1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
//===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DWARFDebugAranges.h"
#include "DWARFCompileUnit.h"
#include "DWARFContext.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
using namespace llvm;
// Compare function DWARFDebugAranges::Range structures
static bool RangeLessThan(const DWARFDebugAranges::Range &range1,
const DWARFDebugAranges::Range &range2) {
return range1.LoPC < range2.LoPC;
}
namespace {
class CountArangeDescriptors {
public:
CountArangeDescriptors(uint32_t &count_ref) : Count(count_ref) {}
void operator()(const DWARFDebugArangeSet &set) {
Count += set.getNumDescriptors();
}
uint32_t &Count;
};
class AddArangeDescriptors {
public:
AddArangeDescriptors(DWARFDebugAranges::RangeColl &ranges)
: RangeCollection(ranges) {}
void operator()(const DWARFDebugArangeSet& set) {
const DWARFDebugArangeSet::Descriptor* arange_desc_ptr;
DWARFDebugAranges::Range range;
range.Offset = set.getCompileUnitDIEOffset();
for (uint32_t i=0; (arange_desc_ptr = set.getDescriptor(i)) != NULL; ++i){
range.LoPC = arange_desc_ptr->Address;
range.Length = arange_desc_ptr->Length;
// Insert each item in increasing address order so binary searching
// can later be done!
DWARFDebugAranges::RangeColl::iterator insert_pos =
std::lower_bound(RangeCollection.begin(), RangeCollection.end(),
range, RangeLessThan);
RangeCollection.insert(insert_pos, range);
}
}
DWARFDebugAranges::RangeColl& RangeCollection;
};
}
bool DWARFDebugAranges::extract(DataExtractor debug_aranges_data) {
if (debug_aranges_data.isValidOffset(0)) {
uint32_t offset = 0;
typedef std::vector<DWARFDebugArangeSet> SetCollection;
typedef SetCollection::const_iterator SetCollectionIter;
SetCollection sets;
DWARFDebugArangeSet set;
Range range;
while (set.extract(debug_aranges_data, &offset))
sets.push_back(set);
uint32_t count = 0;
std::for_each(sets.begin(), sets.end(), CountArangeDescriptors(count));
if (count > 0) {
Aranges.reserve(count);
AddArangeDescriptors range_adder(Aranges);
std::for_each(sets.begin(), sets.end(), range_adder);
}
}
return false;
}
bool DWARFDebugAranges::generate(DWARFContext *ctx) {
clear();
if (ctx) {
const uint32_t num_compile_units = ctx->getNumCompileUnits();
for (uint32_t cu_idx = 0; cu_idx < num_compile_units; ++cu_idx) {
DWARFCompileUnit *cu = ctx->getCompileUnitAtIndex(cu_idx);
if (cu)
cu->buildAddressRangeTable(this, true);
}
}
return !isEmpty();
}
void DWARFDebugAranges::dump(raw_ostream &OS) const {
const uint32_t num_ranges = getNumRanges();
for (uint32_t i = 0; i < num_ranges; ++i) {
const Range &range = Aranges[i];
OS << format("0x%8.8x: [0x%8.8llx - 0x%8.8llx)\n", range.Offset,
(uint64_t)range.LoPC, (uint64_t)range.HiPC());
}
}
void DWARFDebugAranges::Range::dump(raw_ostream &OS) const {
OS << format("{0x%8.8x}: [0x%8.8llx - 0x%8.8llx)\n", Offset, LoPC, HiPC());
}
void DWARFDebugAranges::appendRange(uint32_t offset, uint64_t low_pc,
uint64_t high_pc) {
if (!Aranges.empty()) {
if (Aranges.back().Offset == offset && Aranges.back().HiPC() == low_pc) {
Aranges.back().setHiPC(high_pc);
return;
}
}
Aranges.push_back(Range(low_pc, high_pc, offset));
}
void DWARFDebugAranges::sort(bool minimize, uint32_t n) {
const size_t orig_arange_size = Aranges.size();
// Size of one? If so, no sorting is needed
if (orig_arange_size <= 1)
return;
// Sort our address range entries
std::stable_sort(Aranges.begin(), Aranges.end(), RangeLessThan);
if (!minimize)
return;
// Most address ranges are contiguous from function to function
// so our new ranges will likely be smaller. We calculate the size
// of the new ranges since although std::vector objects can be resized,
// the will never reduce their allocated block size and free any excesss
// memory, so we might as well start a brand new collection so it is as
// small as possible.
// First calculate the size of the new minimal arange vector
// so we don't have to do a bunch of re-allocations as we
// copy the new minimal stuff over to the new collection.
size_t minimal_size = 1;
for (size_t i = 1; i < orig_arange_size; ++i) {
if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i], n))
++minimal_size;
}
// If the sizes are the same, then no consecutive aranges can be
// combined, we are done.
if (minimal_size == orig_arange_size)
return;
// Else, make a new RangeColl that _only_ contains what we need.
RangeColl minimal_aranges;
minimal_aranges.resize(minimal_size);
uint32_t j = 0;
minimal_aranges[j] = Aranges[0];
for (size_t i = 1; i < orig_arange_size; ++i) {
if(Range::SortedOverlapCheck (minimal_aranges[j], Aranges[i], n)) {
minimal_aranges[j].setHiPC (Aranges[i].HiPC());
} else {
// Only increment j if we aren't merging
minimal_aranges[++j] = Aranges[i];
}
}
assert (j+1 == minimal_size);
// Now swap our new minimal aranges into place. The local
// minimal_aranges will then contian the old big collection
// which will get freed.
minimal_aranges.swap(Aranges);
}
uint32_t DWARFDebugAranges::findAddress(uint64_t address) const {
if (!Aranges.empty()) {
Range range(address);
RangeCollIterator begin = Aranges.begin();
RangeCollIterator end = Aranges.end();
RangeCollIterator pos = lower_bound(begin, end, range, RangeLessThan);
if (pos != end && pos->LoPC <= address && address < pos->HiPC()) {
return pos->Offset;
} else if (pos != begin) {
--pos;
if (pos->LoPC <= address && address < pos->HiPC())
return (*pos).Offset;
}
}
return -1U;
}
bool
DWARFDebugAranges::allRangesAreContiguous(uint64_t &LoPC, uint64_t &HiPC) const{
if (Aranges.empty())
return false;
uint64_t next_addr = 0;
RangeCollIterator begin = Aranges.begin();
for (RangeCollIterator pos = begin, end = Aranges.end(); pos != end;
++pos) {
if (pos != begin && pos->LoPC != next_addr)
return false;
next_addr = pos->HiPC();
}
// We checked for empty at the start of function so front() will be valid.
LoPC = Aranges.front().LoPC;
// We checked for empty at the start of function so back() will be valid.
HiPC = Aranges.back().HiPC();
return true;
}
bool DWARFDebugAranges::getMaxRange(uint64_t &LoPC, uint64_t &HiPC) const {
if (Aranges.empty())
return false;
// We checked for empty at the start of function so front() will be valid.
LoPC = Aranges.front().LoPC;
// We checked for empty at the start of function so back() will be valid.
HiPC = Aranges.back().HiPC();
return true;
}
|