File: test-backend-sampler.cpp

package info (click to toggle)
llama.cpp 7965%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 75,824 kB
  • sloc: cpp: 348,634; ansic: 49,792; python: 33,481; lisp: 10,836; sh: 6,289; objc: 1,392; javascript: 924; xml: 384; makefile: 233
file content (1165 lines) | stat: -rw-r--r-- 46,867 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
#include "ggml.h"
#include "llama.h"
#include "llama-cpp.h"
#include "get-model.h"
#include "common.h"

#ifdef NDEBUG
#undef NDEBUG
#endif

#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>

struct test_args {
    std::string model;
    std::string test;
    std::string device = "auto";
};

struct test_params {
    llama_model_ptr model;
};

static llama_model_ptr load_model(const test_args & args) {
    auto mparams = llama_model_default_params();

    ggml_backend_dev_t devs[2] = { nullptr, nullptr };

    if (args.device != "auto") {
        if (args.device == "gpu") {
            devs[0] = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);

            if (devs[0] == nullptr) {
                fprintf(stderr, "Error: GPU requested but not available\n");
                return nullptr;
            }

            mparams.n_gpu_layers = 999;
        } else if (args.device == "cpu") {
            devs[0] = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);

            mparams.n_gpu_layers = 0;
        } else {
            fprintf(stderr, "Error: invalid device '%s'\n", args.device.c_str());
            return nullptr;
        }

        mparams.devices = devs;

        fprintf(stderr, "Using device: %s\n", ggml_backend_dev_name(devs[0]));
    }

    llama_model_ptr res;

    res.reset(llama_model_load_from_file(args.model.c_str(), mparams));

    if (!res) {
        fprintf(stderr, "Warning: failed to load model '%s', skipping test\n", args.model.c_str());
        return nullptr;
    }

    return res;
}

struct test_context {
    llama_context_ptr ctx;

    int n_vocab = 0;

    const llama_vocab * vocab = nullptr;

    std::unordered_map<llama_seq_id, int32_t> seq_positions;
    std::unordered_map<llama_seq_id, int32_t> last_batch_info;

    test_context(const test_params & params, std::vector<llama_sampler_seq_config> & configs, int32_t n_seq_max = -1) {
        auto * model = params.model.get();

        GGML_ASSERT(model);
        GGML_ASSERT(!ctx);

        llama_context_params cparams = llama_context_default_params();
        cparams.n_ctx = 512;
        cparams.n_batch = 512;
        cparams.samplers = configs.data();
        cparams.n_samplers = configs.size();

        // If n_seq_max is not specified, calculate it from configs
        if (n_seq_max < 0) {
            int32_t max_seq_id = 0;
            for (const auto & config : configs) {
                max_seq_id = std::max(config.seq_id, max_seq_id);
            }
            cparams.n_seq_max = max_seq_id + 1;
        } else {
            cparams.n_seq_max = n_seq_max;
        }

        ctx.reset(llama_init_from_model(model, cparams));
        if (!ctx) {
            throw std::runtime_error("failed to create context");
        }

        llama_set_warmup(ctx.get(), false);

        vocab = llama_model_get_vocab(model);
        n_vocab = llama_vocab_n_tokens(vocab);
    }

    bool decode(const std::map<llama_seq_id, std::string> & prompts) {
        GGML_ASSERT(ctx);

        last_batch_info.clear();
        llama_batch batch = llama_batch_init(512, 0, prompts.size());

        for (const auto & [seq_id, prompt] : prompts) {
            std::vector<llama_token> tokens;
            tokens.push_back(llama_vocab_bos(vocab));

            std::vector<llama_token> prompt_tokens(32);
            int n_tokens = llama_tokenize(vocab, prompt.c_str(), prompt.length(),
                                           prompt_tokens.data(), prompt_tokens.size(),
                                           false, false);
            if (n_tokens < 0) {
                fprintf(stderr, "Warning: tokenization failed for seq_id %d\n", seq_id);
                llama_batch_free(batch);
                return false;
            }

            for (int i = 0; i < n_tokens; i++) {
                tokens.push_back(prompt_tokens[i]);
            }

            if (seq_positions.find(seq_id) == seq_positions.end()) {
                seq_positions[seq_id] = 0;
            }

            int32_t start_pos = seq_positions[seq_id];
            for (size_t i = 0; i < tokens.size(); i++) {
                common_batch_add(batch, tokens[i], start_pos + i, { seq_id }, i == tokens.size() - 1);
            }

            seq_positions[seq_id] = start_pos + tokens.size();
        }


        printf("Batch contents:\n");
        printf("n_tokens: %d\n", batch.n_tokens);
        for (int i = 0; i < batch.n_tokens; i++) {
            printf("token[%d]: tok=%-5d, pos=%d, n_seq_id=%d, seq_ids=[", i, batch.token[i], batch.pos[i], batch.n_seq_id[i]);

            for (int j = 0; j < batch.n_seq_id[i]; j++) {
                printf("%d%s", batch.seq_id[i][j], j < batch.n_seq_id[i]-1 ? ", " : "");
            }
            printf("], logits=%d\n", batch.logits[i]);
        }

        if (llama_decode(ctx.get(), batch) != 0) {
            fprintf(stderr, "Warning: llama_decode failed\n");
            llama_batch_free(batch);
            return false;
        }

        // Build mapping from seq id to batch token idx
        for (int i = 0; i < batch.n_tokens; i++) {
            if (batch.logits[i]) {
                llama_seq_id seq_id = batch.seq_id[i][0];
                last_batch_info[seq_id] = i;
            }
        }

        llama_batch_free(batch);
        return true;
    }

    int32_t idx_for_seq(llama_seq_id seq_id) {
        auto it = last_batch_info.find(seq_id);
        if (it == last_batch_info.end()) {
            fprintf(stderr, "Error: no batch index found for seq_id %d\n", seq_id);
            return -1;
        }
        return it->second;
    }

    void update_batch_info(const llama_batch & batch) {
        last_batch_info.clear();
        for (int i = 0; i < batch.n_tokens; i++) {
            if (batch.logits[i]) {
                llama_seq_id cur_seq = batch.seq_id[i][0];
                last_batch_info[cur_seq] = i;
            }
        }
    }

    bool decode_token(llama_token token, llama_seq_id seq_id = 0) {
        GGML_ASSERT(ctx);

        llama_batch batch = llama_batch_init(1, 0, 1);
        int32_t pos = seq_positions[seq_id];
        common_batch_add(batch, token, pos, { seq_id }, true);

        if (llama_decode(ctx.get(), batch) != 0) {
            fprintf(stderr, "Warning: llama_decode failed for token %d in seq %d\n", token, seq_id);
            llama_batch_free(batch);
            return false;
        }

        update_batch_info(batch);

        seq_positions[seq_id]++;
        llama_batch_free(batch);

        return true;
    }

    bool decode_tokens(const std::map<llama_seq_id, llama_token> & seq_tokens) {
        GGML_ASSERT(ctx);

        llama_batch batch = llama_batch_init(seq_tokens.size(), 0, seq_tokens.size());

        for (const auto & [seq_id, token] : seq_tokens) {
            int32_t pos = seq_positions[seq_id];
            common_batch_add(batch, token, pos, { seq_id }, true);
        }

        if (llama_decode(ctx.get(), batch) != 0) {
            fprintf(stderr, "Warning: llama_decode failed for batch tokens\n");
            llama_batch_free(batch);
            return false;
        }

        for (const auto & [seq_id, _] : seq_tokens) {
            seq_positions[seq_id]++;
        }

        update_batch_info(batch);

        llama_batch_free(batch);

        return true;
    }

    std::string token_to_piece(llama_token token, bool special) const {
        std::string piece;
        piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
        const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
        if (n_chars < 0) {
            piece.resize(-n_chars);
            int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
            GGML_ASSERT(check == -n_chars);
        } else {
            piece.resize(n_chars);
        }

        return piece;
    }
};

static void test_backend_greedy_sampling(const test_params & params) {
    const int seq_id = 0;

    struct llama_sampler_chain_params backend_sampler_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_sampler_params));

    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_greedy());
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Some"}})) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

    llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
    printf("greedy sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
    GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);

    token = llama_get_sampled_token_ith(test_ctx.ctx.get(), -1);
    printf("greedy sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
    GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);

    for (int i = 0; i < 10; i++) {
        int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
        llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), loop_idx);
        printf("Generation step %d: token id:%d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
        if (!test_ctx.decode_token(token, 0)) {
            GGML_ASSERT(false && "Failed to decode token");
        }
    }
}

static void test_backend_top_k_sampling(const test_params & params) {
    const int seq_id = 0;
    const int32_t k = 8;
    struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_top_k(k));
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Hello"}})) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

    float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
    uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
    for (size_t i = 0; i < n_logits; ++i) {
        printf("top_k logit[%zu] = %.6f\n", i, logits[i]);
    }

    llama_token * candidates = llama_get_sampled_candidates_ith(test_ctx.ctx.get(), batch_idx);
    uint32_t n_candidates = llama_get_sampled_candidates_count_ith(test_ctx.ctx.get(), batch_idx);
    for (size_t i = 0; i < n_candidates; ++i) {
        printf("top_k candidate[%zu] = %d : %s\n", i, candidates[i],
               test_ctx.token_to_piece(candidates[i], false).c_str());
    }

    // Sample using CPU sampler for verification that it is possible to do hybrid
    // sampling, first top_k on the backend and then dist on the CPU.
    struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
    GGML_ASSERT(chain->iface->backend_apply != nullptr);

    llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
    llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
    GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);

    printf("backend top-k hybrid sampling test PASSED\n");
}

static void test_backend_temp_sampling(const test_params & params) {
    {
        const float temp_0 = 0.8f;
        struct llama_sampler_chain_params backend_chain_params_0 = llama_sampler_chain_default_params();
        llama_sampler_ptr backend_sampler_chain_0(llama_sampler_chain_init(backend_chain_params_0));
        llama_sampler_chain_add(backend_sampler_chain_0.get(), llama_sampler_init_temp(temp_0));

        const float temp_1 = 0.1f;
        struct llama_sampler_chain_params backend_chain_params_1 = llama_sampler_chain_default_params();
        llama_sampler_ptr backend_sampler_chain_1(llama_sampler_chain_init(backend_chain_params_1));
        llama_sampler_chain_add(backend_sampler_chain_1.get(), llama_sampler_init_temp(temp_1));

        std::vector<llama_sampler_seq_config> backend_sampler_configs = {
            { 0, backend_sampler_chain_0.get() },
            { 1, backend_sampler_chain_1.get() }
        };

        test_context test_ctx(params, backend_sampler_configs);

        if (!test_ctx.decode({{0, "Some where over the"}, {1, "Once upon a"}})) {
            GGML_ASSERT(false && "Failed to decode token");
        }

        // Verfify sequence 0
        {
            int32_t batch_idx = test_ctx.idx_for_seq(0);
            int n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
            GGML_ASSERT(n_logits == test_ctx.n_vocab);

            // Sample from sequence 0 using CPU sampler
            struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
            llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
            llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));

            llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
            const std::string token_str = test_ctx.token_to_piece(token, false);
            printf("Sequence 0 sampled token id:%d, string: '%s'\n", token, token_str.c_str());
            GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
        }


        // Verfify sequence 1
        {
            int32_t batch_idx = test_ctx.idx_for_seq(1);

            // Sample from sequence 1 using CPU sampler
            struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
            llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
            llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));

            llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
            const std::string token_str = test_ctx.token_to_piece(token, false);
            printf("Sequence 1 sampled token id:%d, string: '%s'\n", token, token_str.c_str());
            GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
        }
    }

    // lambda to testing non-positive temperature values.
    auto test_argmax_temp = [&](float temp) {
        printf("\nTesting temperature = %.1f\n", temp);

        int seq_id = 0;
        struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
        llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
        llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp(temp));

        std::vector<llama_sampler_seq_config> backend_sampler_configs = {
            { seq_id, backend_sampler_chain.get() },
        };

        test_context test_ctx(params, backend_sampler_configs);

        if (!test_ctx.decode({{seq_id, "Once"}})) {
            GGML_ASSERT(false && "Failed to decode token");
        }

        int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

        uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
        GGML_ASSERT(n_logits == 1);
    };

    test_argmax_temp(0.0f);
    test_argmax_temp(-1.0f);

    printf("backend temp sampling test PASSED\n");
}

static void test_backend_temp_ext_sampling(const test_params & params) {
    {
        int seq_id = 0;
        const float temp = 0.8f;
        const float delta = 0.5f;
        const float exponent = 1.5f;
        struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
        llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
        llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp_ext(temp, delta, exponent));

        std::vector<llama_sampler_seq_config> backend_sampler_configs = {
            { seq_id, backend_sampler_chain.get() },
        };

        test_context test_ctx(params, backend_sampler_configs);

        if (!test_ctx.decode({{seq_id, "Once upon a"}})) {
            GGML_ASSERT(false && "Failed to decode token");
        }

        // Verify sequence 0
        {
            int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
            int n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
            GGML_ASSERT(n_logits == test_ctx.n_vocab);
        }
    }

    // lambda to testing non-positive temp/delta/exponent values.
    auto test_argmax_temp = [&](float temp, float delta, float exponent) {
        printf("\nTesting temperature = %.1f, delta = %1.f, exponent = %1.f\n", temp, delta, exponent);

        int seq_id = 0;
        struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
        llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
        llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp_ext(temp, delta, exponent));

        std::vector<llama_sampler_seq_config> backend_sampler_configs = {
            { seq_id, backend_sampler_chain.get() },
        };

        test_context test_ctx(params, backend_sampler_configs);

        if (!test_ctx.decode({{seq_id, "Once"}})) {
            GGML_ASSERT(false && "Failed to decode token");
        }

        int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

        uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);

        if (temp <= 0.0f && delta >= 0.0f) {
            GGML_ASSERT(n_logits == 1);
        } else {
            GGML_ASSERT(n_logits == (uint32_t) test_ctx.n_vocab);
        }
    };

    test_argmax_temp(0.0f,  0.3f, 1.0f); // Greedy (temp=0)
    test_argmax_temp(-1.0f, 0.3f, 2.0f); // Greedy (temp<0)
    test_argmax_temp(0.8f,  0.0f, 2.0f); // Temperature scaling

    printf("backend temp_ext sampling test PASSED\n");
}

static void test_backend_min_p_sampling(const test_params & params) {
    const int seq_id = 0;
    const float p = 0.1;
    struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_min_p(p, 0));
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Hello"}})) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

    float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
    uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);

    // Print the logits that are above the min-p threshold
    std::vector<float> filtered_logits;
    for (size_t i = 0; i < n_logits; ++i) {
        if (logits[i] > -1e9f) {
            filtered_logits.push_back(logits[i]);
            //printf("min_p logit[%zu] = %.6f\n", i, logits[i]);
        }
    }
    GGML_ASSERT(filtered_logits.size() < (size_t) test_ctx.n_vocab);

    // Sample using CPU sampler for verification to inspect they are reasonable
    struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
    llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(88));

    llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
    const std::string token_str = test_ctx.token_to_piece(token, false);
    printf("min-p cpu sampled token id:%d, string: '%s'\n", token, token_str.c_str());
    GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);

    // Decode and sampler 10 more tokens
    for (int i = 0; i < 10; i++) {
        int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
        llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), loop_idx);
        printf("min-p gen step %d: token id :%5.d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
        if (!test_ctx.decode_token(token, 0)) {
            GGML_ASSERT(false && "Failed to decode token");
        }
    }

    printf("min-p sampling test PASSED\n");
}

static void test_backend_top_p_sampling(const test_params & params) {
    const int seq_id = 0;
    const float p = 0.9;
    struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_top_p(p, 0));
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Hello"}})) {
        return;
    }

    int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

    float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
    uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);

    // Print the logits that are above the min-p threshold
    std::vector<float> filtered_logits;
    for (size_t i = 0; i < n_logits; ++i) {
        if (logits[i] > -1e9f) {
            filtered_logits.push_back(logits[i]);
        }
    }
    GGML_ASSERT(filtered_logits.size() < (size_t) test_ctx.n_vocab);
    GGML_ASSERT(filtered_logits.size() > 0);

    // Sample using CPU sampler for verification to inspect they are reasonable
    struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
    llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(88));

    llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
    const std::string token_str = test_ctx.token_to_piece(token, false);
    printf("top-p cpu sampled token id:%d, string: '%s'\n", token, token_str.c_str());
    GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);

    // Decode and sampler 10 more tokens
    for (int i = 0; i < 10; i++) {
        int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
        llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), loop_idx);
        printf("top-p gen step %d: token id :%5.d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
        test_ctx.decode_token(token, 0);
    }

    printf("top-p sampling test PASSED\n");
}

static void test_backend_multi_sequence_sampling(const test_params & params) {
    struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
    llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
    llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_greedy());

    struct llama_sampler_chain_params chain_params_1 = llama_sampler_chain_default_params();
    llama_sampler_ptr sampler_chain_1(llama_sampler_chain_init(chain_params_1));
    llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_temp(0.8f));
    llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_greedy());

    std::vector<llama_sampler_seq_config> backend_sampler_configs = {
        { 0, sampler_chain_0.get() },
        { 1, sampler_chain_1.get() }
    };

    test_context test_ctx(params, backend_sampler_configs);

    std::map<llama_seq_id, std::string> prompts = {
        {0, "Hello"},
        {1, "Some"}
    };

    if (!test_ctx.decode(prompts)) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    // Verfiy sequence 0
    {
        int32_t batch_idx = test_ctx.idx_for_seq(0);
        llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
        const std::string token_str = test_ctx.token_to_piece(token, false);
        printf("Seq 0 sampled token id=%d, string='%s'\n", token, token_str.c_str());
        GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
    }

    // Verify sequence 1
    {
        int32_t batch_idx= test_ctx.idx_for_seq(1);
        llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
        const std::string token_str = test_ctx.token_to_piece(token, false);
        printf("Seq 1 sampled token id=%d, string='%s'\n", token, token_str.c_str());
        GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
    }

    // Generate tokens for each sequence
    printf("\nMulti-sequence generation:\n");
    for (int step = 0; step < 4; step++) {
        std::map<llama_seq_id, llama_token> tokens;

        for (llama_seq_id seq_id : {0, 1}) {
            int32_t idx = test_ctx.idx_for_seq(seq_id);
            llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), idx);
            const std::string token_str = test_ctx.token_to_piece(token, false);
            printf("  Seq %d, step %d: token id=%d, string='%s'\n", seq_id, step, token, token_str.c_str());
            tokens[seq_id] = token;
        }

        // Decode all tokens in a single batch
        if (!test_ctx.decode_tokens(tokens)) {
            GGML_ASSERT(false && "Failed to decode token");
        }
    }

    printf("backend multi-sequence sampling test PASSED\n");
}

static void test_backend_dist_sampling(const test_params & params) {
    const int seq_id = 189;
    const int32_t seed = 88;

    struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Some"}})) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
    llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
    printf("dist sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
    GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
    //GGML_ASSERT(llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx) == nullptr);

    token = llama_get_sampled_token_ith(test_ctx.ctx.get(), -1);
    printf("dist sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
    GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);

    printf("backend dist sampling test PASSED\n");
}

static void test_backend_dist_sampling_and_cpu(const test_params & params) {
    const int seq_id = 0;
    const int32_t seed = 88;

    struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Some"}})) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

    // Sample using CPU sampler
    struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
    llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));

    llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
    llama_token cpu_token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
    printf("dist & cpu sampled id:%d, string:'%s'\n", cpu_token, test_ctx.token_to_piece(cpu_token, false).c_str());
    GGML_ASSERT(backend_token == cpu_token);

    printf("backend dist & cpu sampling test PASSED\n");
}

static void test_backend_logit_bias_sampling(const test_params & params) {
    const auto * model = params.model.get();
    const auto * vocab = llama_model_get_vocab(model);

    const int seq_id = 0;

    std::vector<llama_logit_bias> logit_bias;

    // Get the token for the piece "World".
    const std::string piece = "World";
    std::vector<llama_token> tokens(16);
    llama_tokenize(vocab, piece.c_str(), piece.size(), tokens.data(), tokens.size(), false, false);

    llama_token bias_token = tokens[0];
    // TODO: biasing too much here makes the Vulkan sampling fail - should be investigated further
    //       https://github.com/ggml-org/llama.cpp/actions/runs/20894267644/job/60030252675?pr=18753#step:3:23350
    //logit_bias.push_back({ bias_token, +100.0f });
    logit_bias.push_back({ bias_token, +10.0f });

    printf("biasing token piece '%s' -> token id %d\n", piece.c_str(), bias_token);

    struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_logit_bias(
                llama_vocab_n_tokens(vocab),
                logit_bias.size(),
                logit_bias.data()));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(88));

    std::vector<llama_sampler_seq_config> backend_sampler_configs = {
        { seq_id, backend_sampler_chain.get() },
    };

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Hello"}})) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), test_ctx.idx_for_seq(seq_id));
    printf("sampled token = %d, expected = %d\n", backend_token, bias_token);
    GGML_ASSERT(backend_token == bias_token);

    printf("backend logit bias sampling test PASSED\n");
}

// This test verifies that it is possible to have two different backend sampler,
// one that uses the backend dist sampler, and another that uses CPU dist sampler.
static void test_backend_mixed_sampling(const test_params & params) {
    struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
    llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
    llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_dist(88));

    int k = 40;
    struct llama_sampler_chain_params chain_params_1 = llama_sampler_chain_default_params();
    llama_sampler_ptr sampler_chain_1(llama_sampler_chain_init(chain_params_1));
    llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_top_k(k));

    std::vector<llama_sampler_seq_config> backend_sampler_configs = {
        { 0, sampler_chain_0.get() },
        { 1, sampler_chain_1.get() }
    };

    test_context test_ctx(params, backend_sampler_configs);

    std::map<llama_seq_id, std::string> prompts = {
        {0, "Hello"},
        {1, "Some"}
    };

    if (!test_ctx.decode(prompts)) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    // Verfiy sequence 0 that used the dist backend sampler.
    {
        int32_t batch_idx = test_ctx.idx_for_seq(0);
        llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
        const std::string token_str = test_ctx.token_to_piece(token, false);
        printf("sampled token id=%d, string='%s'\n", token, token_str.c_str());
        GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
        //GGML_ASSERT(llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx) == nullptr);
        //GGML_ASSERT(llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx) == 0);
    }

    // Verfiy sequence 1 that used the top-k backend sampler.
    {
        int32_t batch_idx = test_ctx.idx_for_seq(1);
        float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
        GGML_ASSERT(logits != nullptr);
        size_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
        GGML_ASSERT(n_logits == (size_t) k);
        GGML_ASSERT(llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx) == LLAMA_TOKEN_NULL);
    }

    printf("backend mixed sampling test PASSED\n");
}

static void test_backend_set_sampler(const test_params & params) {
    const int seq_id = 0;
    const int32_t seed = 88;

    struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    if (!test_ctx.decode({{seq_id, "Hello"}})) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    int32_t batch_idx = test_ctx.idx_for_seq(seq_id);

    // Sample using backend sampler configured above
    llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
    const std::string backend_token_str = test_ctx.token_to_piece(backend_token, false);
    printf("dist sampled token = %d, string='%s'\n", backend_token, backend_token_str.c_str());

    // Now clear the backend sampler for this sequence.
    llama_set_sampler(test_ctx.ctx.get(), seq_id, nullptr);
    printf("Cleared backend sampler for seq_id %d\n", seq_id);

    // Sample using CPU sampler
    struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
    llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));

    std::map<llama_seq_id, llama_token> tokens = { { seq_id, backend_token}, };
    if (!test_ctx.decode_tokens(tokens)) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    // Should not have any sampled token or probs after clearing the backend sampler.
    const int32_t idx = test_ctx.idx_for_seq(seq_id);
    GGML_ASSERT(llama_get_sampled_token_ith(test_ctx.ctx.get(), idx) == LLAMA_TOKEN_NULL);
    GGML_ASSERT(llama_get_sampled_probs_ith(test_ctx.ctx.get(), idx) == nullptr);

    // Sample the token using the CPU sampler chain.
    llama_token token2 = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), seq_id);
    const std::string token2_str = test_ctx.token_to_piece(token2, false);
    printf("CPU sampled token after clearing backend sampler: id=%d, string='%s'\n", token2, token2_str.c_str());
    std::map<llama_seq_id, llama_token> tokens2 = { { seq_id, token2}, };

    // Set a new backend sampler for the sequence.
    struct llama_sampler_chain_params new_backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr new_backend_sampler_chain(llama_sampler_chain_init(new_backend_chain_params));
    llama_sampler_chain_add(new_backend_sampler_chain.get(), llama_sampler_init_top_k(20));
    llama_sampler_chain_add(new_backend_sampler_chain.get(), llama_sampler_init_dist(seed));
    llama_set_sampler(test_ctx.ctx.get(), seq_id, new_backend_sampler_chain.get());

    if (!test_ctx.decode_tokens(tokens2)) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    llama_token new_backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), test_ctx.idx_for_seq(seq_id));
    const std::string new_backend_token_str = test_ctx.token_to_piece(new_backend_token, false);
    printf("dist sampled token = %d, string='%s'\n", new_backend_token, new_backend_token_str.c_str());

    printf("backend set sampler test PASSED\n");
}

static void test_backend_cpu_mixed_batch(const test_params & params) {
    // Sequence 0 uses backend sampling
    struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
    llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
    llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_dist(88));

    std::vector<llama_sampler_seq_config> backend_sampler_configs = {
        { 0, sampler_chain_0.get() },
    };

    // We need 2 sequences: seq 0 with backend sampling, seq 1 with CPU sampling
    test_context test_ctx(params, backend_sampler_configs, 2);

    std::map<llama_seq_id, std::string> prompts = {
        {0, "Hello"}, // Will use backend sampling
        {1, "Some"}   // Will use CPU sampling
    };

    if (!test_ctx.decode(prompts)) {
        GGML_ASSERT(false && "Failed to decode token");
    }

    // Verify sequence 0 (backend sampled)
    {
        int32_t batch_idx = test_ctx.idx_for_seq(0);
        llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
        const std::string token_str = test_ctx.token_to_piece(token, false);
        printf("Seq 0 (backend) sampled token id=%d, string='%s'\n", token, token_str.c_str());
        GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
    }

    // Verify sequence 1 (CPU sampled)
    {
        int32_t batch_idx = test_ctx.idx_for_seq(1);

        llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
        GGML_ASSERT(backend_token == LLAMA_TOKEN_NULL);

        struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
        llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
        llama_sampler_chain_add(chain.get(), llama_sampler_init_greedy());

        llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
        const std::string token_str = test_ctx.token_to_piece(token, false);
        printf("Seq 1 (CPU) sampled token id=%d, string='%s'\n", token, token_str.c_str());
        GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
    }

    // Clear/remove the backend sampler, and sample again
    {
        // clear the backend sampler for seq 0 so that there are no backend
        // samplers.
        llama_set_sampler(test_ctx.ctx.get(), 0, nullptr);

        // Create a CPU sampler and verify we can sampler from it.
        struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
        llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
        llama_sampler_chain_add(chain.get(), llama_sampler_init_greedy());

        int32_t batch_idx = test_ctx.idx_for_seq(1);
        llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
        if (!test_ctx.decode_token(token, 1)) {
            GGML_ASSERT(false && "Failed to decode token");
        }
    }

    // Set a backend sampler so that we can verify that it can be reset
    {
        struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
        llama_sampler_ptr sampler_chain(llama_sampler_chain_init(chain_params));
        llama_sampler_chain_add(sampler_chain.get(), llama_sampler_init_dist(88));

        llama_set_sampler(test_ctx.ctx.get(), 0, sampler_chain.get());

        if (!test_ctx.decode_token(3834, 0)) {
            GGML_ASSERT(false && "Failed to decode token");
        }

        int32_t batch_idx = test_ctx.idx_for_seq(0);
        llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
        const std::string token_str = test_ctx.token_to_piece(token, false);
        printf("re-added backend sampled token id=%d, string='%s'\n", token, token_str.c_str());
        GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
    }

    printf("backend-cpu mixed batch test PASSED\n");
}

static void test_backend_max_outputs(const test_params & params) {
    const int seq_id = 0;
    const int32_t seed = 88;

    llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
    llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
    llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
    std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};

    test_context test_ctx(params, backend_sampler_configs);

    llama_batch batch = llama_batch_init(512, 0, 1);
    std::string prompt = "Hello";

    std::vector<llama_token> tokens;
    tokens.push_back(llama_vocab_bos(test_ctx.vocab));

    std::vector<llama_token> prompt_tokens(32);
    int n_tokens = llama_tokenize(test_ctx.vocab, prompt.c_str(), prompt.length(),
                                   prompt_tokens.data(), prompt_tokens.size(),
                                   false, false);
    for (int i = 0; i < n_tokens; i++) {
        tokens.push_back(prompt_tokens[i]);
    }

    for (size_t i = 0; i < tokens.size(); i++) {
        // set all tokens as output to trigger error
        common_batch_add(batch, tokens[i], i, { seq_id }, true);
    }

    printf(">>> test_max_outputs expected error start:\n");
    const int ret = llama_decode(test_ctx.ctx.get(), batch);
    GGML_ASSERT(ret != 0 && "llama_decode should not succeed multiple outputs per sequence");
    printf("<<< test_max_outputs expected error end.\n");
    llama_batch_free(batch);

    printf("backend max outputs test PASSED\n");
}

struct backend_test_case {
    std::string name;
    void (*fn)(const test_params &);
    bool enabled_by_default;
};

static const backend_test_case BACKEND_TESTS[] = {
    { "greedy",          test_backend_greedy_sampling,         true  },
    { "logit_bias",      test_backend_logit_bias_sampling,     true  },
    { "temp",            test_backend_temp_sampling,           true  },
    { "temp_ext",        test_backend_temp_ext_sampling,       true  },
    { "top_k",           test_backend_top_k_sampling,          true  },
    { "multi_sequence",  test_backend_multi_sequence_sampling, true  },
    { "dist",            test_backend_dist_sampling,           true  },
    { "dist_and_cpu",    test_backend_dist_sampling_and_cpu,   true  },
    { "set_sampler",     test_backend_set_sampler,             true  },
    { "max_outputs",     test_backend_max_outputs,             true  },
    { "mixed",           test_backend_mixed_sampling,          true  },
    { "min_p",           test_backend_min_p_sampling,          true  },
    { "cpu_mixed",       test_backend_cpu_mixed_batch,         true  },
    { "top_p",           test_backend_top_p_sampling,          true  },
};

static test_args parse_cli(int argc, char ** argv) {
    test_args out;

    for (int i = 1; i < argc; ++i) {
        const char * arg = argv[i];

        if (std::strcmp(arg, "--test") == 0) {
            if (i + 1 >= argc) {
                fprintf(stderr, "--test expects a value\n");
                exit(EXIT_FAILURE);
            }
            out.test = argv[++i];
            continue;
        }
        if (std::strncmp(arg, "--test=", 7) == 0) {
            out.test = arg + 7;
            continue;
        }
        if (std::strcmp(arg, "--model") == 0) {
            if (i + 1 >= argc) {
                fprintf(stderr, "--model expects a value\n");
                exit(EXIT_FAILURE);
            }
            out.model = argv[++i];
            continue;
        }
        if (std::strncmp(arg, "--model=", 8) == 0) {
            out.model = arg + 8;
            continue;
        }
        if (std::strcmp(arg, "--device") == 0) {
            if (i + 1 >= argc) {
                fprintf(stderr, "--device expects a value (cpu or gpu)\n");
                exit(EXIT_FAILURE);
            }
            out.device = argv[++i];
            continue;
        }
        if (std::strncmp(arg, "--device=", 9) == 0) {
            out.device = arg + 9;
            continue;
        }
        if (out.model.empty()) {
            out.model = arg;
            continue;
        }

        fprintf(stderr, "Unexpected argument: %s\n", arg);
        exit(EXIT_FAILURE);
    }

    if (out.device != "cpu" && out.device != "gpu" && out.device != "auto") {
        fprintf(stderr, "Invalid device '%s'. Must be 'cpu', 'gpu' or 'auto'\n", out.device.c_str());
        exit(EXIT_FAILURE);
    }

    return out;
}

static std::vector<const backend_test_case *> collect_tests_to_run(const std::string & requested) {
    std::vector<const backend_test_case *> selected;

    if (!requested.empty()) {
        for (const auto & test : BACKEND_TESTS) {
            if (test.name == requested) {
                selected.push_back(&test);
                break;
            }
        }
        if (selected.empty()) {
            fprintf(stderr, "Unknown test '%s'. Available tests:\n", requested.c_str());
            for (const auto & test : BACKEND_TESTS) {
                fprintf(stderr, "  %s\n", test.name.c_str());
            }
            exit(EXIT_FAILURE);
        }
    } else {
        for (const auto & test : BACKEND_TESTS) {
            if (test.enabled_by_default) {
                selected.push_back(&test);
            }
        }
    }

    if (selected.empty()) {
        fprintf(stderr, "No backend sampling tests selected. Use --test=<name> to pick one.\n");
    }

    return selected;
}

static void run_tests(const std::vector<const backend_test_case *> & tests, const test_params & args) {
    for (const auto & test : tests) {
        fprintf(stderr, "\n=== %s ===\n", test->name.c_str());
        try {
            test->fn(args);
        } catch (const std::exception & e) {
            fprintf(stderr, "Error running test '%s': %s\n", test->name.c_str(), e.what());
            exit(EXIT_FAILURE);
        }
    }
}

int main(int argc, char ** argv) {
    test_args args = parse_cli(argc, argv);

    if (args.model.empty()) {
        args.model = get_model_or_exit(1, argv);
    }

    {
        std::ifstream file(args.model);
        if (!file.is_open()) {
            fprintf(stderr, "no model '%s' found\n", args.model.c_str());
            return EXIT_FAILURE;
        }
    }

    fprintf(stderr, "using '%s'\n", args.model.c_str());

    llama_backend_init();

    test_params params = {
        /*.model =*/ load_model(args),
    };

    const std::vector<const backend_test_case *> tests = collect_tests_to_run(args.test);
    if (!tests.empty()) {
        run_tests(tests, params);
    }

    return 0;
}