1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
|
#include "mtmd-audio.h"
#define _USE_MATH_DEFINES // for M_PI
#include <cmath>
#include <cstdint>
#include <cstring>
#include <thread>
#include <vector>
#include <fstream>
#include <algorithm>
// some of the code here is copied from whisper.cpp
constexpr bool DEBUG = false;
void mtmd_audio_cache::fill_sin_cos_table(int n) {
sin_vals.resize(n);
cos_vals.resize(n);
for (int i = 0; i < n; i++) {
double theta = (2 * M_PI * i) / n;
sin_vals[i] = sinf(theta);
cos_vals[i] = cosf(theta);
}
}
void mtmd_audio_cache::fill_hann_window(int length, bool periodic) {
hann_window.resize(length);
int offset = -1;
if (periodic) {
offset = 0;
}
for (int i = 0; i < length; i++) {
hann_window[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
}
}
void mtmd_audio_cache::fill_mel_filterbank_matrix(int n_mel,
int n_fft,
int sample_rate,
float fmin,
float fmax,
bool slaney_area_norm,
float scale) {
GGML_ASSERT(n_mel > 0 && n_fft > 1);
if (fmax <= 0.0f) {
fmax = 0.5f * sample_rate;
}
// Slaney scale (matches librosa default)
const double min_log_hz = 1000.0;
const double lin_slope = 3 / 200.;
const double min_log_mel = min_log_hz * lin_slope;
const double log_step = log(6.4) / 27.0;
auto hz_to_mel = [min_log_hz, lin_slope, log_step, min_log_mel](const double f_hz) -> double {
return (f_hz < min_log_hz) ? f_hz * lin_slope : min_log_mel + log(f_hz / min_log_hz) / log_step;
};
auto mel_to_hz = [min_log_hz, lin_slope, log_step, min_log_mel](const double m) -> double {
return (m < min_log_mel) ? m / lin_slope : min_log_hz * exp((m - min_log_mel) * log_step);
};
// infer N_fft from n_fft_bins
const double bin_hz_step = double(sample_rate) / double(n_fft);
// mel grid: n_mel + 2 edges
const double m_lo = hz_to_mel(fmin);
const double m_hi = hz_to_mel(fmax);
std::vector<double> mel_pts(n_mel + 2);
for (int i = 0; i < n_mel + 2; ++i) {
mel_pts[i] = m_lo + (m_hi - m_lo) * (double(i) / (n_mel + 1));
}
// convert to Hz
std::vector<double> hz_pts(n_mel + 2);
for (int i = 0; i < n_mel + 2; ++i) {
hz_pts[i] = mel_to_hz(mel_pts[i]);
}
const int n_fft_bins = n_fft / 2 + 1;
// filterbank
std::vector<float> out(n_mel * n_fft_bins, 0);
for (int m = 0; m < n_mel; ++m) {
const double f_left = hz_pts[m];
const double f_center = hz_pts[m + 1];
const double f_right = hz_pts[m + 2];
const double denom_l = std::max(1e-30, f_center - f_left);
const double denom_r = std::max(1e-30, f_right - f_center);
const double enorm = slaney_area_norm ? (2.0 / std::max(1e-30, f_right - f_left)) : 1.0;
for (int k = 0; k < n_fft_bins; ++k) {
const double f = k * bin_hz_step;
double w = 0.0;
if (f >= f_left && f <= f_center) {
w = (f - f_left) / denom_l;
} else if (f > f_center && f <= f_right) {
w = (f_right - f) / denom_r;
}
out[size_t(m) * size_t(n_fft_bins) + size_t(k)] = float(w * enorm * scale);
}
}
filters.n_mel = n_mel;
filters.n_fft = n_fft;
filters.data = std::move(out);
if (DEBUG) { // debug
for (size_t i = 0; i < filters.data.size(); ++i) {
if (filters.data[i] != 0.0f) {
printf("filters[%zu] = %f\n", i, filters.data[i] * 1000.0f);
}
}
}
}
// Unified DFT implementation for both forward and inverse transforms
// Template parameters:
// Inverse: false = DFT with exp(-2πi·k·n/N), no scaling
// true = IDFT with exp(+2πi·k·n/N), scales by 1/N
// RealInput: true = input is real-valued (stride 1), avoids imaginary computations
// false = input is complex-valued (interleaved real/imag, stride 2)
template <bool Inverse, bool RealInput>
static void dft_impl(const mtmd_audio_cache & cache, const float * in, int N, float * out) {
const int n_sin_cos_vals = cache.sin_vals.size();
const int sin_cos_step = n_sin_cos_vals / N;
constexpr float sign = Inverse ? 1.0f : -1.0f;
const float scale = Inverse ? (1.0f / N) : 1.0f;
for (int k = 0; k < N; k++) {
float re = 0;
float im = 0;
for (int n = 0; n < N; n++) {
int idx = (k * n * sin_cos_step) % n_sin_cos_vals;
float cos_val = cache.cos_vals[idx];
float sin_val = cache.sin_vals[idx];
if constexpr (RealInput) {
// Real input: in_im = 0, simplifies to:
// re += in_re * cos_val
// im += sign * in_re * sin_val
float in_re = in[n];
re += in_re * cos_val;
im += sign * in_re * sin_val;
} else {
float in_re = in[n * 2 + 0];
float in_im = in[n * 2 + 1];
// (a + bi) * (cos + sign*i*sin) = (a*cos - sign*b*sin) + (sign*a*sin + b*cos)i
re += in_re * cos_val - sign * in_im * sin_val;
im += sign * in_re * sin_val + in_im * cos_val;
}
}
out[k * 2 + 0] = re * scale;
out[k * 2 + 1] = im * scale;
}
}
// Cooley-Tukey FFT/IFFT unified implementation
// Template parameters:
// Inverse: false = FFT with exp(-2πi·k/N), no scaling
// true = IFFT with exp(+2πi·k/N), scales by 0.5 at each level
// RealInput: true = input is real-valued (stride 1)
// false = input is complex-valued (interleaved real/imag, stride 2)
template <bool Inverse, bool RealInput>
static void fft_impl(const mtmd_audio_cache & cache, float * in, int N, float * out) {
const int n_sin_cos_vals = cache.sin_vals.size();
if (N == 1) {
out[0] = in[0];
if constexpr (RealInput) {
out[1] = 0.0f;
} else {
out[1] = in[1];
}
return;
}
const int half_N = N / 2;
if (N - half_N * 2 == 1) {
// Odd N: fall back to DFT
dft_impl<Inverse, RealInput>(cache, in, N, out);
return;
}
// Split into even and odd
if constexpr (RealInput) {
// Real input: stride is 1, copy only real values
float * even = in + N;
for (int i = 0; i < half_N; ++i) {
even[i] = in[2 * i];
}
float * even_fft = out + 2 * N;
fft_impl<Inverse, true>(cache, even, half_N, even_fft);
float * odd = even;
for (int i = 0; i < half_N; ++i) {
odd[i] = in[2 * i + 1];
}
float * odd_fft = even_fft + N;
fft_impl<Inverse, true>(cache, odd, half_N, odd_fft);
} else {
// Complex input: stride is 2, copy complex pairs
float * even = in + N * 2;
for (int i = 0; i < half_N; ++i) {
even[i * 2 + 0] = in[2 * i * 2 + 0];
even[i * 2 + 1] = in[2 * i * 2 + 1];
}
float * even_fft = out + 2 * N;
fft_impl<Inverse, false>(cache, even, half_N, even_fft);
float * odd = even;
for (int i = 0; i < half_N; ++i) {
odd[i * 2 + 0] = in[(2 * i + 1) * 2 + 0];
odd[i * 2 + 1] = in[(2 * i + 1) * 2 + 1];
}
float * odd_fft = even_fft + N;
fft_impl<Inverse, false>(cache, odd, half_N, odd_fft);
}
float * even_fft = out + 2 * N;
float * odd_fft = even_fft + N;
const int sin_cos_step = n_sin_cos_vals / N;
constexpr float sign = Inverse ? 1.0f : -1.0f;
constexpr float scale = Inverse ? 0.5f : 1.0f;
for (int k = 0; k < half_N; k++) {
int idx = k * sin_cos_step; // t = 2*M_PI*k/N
float re = cache.cos_vals[idx];
float im = sign * cache.sin_vals[idx];
float re_odd = odd_fft[2 * k + 0];
float im_odd = odd_fft[2 * k + 1];
out[2 * k + 0] = scale * (even_fft[2 * k + 0] + re * re_odd - im * im_odd);
out[2 * k + 1] = scale * (even_fft[2 * k + 1] + re * im_odd + im * re_odd);
out[2 * (k + half_N) + 0] = scale * (even_fft[2 * k + 0] - re * re_odd + im * im_odd);
out[2 * (k + half_N) + 1] = scale * (even_fft[2 * k + 1] - re * im_odd - im * re_odd);
}
}
// Forward FFT for real input (used by mel spectrogram)
static void fft(const mtmd_audio_cache & cache, float * in, int N, float * out) {
fft_impl<false, true>(cache, in, N, out);
}
// Inverse FFT for complex input
static void ifft(const mtmd_audio_cache & cache, float * in, int N, float * out) {
fft_impl<true, false>(cache, in, N, out);
}
struct filter_params {
int32_t n_mel;
int32_t n_fft_bins;
int32_t hann_window_size;
int32_t hop_length;
int32_t sample_rate;
bool center_padding = false;
float preemph = 0.f;
bool use_natural_log = false;
bool norm_per_feature = false;
};
static void log_mel_spectrogram_worker_thread(int ith,
const float * hann,
const std::vector<float> & samples,
int n_samples,
int frame_size,
int frame_step,
int n_threads,
const filter_params & params,
const mtmd_audio_cache & cache,
mtmd_audio_mel & out) {
std::vector<float> fft_in(frame_size * 2, 0.0);
std::vector<float> fft_out(frame_size * 2 * 2 * 2);
int n_fft_bins = params.n_fft_bins;
int i = ith;
const auto & filters = cache.filters;
// make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
GGML_ASSERT(n_fft_bins == 1 + (frame_size / 2));
GGML_ASSERT(cache.sin_vals.size() == cache.cos_vals.size());
// calculate FFT only when fft_in are not all zero
for (; i < std::min(n_samples / frame_step + 1, out.n_len); i += n_threads) {
const int offset = i * frame_step;
// apply Hann window (~10% faster)
for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
fft_in[j] = hann[j] * samples[offset + j];
}
// fill the rest with zeros
if (n_samples - offset < frame_size) {
std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
}
// FFT
fft(cache, fft_in.data(), frame_size, fft_out.data());
// Calculate modulus^2 of complex numbers
// Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
for (int j = 0; j < n_fft_bins; j++) {
fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
}
// mel spectrogram
for (int j = 0; j < out.n_mel; j++) {
double sum = 0.0;
// unroll loop (suggested by GH user @lunixbochs)
int k = 0;
for (k = 0; k < n_fft_bins - 3; k += 4) {
size_t idx = size_t(j) * size_t(n_fft_bins) + size_t(k);
sum +=
fft_out[k + 0] * filters.data[idx + 0] +
fft_out[k + 1] * filters.data[idx + 1] +
fft_out[k + 2] * filters.data[idx + 2] +
fft_out[k + 3] * filters.data[idx + 3];
}
// handle n_fft remainder
for (; k < n_fft_bins; k++) {
sum += fft_out[k] * filters.data[j * n_fft_bins + k];
}
sum = params.use_natural_log
? log(sum + 5.960464477539063e-08)
: log10(std::max(sum, 1e-10));
out.data[j * out.n_len + i] = sum;
}
}
// Otherwise fft_out are all zero
double sum = params.use_natural_log ? log(1e-10) : log10(1e-10);
for (; i < out.n_len; i += n_threads) {
for (int j = 0; j < out.n_mel; j++) {
out.data[j * out.n_len + i] = sum;
}
}
}
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
static bool log_mel_spectrogram(
const float * samples,
const int n_samples_in,
const int n_threads,
const filter_params & params,
const mtmd_audio_cache & cache,
mtmd_audio_mel & out) {
//const int64_t t_start_us = ggml_time_us();
out.n_len_org = n_samples_in;
int n_samples = n_samples_in;
// Hann window
const float * hann = cache.hann_window.data();
const int frame_size = (params.n_fft_bins - 1) * 2;
const int frame_step = params.hop_length;
// Padding
std::vector<float> samples_padded;
if (params.center_padding) {
const auto pad_amount = frame_size / 2;
samples_padded = std::vector<float>(n_samples + 2 * pad_amount, 0);
std::copy(samples, samples + n_samples, samples_padded.data() + pad_amount);
samples = samples_padded.data();
n_samples = samples_padded.size();
} else {
// existing padding logic
int64_t stage_1_pad = params.sample_rate * 30;
int64_t stage_2_pad = frame_size / 2;
samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
// pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
// reflective pad 200 samples at the beginning of audio
if (n_samples < stage_2_pad + 1) {
// TODO: Handle short audio differently or return error
return false;
}
std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
}
// preemphasis
if (params.preemph) {
const int pad_amount = frame_size / 2;
const float preemph = 0.97f;
float prev = samples_padded[pad_amount];
for (int i = pad_amount + 1; i + pad_amount < n_samples; ++i) {
float cur = samples_padded[i];
samples_padded[i] = cur - preemph * prev;
prev = cur;
}
}
// pad hann window if it's smaller than frame_size
// TODO: probably unnecessary here? (or better doing it in g_cache?)
std::vector<float> hann_window_padded;
if (params.hann_window_size < frame_size) {
hann_window_padded.resize(frame_size);
const int padding = (frame_size - params.hann_window_size) / 2;
std::copy(hann, hann + params.hann_window_size, &hann_window_padded[padding]);
hann = hann_window_padded.data();
}
out.n_mel = params.n_mel;
out.n_len = (n_samples - frame_size) / frame_step + 1;
// TODO: handle these checks better
if (out.n_mel > 0 && (unsigned long)out.n_len > SIZE_MAX / out.n_mel) {
LOG_ERR("%s: size overflow\n", __func__);
return false;
}
if (n_samples < frame_size) {
LOG_ERR("%s: not enough samples after padding\n", __func__);
return false;
}
out.data.resize(out.n_mel * out.n_len);
{
std::vector<std::thread> workers(n_threads - 1);
for (int iw = 0; iw < n_threads - 1; ++iw) {
workers[iw] =
std::thread(log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded), n_samples,
frame_size, frame_step, n_threads, std::cref(params), std::cref(cache), std::ref(out));
}
// main thread
log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples, frame_size, frame_step, n_threads, params,
cache, out);
for (int iw = 0; iw < n_threads - 1; ++iw) {
workers[iw].join();
}
}
const int effective_n_len = n_samples_in / frame_step;
if (params.norm_per_feature) {
for (int i = 0; i < out.n_mel; i++) {
double mean = 0;
for (int j = 0; j < effective_n_len; ++j) {
mean += out.data[i * out.n_len + j];
}
mean /= effective_n_len;
double var = 0.0;
for (int j = 0; j < effective_n_len; ++j) {
const double value = out.data[i * out.n_len + j] - mean;
var += value * value;
}
var /= effective_n_len - 1; // unbiased
const double mstd = std::sqrt(var + 1e-5);
for (int j = 0; j < effective_n_len; ++j) {
auto &value = out.data[i * out.n_len + j];
value = (value - mean) / mstd;
}
// pad the rest with zeros
for (int j = effective_n_len; j < out.n_len; ++j) {
out.data[i * out.n_len + j] = 0.0;
}
}
} else {
// clamping and normalization
double mmax = -1e20;
for (int i = 0; i < out.n_mel*out.n_len; i++) {
if (out.data[i] > mmax) {
mmax = out.data[i];
}
}
mmax -= 8.0;
for (int i = 0; i < out.n_mel*out.n_len; i++) {
if (out.data[i] < mmax) {
out.data[i] = mmax;
}
out.data[i] = (out.data[i] + 4.0)/4.0;
}
}
// Dump log_mel_spectrogram
if (DEBUG) {
std::ofstream outFile("log_mel_spectrogram.json");
outFile << "[";
for (uint64_t i = 0; i < out.data.size() - 1; i++) {
outFile << out.data[i] << ", ";
}
outFile << out.data[out.data.size() - 1] << "]";
outFile.close();
}
return true;
}
//
// mtmd_audio_preprocessor_whisper
//
void mtmd_audio_preprocessor_whisper::initialize() {
cache.fill_sin_cos_table(hparams.audio_n_fft);
cache.fill_hann_window(hparams.audio_window_len, true);
cache.fill_mel_filterbank_matrix(hparams.n_mel_bins, hparams.audio_n_fft, hparams.audio_sample_rate);
}
bool mtmd_audio_preprocessor_whisper::preprocess(const float * samples,
size_t n_samples,
std::vector<mtmd_audio_mel> & output) {
if (n_samples == 0) {
// empty audio
return false;
}
std::vector<float> smpl;
// if input is too short, pad with zeros
// this is to avoid potential issues with stage1/2 padding in log_mel_spectrogram
// TODO: maybe handle this better
size_t min_samples = (size_t) hparams.audio_sample_rate * (hparams.audio_chunk_len + 1); // +1 second margin
if (n_samples < min_samples) {
smpl.resize(min_samples, 0.0f);
std::memcpy(smpl.data(), samples, n_samples * sizeof(float));
samples = smpl.data();
n_samples = smpl.size();
}
filter_params params;
params.n_mel = hparams.n_mel_bins;
params.n_fft_bins = 1 + (hparams.audio_n_fft / 2);
params.hann_window_size = hparams.audio_window_len;
params.hop_length = hparams.audio_hop_len;
params.sample_rate = hparams.audio_sample_rate;
params.center_padding = false;
params.preemph = 0.0f; // disabled
params.use_natural_log = false;
params.norm_per_feature = false;
// make sure the cache is initialized
GGML_ASSERT(!cache.sin_vals.empty());
GGML_ASSERT(!cache.cos_vals.empty());
GGML_ASSERT(!cache.filters.data.empty());
mtmd_audio_mel out_full;
bool ok = log_mel_spectrogram(samples, n_samples,
4, // n_threads
params, cache, out_full);
if (!ok) {
return false;
}
// because the cgraph in clip.cpp only accepts 3000 frames each, we need to split the mel
// we always expect the mel to have 3000 silent frames at the end
if (DEBUG) {
printf("output: n_mel = %d, n_len = %d\n", out_full.n_mel, out_full.n_len);
}
const size_t frames_per_chunk = 3000;
GGML_ASSERT((size_t) out_full.n_len > frames_per_chunk);
for (size_t off = 0; off < (size_t) out_full.n_len; off += frames_per_chunk) {
int n_len = std::min(frames_per_chunk, (size_t) out_full.n_len - off);
if ((size_t) n_len < frames_per_chunk) {
break; // last uncomplete chunk will always be a padded chunk, safe to ignore
}
mtmd_audio_mel out_chunk;
out_chunk.n_len = n_len;
out_chunk.n_mel = out_full.n_mel;
out_chunk.n_len_org = out_full.n_mel; // unused
out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);
for (int i = 0; i < out_full.n_mel; i++) {
auto src = out_full.data.begin() + i * out_full.n_len + off;
out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
}
output.push_back(std::move(out_chunk));
}
return true;
}
//
// mtmd_audio_preprocessor_conformer
//
void mtmd_audio_preprocessor_conformer::initialize() {
cache.fill_sin_cos_table(hparams.audio_n_fft);
cache.fill_hann_window(hparams.audio_window_len, true);
cache.fill_mel_filterbank_matrix(hparams.n_mel_bins, hparams.audio_n_fft, hparams.audio_sample_rate);
}
bool mtmd_audio_preprocessor_conformer::preprocess(const float * samples,
size_t n_samples,
std::vector<mtmd_audio_mel> & output) {
// empty audio
if (n_samples == 0) {
return false;
}
filter_params params;
params.n_mel = hparams.n_mel_bins;
params.n_fft_bins = 1 + (hparams.audio_n_fft / 2);
params.hann_window_size = hparams.audio_window_len;
params.hop_length = hparams.audio_hop_len;
params.sample_rate = hparams.audio_sample_rate;
params.center_padding = true;
params.preemph = 0.97f;
params.use_natural_log = true;
params.norm_per_feature = true;
// make sure the cache is initialized
GGML_ASSERT(!cache.sin_vals.empty());
GGML_ASSERT(!cache.cos_vals.empty());
GGML_ASSERT(!cache.filters.data.empty());
mtmd_audio_mel out_full;
bool ok = log_mel_spectrogram(samples, n_samples,
4, // n_threads
params, cache, out_full);
if (!ok) {
return false;
}
output.push_back(std::move(out_full));
return true;
}
//
// mtmd_audio_streaming_istft implementation
//
mtmd_audio_streaming_istft::mtmd_audio_streaming_istft(int n_fft, int hop_length) :
n_fft(n_fft),
hop_length(hop_length),
n_fft_bins(n_fft / 2 + 1),
overlap_buffer(n_fft, 0.0f),
window_sum_buffer(n_fft, 0.0f),
padding_to_remove((n_fft - hop_length) / 2),
ifft_in(n_fft * 2 * 4, 0.0f), // extra space for recursive IFFT
ifft_out(n_fft * 2 * 4, 0.0f) {
cache.fill_sin_cos_table(n_fft);
cache.fill_hann_window(n_fft, true);
}
void mtmd_audio_streaming_istft::reset() {
std::fill(overlap_buffer.begin(), overlap_buffer.end(), 0.0f);
std::fill(window_sum_buffer.begin(), window_sum_buffer.end(), 0.0f);
padding_to_remove = (n_fft - hop_length) / 2;
}
std::vector<float> mtmd_audio_streaming_istft::process_frame(const float * frame_spectrum) {
std::vector<float> output(hop_length);
// copy frequencies
for (int j = 0; j < n_fft_bins; j++) {
ifft_in[j * 2 + 0] = frame_spectrum[j * 2 + 0];
ifft_in[j * 2 + 1] = frame_spectrum[j * 2 + 1];
}
// mirror negative frequencies
for (int j = 1; j < n_fft_bins - 1; j++) {
int mirror_idx = n_fft - j;
ifft_in[mirror_idx * 2 + 0] = ifft_in[j * 2 + 0];
ifft_in[mirror_idx * 2 + 1] = -ifft_in[j * 2 + 1]; // conjugate
}
ifft(cache, ifft_in.data(), n_fft, ifft_out.data());
// update window sum and overlap buffer
for (int j = 0; j < n_fft; j++) {
window_sum_buffer[j] += cache.hann_window[j] * cache.hann_window[j];
overlap_buffer[j] += ifft_out[j * 2] * cache.hann_window[j];
}
// extract hop_length samples with normalization
for (int i = 0; i < hop_length; i++) {
if (window_sum_buffer[i] > 1e-8f) {
output[i] = overlap_buffer[i] / window_sum_buffer[i];
} else {
output[i] = overlap_buffer[i];
}
}
// shift buffers left by hop_length
std::copy(overlap_buffer.begin() + hop_length, overlap_buffer.end(), overlap_buffer.begin());
std::fill(overlap_buffer.end() - hop_length, overlap_buffer.end(), 0.0f);
std::copy(window_sum_buffer.begin() + hop_length, window_sum_buffer.end(), window_sum_buffer.begin());
std::fill(window_sum_buffer.end() - hop_length, window_sum_buffer.end(), 0.0f);
// Remove padding if needed
int to_remove = std::min(padding_to_remove, (int) output.size());
padding_to_remove -= to_remove;
output.erase(output.begin(), output.begin() + to_remove);
return output;
}
std::vector<float> mtmd_audio_streaming_istft::flush() {
std::vector<float> output;
// Extract remaining samples from overlap buffer
// Continue until we've extracted all meaningful samples
int remaining = n_fft - hop_length;
while (remaining > 0) {
int chunk_size = std::min(remaining, hop_length);
for (int i = 0; i < chunk_size; i++) {
float sample;
if (window_sum_buffer[i] > 1e-8f) {
sample = overlap_buffer[i] / window_sum_buffer[i];
} else {
sample = overlap_buffer[i];
}
output.push_back(sample);
}
// Shift buffers
std::copy(overlap_buffer.begin() + chunk_size, overlap_buffer.end(), overlap_buffer.begin());
std::fill(overlap_buffer.end() - chunk_size, overlap_buffer.end(), 0.0f);
std::copy(window_sum_buffer.begin() + chunk_size, window_sum_buffer.end(), window_sum_buffer.begin());
std::fill(window_sum_buffer.end() - chunk_size, window_sum_buffer.end(), 0.0f);
remaining -= chunk_size;
}
return output;
}
|