File: mobilenetv5.cpp

package info (click to toggle)
llama.cpp 8064%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 76,488 kB
  • sloc: cpp: 353,828; ansic: 51,268; python: 30,090; lisp: 11,788; sh: 6,290; objc: 1,395; javascript: 924; xml: 384; makefile: 233
file content (451 lines) | stat: -rw-r--r-- 16,558 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#include "models.h"

// Helpers for MobileNetV5 Blocks
// RMS Norm 2D - normalizes over channels for each spatial position
ggml_tensor * clip_graph_mobilenetv5::rms_norm_2d(ggml_tensor * inp, ggml_tensor * weight, float eps) {
    // inp: [W, H, C, B]

    ggml_tensor * cur = ggml_permute(ctx0, inp, 2, 1, 0, 3);
    cur = ggml_cont(ctx0, cur);
    cur = ggml_rms_norm(ctx0, cur, eps);

    if (weight) {
        cur = ggml_mul(ctx0, cur, weight);
    }

    cur = ggml_permute(ctx0, cur, 2, 1, 0, 3);
    cur = ggml_cont(ctx0, cur);

    return cur;
}

// Conv2dSame padding - asymmetric SAME padding like PyTorch/TF
ggml_tensor* clip_graph_mobilenetv5::pad_same_2d(ggml_tensor* inp, int kernel_h, int kernel_w, int stride_h, int stride_w, int dilation_h, int dilation_w) {
    const int64_t ih = inp->ne[1];  // height
    const int64_t iw = inp->ne[0];  // width

    // Calculate output size (ceil division)
    const int64_t oh = (ih + stride_h - 1) / stride_h;
    const int64_t ow = (iw + stride_w - 1) / stride_w;

    // Calculate padding needed
    const int64_t pad_h = std::max((int64_t)0, (oh - 1) * stride_h + (kernel_h - 1) * dilation_h + 1 - ih);
    const int64_t pad_w = std::max((int64_t)0, (ow - 1) * stride_w + (kernel_w - 1) * dilation_w + 1 - iw);

    // Split padding asymmetrically
    const int pad_h_top = pad_h / 2;
    const int pad_h_bottom = pad_h - pad_h_top;
    const int pad_w_left = pad_w / 2;
    const int pad_w_right = pad_w - pad_w_left;

    // Apply padding if needed
    // ggml_pad_ext: (ctx, tensor, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3)
    // For [W, H, C, B]: p0=width, p1=height, p2=channels, p3=batch
    if (pad_h > 0 || pad_w > 0) {
        inp = ggml_pad_ext(ctx0, inp,
            pad_w_left, pad_w_right,     // width padding (dim 0)
            pad_h_top, pad_h_bottom,      // height padding (dim 1)
            0, 0,                         // no channel padding (dim 2)
            0, 0);                        // no batch padding (dim 3)
    }

    return inp;
}


// Edge Residual Block (Stage 0)
ggml_tensor * clip_graph_mobilenetv5::build_edge_residual(ggml_tensor * inp, const mobilenetv5_block & block, int stride) {
    ggml_tensor * cur = inp;

    // 1. Expansion Conv (3x3)
    if (stride == 2) {
        // Case: Downsampling (Block 0)
        // Replicates Conv2dSame(kernel=3, stride=2)
        cur = pad_same_2d(cur, 3, 3, stride, stride);
        cur = ggml_conv_2d_direct(ctx0, block.s0_conv_exp_w, cur, stride, stride, 0, 0, 1, 1);
    } else {
        // Case: Normal 3x3 Block (Block 1, 2)
        // Replicates Conv2d(kernel=3, stride=1, padding=1)
        cur = ggml_conv_2d_direct(ctx0, block.s0_conv_exp_w, cur, stride, stride, 1, 1, 1, 1);
    }

    // BN + Activation
    if (block.s0_bn1_w) cur = rms_norm_2d(cur, block.s0_bn1_w);
    cur = ggml_gelu(ctx0, cur);

    // 2. Pointwise Linear Conv (1x1)
    // 1x1 Convs usually have padding=0 and stride=1
    cur = ggml_conv_2d_direct(ctx0, block.s0_conv_pwl_w, cur, 1, 1, 0, 0, 1, 1);
    if (block.s0_bn2_w) cur = rms_norm_2d(cur, block.s0_bn2_w);

    // 3. Residual Connection
    // Only apply residual if spatial dimensions and channels match (stride 1)
    if (stride == 1 && inp->ne[2] == cur->ne[2] && inp->ne[0] == cur->ne[0]) {
        cur = ggml_add(ctx0, cur, inp);
    }

    return cur;
}

// Universal Inverted Residual Block (Stage 1+)
ggml_tensor * clip_graph_mobilenetv5::build_inverted_residual(ggml_tensor * inp, const mobilenetv5_block & block, int stride) {
    ggml_tensor * cur = inp;

    // 1. Depthwise Start (Optional)
    // NOTE: dw_start always has stride=1 (no downsampling here)
    if (block.dw_start_w) {
        int k = block.dw_start_w->ne[0]; // 3 or 5
        int p = k / 2;
        cur = ggml_conv_2d_dw(ctx0, block.dw_start_w, cur, 1, 1, p, p, 1, 1);
        if (block.dw_start_bn_w) cur = rms_norm_2d(cur, block.dw_start_bn_w);
    }

    // 2. Pointwise Expansion (1x1)
    if (block.pw_exp_w) {
        // Standard 1x1 conv, pad=0, stride=1
        cur = ggml_conv_2d_direct(ctx0, block.pw_exp_w, cur, 1, 1, 0, 0, 1, 1);
        if (block.pw_exp_bn_w) cur = rms_norm_2d(cur, block.pw_exp_bn_w);
        cur = ggml_gelu(ctx0, cur);
    }

    // 3. Depthwise Mid (Optional)
    // NOTE: dw_mid is where downsampling happens (stride=2 for first block of stage)
    if (block.dw_mid_w) {
        int k = block.dw_mid_w->ne[0]; // 3 or 5

        if (stride > 1) {
            // Case: Stride 2 (Downsample) -> Use Asymmetric "Same" Padding
            cur = pad_same_2d(cur, k, k, stride, stride);
            cur = ggml_conv_2d_dw(ctx0, block.dw_mid_w, cur, stride, stride, 0, 0, 1, 1); // pad=0
        } else {
            // Case: Stride 1 -> Use Standard Symmetric Padding
            int p = k / 2;
            cur = ggml_conv_2d_dw(ctx0, block.dw_mid_w, cur, stride, stride, p, p, 1, 1);
        }

        if (block.dw_mid_bn_w) cur = rms_norm_2d(cur, block.dw_mid_bn_w);
        cur = ggml_gelu(ctx0, cur);
    }

    // 4. Pointwise Projection (1x1)
    if (block.pw_proj_w) {
        cur = ggml_conv_2d_direct(ctx0, block.pw_proj_w, cur, 1, 1, 0, 0, 1, 1);
        if (block.pw_proj_bn_w) cur = rms_norm_2d(cur, block.pw_proj_bn_w);
    }

    // Apply Layer Scaling if present
    if (block.layer_scale_w) {
        cur = ggml_mul(ctx0, cur, block.layer_scale_w);
    }

    // 5. Residual Connection
    bool same_spatial = (inp->ne[0] == cur->ne[0]) && (inp->ne[1] == cur->ne[1]);
    bool same_channel = (inp->ne[2] == cur->ne[2]);
    if (same_spatial && same_channel) {
        cur = ggml_add(ctx0, cur, inp);
    }

    return cur;
}

// Attention Block (MQA)
ggml_tensor * clip_graph_mobilenetv5::build_mobilenet_attn(ggml_tensor * inp, const mobilenetv5_block & block) {
    ggml_tensor * cur = inp;

    // Norm
    if (block.attn_norm_w) {
        cur = rms_norm_2d(cur, block.attn_norm_w, 1e-6f);
    }

    // 1. Q Calculation
    ggml_tensor * q = ggml_conv_2d_direct(ctx0, block.attn_q_w, cur, 1, 1, 0, 0, 1, 1);

    // 2. K Calculation (Downsampled)
    // Uses Conv2dSame(640, 640, kernel_size=(3, 3), stride=(2, 2), groups=640)
    ggml_tensor * k_inp = cur;
    if (block.attn_k_dw_w) {
        int k_size = block.attn_k_dw_w->ne[0];  // Usually 3
        k_inp = pad_same_2d(cur, k_size, k_size, 2, 2);  // Apply SAME padding
        k_inp = ggml_conv_2d_dw(ctx0, block.attn_k_dw_w, k_inp, 2, 2, 0, 0, 1, 1);  // padding=0
        if (block.attn_k_norm_w) {
            k_inp = rms_norm_2d(k_inp, block.attn_k_norm_w, 1e-6f);
        }
    }
    ggml_tensor * k = ggml_conv_2d_direct(ctx0, block.attn_k_w, k_inp, 1, 1, 0, 0, 1, 1);

    // 3. V Calculation (Downsampled)
    // Uses Conv2dSame(640, 640, kernel_size=(3, 3), stride=(2, 2), groups=640)
    ggml_tensor * v_inp = cur;
    if (block.attn_v_dw_w) {
        int v_size = block.attn_v_dw_w->ne[0];  // Usually 3
        v_inp = pad_same_2d(cur, v_size, v_size, 2, 2);  // Apply SAME padding
        v_inp = ggml_conv_2d_dw(ctx0, block.attn_v_dw_w, v_inp, 2, 2, 0, 0, 1, 1);  // padding=0
        if (block.attn_v_norm_w) {
            v_inp = rms_norm_2d(v_inp, block.attn_v_norm_w, 1e-6f);
        }
    }
    ggml_tensor * v = ggml_conv_2d_direct(ctx0, block.attn_v_w, v_inp, 1, 1, 0, 0, 1, 1);

    const int W = cur->ne[0]; const int H = cur->ne[1]; const int B = cur->ne[3];
    const int D = k->ne[2]; // Head dimension
    const int n_head = q->ne[2] / D;
    const int N = W * H;

    // Process Q: [W, H, D*n_head, B] -> [D, N, n_head, B]
    q = ggml_reshape_3d(ctx0, q, N, D*n_head, B);
    q = ggml_reshape_4d(ctx0, q, N, D, n_head, B);
    q = ggml_permute(ctx0, q, 1, 0, 2, 3); // [D, N, n_head, B]
    q = ggml_cont(ctx0, q);

    const int Wk = k->ne[0]; const int Hk = k->ne[1];
    const int M = Wk * Hk;

    // Process K: [Wk, Hk, D, B] -> [D, M, 1, B]
    k = ggml_reshape_3d(ctx0, k, M, D, B);
    k = ggml_reshape_4d(ctx0, k, M, D, 1, B);
    k = ggml_permute(ctx0, k, 1, 0, 2, 3); // [D, M, 1, B]
    k = ggml_cont(ctx0, k);

    // Process V: [Wk, Hk, D, B] -> [M, D, 1, B]
    v = ggml_reshape_3d(ctx0, v, M, D, B);
    v = ggml_reshape_4d(ctx0, v, M, D, 1, B);
    v = ggml_cont(ctx0, v); // [M, D, 1, B]

    // Multi-Query Attention
    float scale = 1.0f / sqrtf((float)D);

    // Step 1: Compute Q @ K.T
    ggml_tensor * scores = ggml_mul_mat(ctx0, k, q);

    scores = ggml_scale(ctx0, scores, scale);

    scores = ggml_soft_max(ctx0, scores);

    ggml_tensor * kqv = ggml_mul_mat(ctx0, v, scores);

    kqv = ggml_permute(ctx0, kqv, 1, 0, 2, 3);
    kqv = ggml_cont(ctx0, kqv);


    kqv = ggml_reshape_3d(ctx0, kqv, N, D * n_head, B);
    kqv = ggml_reshape_4d(ctx0, kqv, W, H, D * n_head, B);
    kqv = ggml_cont(ctx0, kqv);

    // Output projection
    cur = ggml_conv_2d_direct(ctx0, block.attn_o_w, kqv, 1, 1, 0, 0, 1, 1);

    // Residual & Layer Scale
    if (inp->ne[0] == cur->ne[0] && inp->ne[2] == cur->ne[2]) {
        if (block.layer_scale_w) {
            cur = ggml_mul(ctx0, cur, block.layer_scale_w);
        }
        cur = ggml_add(ctx0, cur, inp);
    }

    return cur;
}

ggml_cgraph * clip_graph_mobilenetv5::build() {
    ggml_tensor * inp = build_inp_raw();

    // 1. Stem - Conv2dSame(3, 64, kernel_size=(3, 3), stride=(2, 2))
    ggml_tensor * cur = pad_same_2d(inp, 3, 3, 2, 2);  // Apply SAME padding

    cur = ggml_conv_2d_direct(ctx0, model.mobilenet_stem_conv_w, cur, 2, 2, 0, 0, 1, 1);  // padding=0
    if (model.mobilenet_stem_conv_b) {
        cur = ggml_add(ctx0, cur, model.mobilenet_stem_conv_b);
    }
    if (model.mobilenet_stem_norm_w) cur = rms_norm_2d(cur, model.mobilenet_stem_norm_w);
    cur = ggml_gelu(ctx0, cur);


    // 2. Blocks
    std::vector<ggml_tensor*> intermediate_features;
    const int total_blocks = model.mobilenet_blocks.size();

    auto is_stage_start = [&](int i) {
        if (i == 0) return true;
        for (int end_idx : model.mobilenet_stage_ends) {
            if (i == end_idx + 1) return true;
        }
        return false;
    };

    auto is_fusion_point = [&](int i) {
        if (model.mobilenet_stage_ends.size() >= 4) {
                if (i == model.mobilenet_stage_ends[2]) return true; // End of Stage 2
                if (i == model.mobilenet_stage_ends[3]) return true; // End of Stage 3
        } else {
            if (i == total_blocks - 1) return true;
        }
        return false;
    };

    for (int i = 0; i < total_blocks; i++) {
        const auto & block = model.mobilenet_blocks[i];
        int stride = is_stage_start(i) ? 2 : 1;

        if (block.s0_conv_exp_w)      cur = build_edge_residual(cur, block, stride);
        else if (block.attn_q_w)      cur = build_mobilenet_attn(cur, block);
        else                          cur = build_inverted_residual(cur, block, stride);

        if (is_fusion_point(i)) {

            intermediate_features.push_back(cur);
        }
    }

    // 3. Multi-Scale Fusion Adapter (MSFA)
    if (!intermediate_features.empty()) {

        // A. Reference Resolution: PyTorch implementation uses inputs[0]
        // We assume intermediate_features[0] is the "High Resolution" target.
        // In MobileNet designs, this is typically the feature map with the smallest stride (e.g. 32x32).
        ggml_tensor* target_feat = intermediate_features[0];
        int high_res_w = target_feat->ne[0];
        int high_res_h = target_feat->ne[1];

        std::vector<ggml_tensor*> resized_feats;

        // B. Resize inputs to match inputs[0] (High Resolution)
        for (auto feat : intermediate_features) {
            int feat_w = feat->ne[0];
            int feat_h = feat->ne[1];

            // PyTorch: if feat_size < high_resolution: interpolate
            if (feat_w < high_res_w || feat_h < high_res_h) {
                // Calculate scale factor.
                // Note: PyTorch 'nearest' works on arbitrary float scales.
                // ggml_upscale generally takes integer factors or target sizes depending on helper.
                // Assuming standard power-of-2 scaling (e.g. 16 -> 32 means scale=2).
                int scale_w = high_res_w / feat_w;
                // int scale_h = high_res_h / feat_h;

                // Safety check for non-integer scaling if strictly replicating
                GGML_ASSERT(high_res_w % feat_w == 0);

                // Upsample (Nearest Neighbor)
                // 2 is the scale factor
                feat = ggml_upscale(ctx0, feat, scale_w, ggml_scale_mode::GGML_SCALE_MODE_NEAREST);
            }
            resized_feats.push_back(feat);
        }

        // C. Concatenate at High Resolution (Channel Dim = 2 in ggml)
        cur = resized_feats[0];
        for (size_t k = 1; k < resized_feats.size(); ++k) {
            cur = ggml_concat(ctx0, cur, resized_feats[k], 2);
        }

        // D. FFN (UniversalInvertedResidual)
        // Structure: Expand Conv -> Norm -> GELU -> Project Conv -> Norm

        // 1. Expansion
        if (model.msfa_ffn_expand_w) {
            // 1x1 Conv
            cur = ggml_conv_2d_direct(ctx0, model.msfa_ffn_expand_w, cur, 1, 1, 0, 0, 1, 1);

            if (model.msfa_ffn_expand_bn) {
                cur = rms_norm_2d(cur, model.msfa_ffn_expand_bn);
            }

            cur = ggml_gelu(ctx0, cur);

        }

        // 2. Projection (No DW because kernel_size=0)
        if (model.msfa_ffn_project_w) {
            // 1x1 Conv
            cur = ggml_conv_2d_direct(ctx0, model.msfa_ffn_project_w, cur, 1, 1, 0, 0, 1, 1);

            // UniversalInvertedResidual typically has a norm after projection
            if (model.msfa_ffn_project_bn) {
                cur = rms_norm_2d(cur, model.msfa_ffn_project_bn);
            }

        }

        // E. Final Downsample to Target Resolution (Output Resolution)
        // PyTorch: matches self.output_resolution (e.g. 16x16)
        const int target_out_res = 16;
        int current_w = cur->ne[0];

        if (current_w > target_out_res) {
            int s = current_w / target_out_res;

            GGML_ASSERT(current_w % target_out_res == 0);

            // Avg Pool: Kernel=s, Stride=s
            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, s, s, s, s, 0, 0);

        }

        // F. Final Norm
        if (model.msfa_concat_norm_w) {
            cur = rms_norm_2d(cur, model.msfa_concat_norm_w);

        }
    }

    // 4. Gemma 3n Multimodal Projection (Embedder)
    // Input: 'cur' is [Width, Height, Channels, Batch]
    int W = cur->ne[0];
    int H = cur->ne[1];
    int C = cur->ne[2];
    int B = cur->ne[3];

    GGML_ASSERT(C == hparams.n_embd);

    // 1. Permute and Flatten to [Channels, Tokens, Batch]
    // PyTorch expects (Batch, Seq, Hidden), GGML usually processes (Hidden, Seq, Batch)
    cur = ggml_permute(ctx0, cur, 2, 1, 0, 3); // -> [C, H, W, B]
    cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); // -> [C, W, H, B]
    cur = ggml_cont(ctx0, cur);
    cur = ggml_reshape_3d(ctx0, cur, C, W*H, B);
    cur = ggml_cont(ctx0, cur);


    // 2. FEATURE SCALING
    // PyTorch: vision_outputs *= self.config.vision_config.hidden_size**0.5
    const float scale_factor = sqrtf((float)C);
    cur = ggml_scale(ctx0, cur, scale_factor);


    // 3. SOFT EMBEDDING NORM
    // PyTorch: self._norm(x) * self.weight
    // We must normalize regardless, then multiply if weight exists.
    {
        const float eps = 1e-6f; // Gemma3n uses 1e-6
        cur = ggml_rms_norm(ctx0, cur, eps);

        if (model.mm_soft_emb_norm_w) {
            // Weight shape is (2048,) -> Element-wise broadcast multiply
            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
        }

    }

    // 4. PROJECTION
    // PyTorch: embedding_projection = nn.Linear(vision_hidden, text_hidden, bias=False)
    // Weight stored as [out_features, in_features] = [text_hidden_size, vision_hidden_size]
    if (model.mm_input_proj_w) {
        cur = ggml_mul_mat(ctx0, model.mm_input_proj_w, cur);
    }

    // 5. POST PROJECTION NORM
    // PyTorch: embedding_post_projection_norm = Gemma3nRMSNorm(..., with_scale=False)
    // with_scale=False means weight is registered as buffer with value 1.0
    // So output = rms_norm(x) * 1.0 = rms_norm(x), magnitude ~1
    {
        const float eps = 1e-6f;
        cur = ggml_rms_norm(ctx0, cur, eps);

        if (model.mm_post_proj_norm_w) {
            // If weight is loaded, multiply (should be ~1.0 anyway)
            cur = ggml_mul(ctx0, cur, model.mm_post_proj_norm_w);
        }
    }

    ggml_build_forward_expand(gf, cur);
    return gf;
}