULATIVE_TYPE_EAGLE3: {
impls.push_back(std::make_unique<common_speculative_state_eagle3>(config.type));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: {
common_ngram_map ngram_map = get_common_ngram_map(config);
uint16_t ngram_size_key = ngram_map.size_key;
uint16_t mgram_size_value = ngram_map.size_value;
uint16_t check_rate = ngram_map.check_rate;
auto config_simple = common_ngram_simple_config {
/* .size_ngram = */ ngram_size_key,
/* .size_mgram = */ mgram_size_value,
/* .check_rate = */ check_rate
};
auto state = std::make_unique<common_speculative_state_ngram_simple>(
/* .type = */ config.type,
/* .state = */ config_simple
);
impls.push_back(std::move(state));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K:
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: {
impls.push_back(std::make_unique<common_speculative_state_ngram_map_k>(
(config.type),
get_common_ngram_map(config)
));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: {
GGML_ASSERT(config.params.ngram_mod);
impls.push_back(std::make_unique<common_speculative_state_ngram_mod>(config.type, *config.params.ngram_mod));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: {
auto state = create_state_ngram_cache(
params.lookup_cache_static, params.lookup_cache_dynamic, config);
impls.push_back(std::make_unique<common_speculative_state_ngram_cache>(state));
break;
}
default:
break;
}
}
if (impls.empty()) {
LOG_WRN("%s", "no implementations specified for speculative decoding\n");
return nullptr;
}
auto * result = new common_speculative {
/* .impls = */ std::move(impls)
};
return result;
}
void common_speculative_free(common_speculative * spec) {
if (spec == nullptr) {
return;
}
delete spec;
}
void common_speculative_begin(common_speculative * spec, const llama_tokens & prompt) {
if (spec == nullptr) {
return;
}
for (auto & impl : spec->impls) {
common_time_meas tm(impl->t_begin_us, !impl->gen_perf);
impl->begin(prompt);
}
}
llama_tokens common_speculative_draft(
common_speculative * spec,
const common_params_speculative & params,
const llama_tokens & prompt_tgt, // specified in target model vocab
llama_token id_last) {
llama_tokens result;
spec->curr_impl = nullptr; // reset current implementation
for (auto & impl : spec->impls) {
{
common_time_meas tm(impl->t_draft_us, !impl->gen_perf);
impl->draft(params, prompt_tgt, id_last, result);
impl->drafts_call_count++;
}
if (!result.empty()) {
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
common_speculative_type_to_str(impl.get()->type).c_str(), prompt_tgt.size(),
impl.get()->drafts_call_count, result.size());
spec->curr_impl = impl.get(); // set current implementation for stats
impl->drafts_generated_count++;
impl->drafts_generated_tokens += result.size();
break; // We have a draft, so break out of the loop and return it.
}
}
return result;
}
void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
if (n_accepted == 0) {
return;
}
common_speculative_state * impl = spec->curr_impl;
GGML_ASSERT(impl);
{
common_time_meas tm(impl->t_accept_us, !impl->gen_perf);
if (n_accepted > 0) {
impl->drafts_accepted_count++;
impl->drafts_accepted_tokens += n_accepted;
}
impl->accept(n_accepted);
}
}
void common_speculative_print_stats(const common_speculative * spec) {
if (spec == nullptr) {
return;
}
for (const auto & impl : spec->impls) {
std::string str_perf;
if (impl->gen_perf) {
std::ostringstream oss;
oss << std::fixed << std::setprecision(3) << impl->t_begin_us / 1000.0 << ", ";
oss << std::fixed << std::setprecision(3) << impl->t_draft_us / 1000.0 << ", ";
oss << std::fixed << std::setprecision(3) << impl->t_accept_us / 1000.0;
str_perf = ", dur(b,g,a) = " + oss.str() + " ms";
} else {
str_perf = "";
}
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
common_speculative_type_to_str(impl->type).c_str(),
impl->drafts_call_count,
impl->drafts_generated_count,
impl->drafts_accepted_count,
impl->drafts_generated_tokens,
impl->drafts_accepted_tokens,
str_perf.c_str());
}
}
|