1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POSTORDERITERATOR_H
#define LLVM_ADT_POSTORDERITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <set>
#include <vector>
namespace llvm {
template<class SetType, bool External> // Non-external set
class po_iterator_storage {
public:
SetType Visited;
};
/// DFSetTraits - Allow the SetType used to record depth-first search results to
/// optionally record node postorder.
template<class SetType>
struct DFSetTraits {
static void finishPostorder(
typename SetType::iterator::value_type, SetType &) {}
};
template<class SetType>
class po_iterator_storage<SetType, true> {
public:
po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
SetType &Visited;
};
template<class GraphT,
class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
bool ExtStorage = false,
class GT = GraphTraits<GraphT> >
class po_iterator : public std::iterator<std::forward_iterator_tag,
typename GT::NodeType, ptrdiff_t>,
public po_iterator_storage<SetType, ExtStorage> {
typedef std::iterator<std::forward_iterator_tag,
typename GT::NodeType, ptrdiff_t> super;
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
void traverseChild() {
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
NodeType *BB = *VisitStack.back().second++;
if (this->Visited.insert(BB)) { // If the block is not visited...
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
}
}
}
inline po_iterator(NodeType *BB) {
this->Visited.insert(BB);
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
inline po_iterator() {} // End is when stack is empty.
inline po_iterator(NodeType *BB, SetType &S) :
po_iterator_storage<SetType, ExtStorage>(S) {
if (this->Visited.insert(BB)) {
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
}
inline po_iterator(SetType &S) :
po_iterator_storage<SetType, ExtStorage>(S) {
} // End is when stack is empty.
public:
typedef typename super::pointer pointer;
typedef po_iterator<GraphT, SetType, ExtStorage, GT> _Self;
// Provide static "constructors"...
static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
static inline _Self end (GraphT G) { return _Self(); }
static inline _Self begin(GraphT G, SetType &S) {
return _Self(GT::getEntryNode(G), S);
}
static inline _Self end (GraphT G, SetType &S) { return _Self(S); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.back().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
DFSetTraits<SetType>::finishPostorder(VisitStack.back().first,
this->Visited);
VisitStack.pop_back();
if (!VisitStack.empty())
traverseChild();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (T G) { return po_iterator<T>::end(G); }
// Provide global definitions of external postorder iterators...
template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iterator(const po_iterator<T, SetType, true> &V) :
po_iterator<T, SetType, true>(V) {}
};
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
return po_ext_iterator<T, SetType>::begin(G, S);
}
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
return po_ext_iterator<T, SetType>::end(G, S);
}
// Provide global definitions of inverse post order iterators...
template <class T,
class SetType = std::set<typename GraphTraits<T>::NodeType*>,
bool External = false>
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
po_iterator<Inverse<T>, SetType, External> (V) {}
};
template <class T>
ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
return ipo_iterator<T>::begin(G, Reverse);
}
template <class T>
ipo_iterator<T> ipo_end(T G){
return ipo_iterator<T>::end(G);
}
//Provide global definitions of external inverse postorder iterators...
template <class T,
class SetType = std::set<typename GraphTraits<T>::NodeType*> >
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
ipo_iterator<T, SetType, true>(&V) {}
ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
ipo_iterator<T, SetType, true>(&V) {}
};
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_begin(T G, SetType &S) {
return ipo_ext_iterator<T, SetType>::begin(G, S);
}
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_end(T G, SetType &S) {
return ipo_ext_iterator<T, SetType>::end(G, S);
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
//
// This class should be used like this:
// {
// ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
template<class GraphT, class GT = GraphTraits<GraphT> >
class ReversePostOrderTraversal {
typedef typename GT::NodeType NodeType;
std::vector<NodeType*> Blocks; // Block list in normal PO order
inline void Initialize(NodeType *BB) {
copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
}
public:
typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
inline ReversePostOrderTraversal(GraphT G) {
Initialize(GT::getEntryNode(G));
}
// Because we want a reverse post order, use reverse iterators from the vector
inline rpo_iterator begin() { return Blocks.rbegin(); }
inline rpo_iterator end() { return Blocks.rend(); }
};
} // End llvm namespace
#endif
|