1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
|
//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "ARM.h"
#include "ARMConstantPoolValue.h"
#include "ARMInstrInfo.h"
#include "ARMRelocations.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#ifndef NDEBUG
#include <iomanip>
#endif
using namespace llvm;
STATISTIC(NumEmitted, "Number of machine instructions emitted");
namespace {
class ARMCodeEmitter : public MachineFunctionPass {
ARMJITInfo *JTI;
const ARMInstrInfo *II;
const TargetData *TD;
const ARMSubtarget *Subtarget;
TargetMachine &TM;
JITCodeEmitter &MCE;
MachineModuleInfo *MMI;
const std::vector<MachineConstantPoolEntry> *MCPEs;
const std::vector<MachineJumpTableEntry> *MJTEs;
bool IsPIC;
bool IsThumb;
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineModuleInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
static char ID;
public:
ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
: MachineFunctionPass(ID), JTI(0),
II((const ARMInstrInfo *)tm.getInstrInfo()),
TD(tm.getTargetData()), TM(tm),
MCE(mce), MCPEs(0), MJTEs(0),
IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
/// getBinaryCodeForInstr - This function, generated by the
/// CodeEmitterGenerator using TableGen, produces the binary encoding for
/// machine instructions.
unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "ARM Machine Code Emitter";
}
void emitInstruction(const MachineInstr &MI);
private:
void emitWordLE(unsigned Binary);
void emitDWordLE(uint64_t Binary);
void emitConstPoolInstruction(const MachineInstr &MI);
void emitMOVi32immInstruction(const MachineInstr &MI);
void emitMOVi2piecesInstruction(const MachineInstr &MI);
void emitLEApcrelJTInstruction(const MachineInstr &MI);
void emitPseudoMoveInstruction(const MachineInstr &MI);
void addPCLabel(unsigned LabelID);
void emitPseudoInstruction(const MachineInstr &MI);
unsigned getMachineSoRegOpValue(const MachineInstr &MI,
const MCInstrDesc &MCID,
const MachineOperand &MO,
unsigned OpIdx);
unsigned getMachineSoImmOpValue(unsigned SoImm);
unsigned getAddrModeSBit(const MachineInstr &MI,
const MCInstrDesc &MCID) const;
void emitDataProcessingInstruction(const MachineInstr &MI,
unsigned ImplicitRd = 0,
unsigned ImplicitRn = 0);
void emitLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRd = 0,
unsigned ImplicitRn = 0);
void emitMiscLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRn = 0);
void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
void emitMulFrmInstruction(const MachineInstr &MI);
void emitExtendInstruction(const MachineInstr &MI);
void emitMiscArithInstruction(const MachineInstr &MI);
void emitSaturateInstruction(const MachineInstr &MI);
void emitBranchInstruction(const MachineInstr &MI);
void emitInlineJumpTable(unsigned JTIndex);
void emitMiscBranchInstruction(const MachineInstr &MI);
void emitVFPArithInstruction(const MachineInstr &MI);
void emitVFPConversionInstruction(const MachineInstr &MI);
void emitVFPLoadStoreInstruction(const MachineInstr &MI);
void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
void emitNEONLaneInstruction(const MachineInstr &MI);
void emitNEONDupInstruction(const MachineInstr &MI);
void emitNEON1RegModImmInstruction(const MachineInstr &MI);
void emitNEON2RegInstruction(const MachineInstr &MI);
void emitNEON3RegInstruction(const MachineInstr &MI);
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const;
unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
return getMachineOpValue(MI, MI.getOperand(OpIdx));
}
// FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
// TableGen'erated getBinaryCodeForInstr() function to encode any
// operand values, instead querying getMachineOpValue() directly for
// each operand it needs to encode. Thus, any of the new encoder
// helper functions can simply return 0 as the values the return
// are already handled elsewhere. They are placeholders to allow this
// encoder to continue to function until the MC encoder is sufficiently
// far along that this one can be eliminated entirely.
unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
const { return 0; }
unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
const { return 0; }
unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
const { return 0; }
unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
const { return 0; }
unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
unsigned Op) const { return 0; }
unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
const { return 0; }
unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
unsigned Op)
const { return 0; }
unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
unsigned Op) const { return 0; }
unsigned getSsatBitPosValue(const MachineInstr &MI,
unsigned Op) const { return 0; }
uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
const {return 0; }
uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0; }
unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
const {
// {17-13} = reg
// {12} = (U)nsigned (add == '1', sub == '0')
// {11-0} = imm12
const MachineOperand &MO = MI.getOperand(Op);
const MachineOperand &MO1 = MI.getOperand(Op + 1);
if (!MO.isReg()) {
emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
return 0;
}
unsigned Reg = getARMRegisterNumbering(MO.getReg());
int32_t Imm12 = MO1.getImm();
uint32_t Binary;
Binary = Imm12 & 0xfff;
if (Imm12 >= 0)
Binary |= (1 << 12);
Binary |= (Reg << 13);
return Binary;
}
unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
return 0;
}
uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0;}
uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0;}
uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0;}
uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0;}
uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
// {17-13} = reg
// {12} = (U)nsigned (add == '1', sub == '0')
// {11-0} = imm12
const MachineOperand &MO = MI.getOperand(Op);
const MachineOperand &MO1 = MI.getOperand(Op + 1);
if (!MO.isReg()) {
emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
return 0;
}
unsigned Reg = getARMRegisterNumbering(MO.getReg());
int32_t Imm12 = MO1.getImm();
// Special value for #-0
if (Imm12 == INT32_MIN)
Imm12 = 0;
// Immediate is always encoded as positive. The 'U' bit controls add vs
// sub.
bool isAdd = true;
if (Imm12 < 0) {
Imm12 = -Imm12;
isAdd = false;
}
uint32_t Binary = Imm12 & 0xfff;
if (isAdd)
Binary |= (1 << 12);
Binary |= (Reg << 13);
return Binary;
}
unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
/// machine operand requires relocation, record the relocation and return
/// zero.
unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
unsigned Reloc);
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned getShiftOp(unsigned Imm) const ;
/// Routines that handle operands which add machine relocations which are
/// fixed up by the relocation stage.
void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
bool MayNeedFarStub, bool Indirect,
intptr_t ACPV = 0) const;
void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
intptr_t JTBase = 0) const;
};
}
char ARMCodeEmitter::ID = 0;
/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
/// code to the specified MCE object.
FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
JITCodeEmitter &JCE) {
return new ARMCodeEmitter(TM, JCE);
}
bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!");
JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
Subtarget = &TM.getSubtarget<ARMSubtarget>();
MCPEs = &MF.getConstantPool()->getConstants();
MJTEs = 0;
if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
JTI->Initialize(MF, IsPIC);
MMI = &getAnalysis<MachineModuleInfo>();
MCE.setModuleInfo(MMI);
do {
DEBUG(errs() << "JITTing function '"
<< MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
MCE.StartMachineBasicBlock(MBB);
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
I != E; ++I)
emitInstruction(*I);
}
} while (MCE.finishFunction(MF));
return false;
}
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
switch (ARM_AM::getAM2ShiftOpc(Imm)) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::asr: return 2;
case ARM_AM::lsl: return 0;
case ARM_AM::lsr: return 1;
case ARM_AM::ror:
case ARM_AM::rrx: return 3;
}
return 0;
}
/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
/// machine operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
const MachineOperand &MO,
unsigned Reloc) {
assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
&& "Relocation to this function should be for movt or movw");
if (MO.isImm())
return static_cast<unsigned>(MO.getImm());
else if (MO.isGlobal())
emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
else if (MO.isMBB())
emitMachineBasicBlock(MO.getMBB(), Reloc);
else {
#ifndef NDEBUG
errs() << MO;
#endif
llvm_unreachable("Unsupported operand type for movw/movt");
}
return 0;
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const {
if (MO.isReg())
return getARMRegisterNumbering(MO.getReg());
else if (MO.isImm())
return static_cast<unsigned>(MO.getImm());
else if (MO.isGlobal())
emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
else if (MO.isCPI()) {
const MCInstrDesc &MCID = MI.getDesc();
// For VFP load, the immediate offset is multiplied by 4.
unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
emitConstPoolAddress(MO.getIndex(), Reloc);
} else if (MO.isJTI())
emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
else if (MO.isMBB())
emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
else
llvm_unreachable("Unable to encode MachineOperand!");
return 0;
}
/// emitGlobalAddress - Emit the specified address to the code stream.
///
void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
bool MayNeedFarStub, bool Indirect,
intptr_t ACPV) const {
MachineRelocation MR = Indirect
? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
const_cast<GlobalValue *>(GV),
ACPV, MayNeedFarStub)
: MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
const_cast<GlobalValue *>(GV), ACPV,
MayNeedFarStub);
MCE.addRelocation(MR);
}
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::
emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
Reloc, ES));
}
/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
// Tell JIT emitter we'll resolve the address.
MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
Reloc, CPI, 0, true));
}
/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Reloc, JTIndex, 0, true));
}
/// emitMachineBasicBlock - Emit the specified address basic block.
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
unsigned Reloc,
intptr_t JTBase) const {
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Reloc, BB, JTBase));
}
void ARMCodeEmitter::emitWordLE(unsigned Binary) {
DEBUG(errs() << " 0x";
errs().write_hex(Binary) << "\n");
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
DEBUG(errs() << " 0x";
errs().write_hex(Binary) << "\n");
MCE.emitDWordLE(Binary);
}
void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
MCE.processDebugLoc(MI.getDebugLoc(), true);
++NumEmitted; // Keep track of the # of mi's emitted
switch (MI.getDesc().TSFlags & ARMII::FormMask) {
default: {
llvm_unreachable("Unhandled instruction encoding format!");
break;
}
case ARMII::MiscFrm:
if (MI.getOpcode() == ARM::LEApcrelJT) {
// Materialize jumptable address.
emitLEApcrelJTInstruction(MI);
break;
}
llvm_unreachable("Unhandled instruction encoding!");
break;
case ARMII::Pseudo:
emitPseudoInstruction(MI);
break;
case ARMII::DPFrm:
case ARMII::DPSoRegFrm:
emitDataProcessingInstruction(MI);
break;
case ARMII::LdFrm:
case ARMII::StFrm:
emitLoadStoreInstruction(MI);
break;
case ARMII::LdMiscFrm:
case ARMII::StMiscFrm:
emitMiscLoadStoreInstruction(MI);
break;
case ARMII::LdStMulFrm:
emitLoadStoreMultipleInstruction(MI);
break;
case ARMII::MulFrm:
emitMulFrmInstruction(MI);
break;
case ARMII::ExtFrm:
emitExtendInstruction(MI);
break;
case ARMII::ArithMiscFrm:
emitMiscArithInstruction(MI);
break;
case ARMII::SatFrm:
emitSaturateInstruction(MI);
break;
case ARMII::BrFrm:
emitBranchInstruction(MI);
break;
case ARMII::BrMiscFrm:
emitMiscBranchInstruction(MI);
break;
// VFP instructions.
case ARMII::VFPUnaryFrm:
case ARMII::VFPBinaryFrm:
emitVFPArithInstruction(MI);
break;
case ARMII::VFPConv1Frm:
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
case ARMII::VFPConv4Frm:
case ARMII::VFPConv5Frm:
emitVFPConversionInstruction(MI);
break;
case ARMII::VFPLdStFrm:
emitVFPLoadStoreInstruction(MI);
break;
case ARMII::VFPLdStMulFrm:
emitVFPLoadStoreMultipleInstruction(MI);
break;
// NEON instructions.
case ARMII::NGetLnFrm:
case ARMII::NSetLnFrm:
emitNEONLaneInstruction(MI);
break;
case ARMII::NDupFrm:
emitNEONDupInstruction(MI);
break;
case ARMII::N1RegModImmFrm:
emitNEON1RegModImmInstruction(MI);
break;
case ARMII::N2RegFrm:
emitNEON2RegInstruction(MI);
break;
case ARMII::N3RegFrm:
emitNEON3RegInstruction(MI);
break;
}
MCE.processDebugLoc(MI.getDebugLoc(), false);
}
void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
// Remember the CONSTPOOL_ENTRY address for later relocation.
JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
// Emit constpool island entry. In most cases, the actual values will be
// resolved and relocated after code emission.
if (MCPE.isMachineConstantPoolEntry()) {
ARMConstantPoolValue *ACPV =
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
assert(ACPV->isGlobalValue() && "unsupported constant pool value");
const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
if (GV) {
Reloc::Model RelocM = TM.getRelocationModel();
emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
isa<Function>(GV),
Subtarget->GVIsIndirectSymbol(GV, RelocM),
(intptr_t)ACPV);
} else {
const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
}
emitWordLE(0);
} else {
const Constant *CV = MCPE.Val.ConstVal;
DEBUG({
errs() << " ** Constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " ";
if (const Function *F = dyn_cast<Function>(CV))
errs() << F->getName();
else
errs() << *CV;
errs() << '\n';
});
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
emitWordLE(0);
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
uint32_t Val = uint32_t(*CI->getValue().getRawData());
emitWordLE(Val);
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (CFP->getType()->isFloatTy())
emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
else if (CFP->getType()->isDoubleTy())
emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
else {
llvm_unreachable("Unable to handle this constantpool entry!");
}
} else {
llvm_unreachable("Unable to handle this constantpool entry!");
}
}
}
void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
const MachineOperand &MO0 = MI.getOperand(0);
const MachineOperand &MO1 = MI.getOperand(1);
// Emit the 'movw' instruction.
unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode imm16 as imm4:imm12
Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
emitWordLE(Binary);
unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
// Emit the 'movt' instruction.
Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode imm16 as imm4:imm1, same as movw above.
Binary |= Hi16 & 0xFFF;
Binary |= ((Hi16 >> 12) & 0xF) << 16;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
const MachineOperand &MO0 = MI.getOperand(0);
const MachineOperand &MO1 = MI.getOperand(1);
assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
"Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
// Emit the 'mov' instruction.
unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
Binary |= getMachineSoImmOpValue(V1);
emitWordLE(Binary);
// Now the 'orr' instruction.
Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode Rn.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
Binary |= getMachineSoImmOpValue(V2);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
// It's basically add r, pc, (LJTI - $+8)
const MCInstrDesc &MCID = MI.getDesc();
// Emit the 'add' instruction.
unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, MCID);
// Encode Rd.
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode Rn which is PC.
Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
// Encode the displacement.
Binary |= 1 << ARMII::I_BitShift;
emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
Binary |= 1 << ARMII::S_BitShift;
// Encode register def if there is one.
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode the shift operation.
switch (Opcode) {
default: break;
case ARM::RRX:
// rrx
Binary |= 0x6 << 4;
break;
case ARM::MOVsrl_flag:
// lsr #1
Binary |= (0x2 << 4) | (1 << 7);
break;
case ARM::MOVsra_flag:
// asr #1
Binary |= (0x4 << 4) | (1 << 7);
break;
}
// Encode register Rm.
Binary |= getMachineOpValue(MI, 1);
emitWordLE(Binary);
}
void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
DEBUG(errs() << " ** LPC" << LabelID << " @ "
<< (void*)MCE.getCurrentPCValue() << '\n');
JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
}
void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
switch (Opcode) {
default:
llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
case ARM::BX_CALL:
case ARM::BMOVPCRX_CALL:
case ARM::BXr9_CALL:
case ARM::BMOVPCRXr9_CALL: {
// First emit mov lr, pc
unsigned Binary = 0x01a0e00f;
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
emitWordLE(Binary);
// and then emit the branch.
emitMiscBranchInstruction(MI);
break;
}
case TargetOpcode::INLINEASM: {
// We allow inline assembler nodes with empty bodies - they can
// implicitly define registers, which is ok for JIT.
if (MI.getOperand(0).getSymbolName()[0]) {
report_fatal_error("JIT does not support inline asm!");
}
break;
}
case TargetOpcode::PROLOG_LABEL:
case TargetOpcode::EH_LABEL:
MCE.emitLabel(MI.getOperand(0).getMCSymbol());
break;
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
// Do nothing.
break;
case ARM::CONSTPOOL_ENTRY:
emitConstPoolInstruction(MI);
break;
case ARM::PICADD: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// PICADD is just an add instruction that implicitly read pc.
emitDataProcessingInstruction(MI, 0, ARM::PC);
break;
}
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICSTR:
case ARM::PICSTRB: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// These are just load / store instructions that implicitly read pc.
emitLoadStoreInstruction(MI, 0, ARM::PC);
break;
}
case ARM::PICLDRH:
case ARM::PICLDRSH:
case ARM::PICLDRSB:
case ARM::PICSTRH: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// These are just load / store instructions that implicitly read pc.
emitMiscLoadStoreInstruction(MI, ARM::PC);
break;
}
case ARM::MOVi32imm:
// Two instructions to materialize a constant.
if (Subtarget->hasV6T2Ops())
emitMOVi32immInstruction(MI);
else
emitMOVi2piecesInstruction(MI);
break;
case ARM::LEApcrelJT:
// Materialize jumptable address.
emitLEApcrelJTInstruction(MI);
break;
case ARM::RRX:
case ARM::MOVsrl_flag:
case ARM::MOVsra_flag:
emitPseudoMoveInstruction(MI);
break;
}
}
unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
const MCInstrDesc &MCID,
const MachineOperand &MO,
unsigned OpIdx) {
unsigned Binary = getMachineOpValue(MI, MO);
const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
// Encode the shift opcode.
unsigned SBits = 0;
unsigned Rs = MO1.getReg();
if (Rs) {
// Set shift operand (bit[7:4]).
// LSL - 0001
// LSR - 0011
// ASR - 0101
// ROR - 0111
// RRX - 0110 and bit[11:8] clear.
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x1; break;
case ARM_AM::lsr: SBits = 0x3; break;
case ARM_AM::asr: SBits = 0x5; break;
case ARM_AM::ror: SBits = 0x7; break;
case ARM_AM::rrx: SBits = 0x6; break;
}
} else {
// Set shift operand (bit[6:4]).
// LSL - 000
// LSR - 010
// ASR - 100
// ROR - 110
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
case ARM_AM::ror: SBits = 0x6; break;
}
}
Binary |= SBits << 4;
if (SOpc == ARM_AM::rrx)
return Binary;
// Encode the shift operation Rs or shift_imm (except rrx).
if (Rs) {
// Encode Rs bit[11:8].
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
}
// Encode shift_imm bit[11:7].
return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
}
unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
int SoImmVal = ARM_AM::getSOImmVal(SoImm);
assert(SoImmVal != -1 && "Not a valid so_imm value!");
// Encode rotate_imm.
unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
<< ARMII::SoRotImmShift;
// Encode immed_8.
Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
return Binary;
}
unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
const MCInstrDesc &MCID) const {
for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
const MachineOperand &MO = MI.getOperand(i-1);
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
return 1 << ARMII::S_BitShift;
}
return 0;
}
void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
unsigned ImplicitRd,
unsigned ImplicitRn) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, MCID);
// Encode register def if there is one.
unsigned NumDefs = MCID.getNumDefs();
unsigned OpIdx = 0;
if (NumDefs)
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
else if (ImplicitRd)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
if (MCID.Opcode == ARM::MOVi16) {
// Get immediate from MI.
unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
ARM::reloc_arm_movw);
// Encode imm which is the same as in emitMOVi32immInstruction().
Binary |= Lo16 & 0xFFF;
Binary |= ((Lo16 >> 12) & 0xF) << 16;
emitWordLE(Binary);
return;
} else if(MCID.Opcode == ARM::MOVTi16) {
unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
ARM::reloc_arm_movt) >> 16);
Binary |= Hi16 & 0xFFF;
Binary |= ((Hi16 >> 12) & 0xF) << 16;
emitWordLE(Binary);
return;
} else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
uint32_t v = ~MI.getOperand(2).getImm();
int32_t lsb = CountTrailingZeros_32(v);
int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
// Instr{20-16} = msb, Instr{11-7} = lsb
Binary |= (msb & 0x1F) << 16;
Binary |= (lsb & 0x1F) << 7;
emitWordLE(Binary);
return;
} else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
// Encode Rn in Instr{0-3}
Binary |= getMachineOpValue(MI, OpIdx++);
uint32_t lsb = MI.getOperand(OpIdx++).getImm();
uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
// Instr{20-16} = widthm1, Instr{11-7} = lsb
Binary |= (widthm1 & 0x1F) << 16;
Binary |= (lsb & 0x1F) << 7;
emitWordLE(Binary);
return;
}
// If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
// Encode first non-shifter register operand if there is one.
bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
if (!isUnary) {
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
else {
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
++OpIdx;
}
}
// Encode shifter operand.
const MachineOperand &MO = MI.getOperand(OpIdx);
if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
// Encode SoReg.
emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
return;
}
if (MO.isReg()) {
// Encode register Rm.
emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
return;
}
// Encode so_imm.
Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
emitWordLE(Binary);
}
void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRd,
unsigned ImplicitRn) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Form = MCID.TSFlags & ARMII::FormMask;
bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
MI.getOpcode() == ARM::STRi12) {
emitWordLE(Binary);
return;
}
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Operand 0 of a pre- and post-indexed store is the address base
// writeback. Skip it.
bool Skipped = false;
if (IsPrePost && Form == ARMII::StFrm) {
++OpIdx;
Skipped = true;
}
// Set first operand
if (ImplicitRd)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
// Set second operand
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// If this is a two-address operand, skip it. e.g. LDR_PRE.
if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
const MachineOperand &MO2 = MI.getOperand(OpIdx);
unsigned AM2Opc = (ImplicitRn == ARM::PC)
? 0 : MI.getOperand(OpIdx+1).getImm();
// Set bit U(23) according to sign of immed value (positive or negative).
Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
if (!MO2.getReg()) { // is immediate
if (ARM_AM::getAM2Offset(AM2Opc))
// Set the value of offset_12 field
Binary |= ARM_AM::getAM2Offset(AM2Opc);
emitWordLE(Binary);
return;
}
// Set bit I(25), because this is not in immediate encoding.
Binary |= 1 << ARMII::I_BitShift;
assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
// Set bit[3:0] to the corresponding Rm register
Binary |= getARMRegisterNumbering(MO2.getReg());
// If this instr is in scaled register offset/index instruction, set
// shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
Binary |= ShImm << ARMII::ShiftShift; // shift_immed
}
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRn) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Form = MCID.TSFlags & ARMII::FormMask;
bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Operand 0 of a pre- and post-indexed store is the address base
// writeback. Skip it.
bool Skipped = false;
if (IsPrePost && Form == ARMII::StMiscFrm) {
++OpIdx;
Skipped = true;
}
// Set first operand
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
// Skip LDRD and STRD's second operand.
if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
++OpIdx;
// Set second operand
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// If this is a two-address operand, skip it. e.g. LDRH_POST.
if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
const MachineOperand &MO2 = MI.getOperand(OpIdx);
unsigned AM3Opc = (ImplicitRn == ARM::PC)
? 0 : MI.getOperand(OpIdx+1).getImm();
// Set bit U(23) according to sign of immed value (positive or negative)
Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
// If this instr is in register offset/index encoding, set bit[3:0]
// to the corresponding Rm register.
if (MO2.getReg()) {
Binary |= getARMRegisterNumbering(MO2.getReg());
emitWordLE(Binary);
return;
}
// This instr is in immediate offset/index encoding, set bit 22 to 1.
Binary |= 1 << ARMII::AM3_I_BitShift;
if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
// Set operands
Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
Binary |= (ImmOffs & 0xF); // immedL
}
emitWordLE(Binary);
}
static unsigned getAddrModeUPBits(unsigned Mode) {
unsigned Binary = 0;
// Set addressing mode by modifying bits U(23) and P(24)
// IA - Increment after - bit U = 1 and bit P = 0
// IB - Increment before - bit U = 1 and bit P = 1
// DA - Decrement after - bit U = 0 and bit P = 0
// DB - Decrement before - bit U = 0 and bit P = 1
switch (Mode) {
default: llvm_unreachable("Unknown addressing sub-mode!");
case ARM_AM::da: break;
case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
}
return Binary;
}
void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Skip operand 0 of an instruction with base register update.
unsigned OpIdx = 0;
if (IsUpdating)
++OpIdx;
// Set base address operand
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// Set addressing mode by modifying bits U(23) and P(24)
ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
// Set bit W(21)
if (IsUpdating)
Binary |= 0x1 << ARMII::W_BitShift;
// Set registers
for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
unsigned RegNum = getARMRegisterNumbering(MO.getReg());
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
RegNum < 16);
Binary |= 0x1 << RegNum;
}
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, MCID);
// 32x32->64bit operations have two destination registers. The number
// of register definitions will tell us if that's what we're dealing with.
unsigned OpIdx = 0;
if (MCID.getNumDefs() == 2)
Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
// Encode Rm
Binary |= getMachineOpValue(MI, OpIdx++);
// Encode Rs
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
// Many multiple instructions (e.g. MLA) have three src operands. Encode
// it as Rn (for multiply, that's in the same offset as RdLo.
if (MCID.getNumOperands() > OpIdx &&
!MCID.OpInfo[OpIdx].isPredicate() &&
!MCID.OpInfo[OpIdx].isOptionalDef())
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
const MachineOperand &MO1 = MI.getOperand(OpIdx++);
const MachineOperand &MO2 = MI.getOperand(OpIdx);
if (MO2.isReg()) {
// Two register operand form.
// Encode Rn.
Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
// Encode Rm.
Binary |= getMachineOpValue(MI, MO2);
++OpIdx;
} else {
Binary |= getMachineOpValue(MI, MO1);
}
// Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
if (MI.getOperand(OpIdx).isImm() &&
!MCID.OpInfo[OpIdx].isPredicate() &&
!MCID.OpInfo[OpIdx].isOptionalDef())
Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// PKH instructions are finished at this point
if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
emitWordLE(Binary);
return;
}
unsigned OpIdx = 0;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
const MachineOperand &MO = MI.getOperand(OpIdx++);
if (OpIdx == MCID.getNumOperands() ||
MCID.OpInfo[OpIdx].isPredicate() ||
MCID.OpInfo[OpIdx].isOptionalDef()) {
// Encode Rm and it's done.
Binary |= getMachineOpValue(MI, MO);
emitWordLE(Binary);
return;
}
// Encode Rn.
Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
// Encode Rm.
Binary |= getMachineOpValue(MI, OpIdx++);
// Encode shift_imm.
unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
if (MCID.Opcode == ARM::PKHTB) {
assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
if (ShiftAmt == 32)
ShiftAmt = 0;
}
assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
Binary |= ShiftAmt << ARMII::ShiftShift;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGen.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode saturate bit position.
unsigned Pos = MI.getOperand(1).getImm();
if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
Pos -= 1;
assert((Pos < 16 || (Pos < 32 &&
MCID.Opcode != ARM::SSAT16 &&
MCID.Opcode != ARM::USAT16)) &&
"saturate bit position out of range");
Binary |= Pos << 16;
// Encode Rm
Binary |= getMachineOpValue(MI, 2);
// Encode shift_imm.
if (MCID.getNumOperands() == 4) {
unsigned ShiftOp = MI.getOperand(3).getImm();
ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
if (Opc == ARM_AM::asr)
Binary |= (1 << 6);
unsigned ShiftAmt = MI.getOperand(3).getImm();
if (ShiftAmt == 32 && Opc == ARM_AM::asr)
ShiftAmt = 0;
assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
Binary |= ShiftAmt << ARMII::ShiftShift;
}
emitWordLE(Binary);
}
void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
if (MCID.Opcode == ARM::TPsoft) {
llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
}
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Set signed_immed_24 field
Binary |= getMachineOpValue(MI, 0);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
// Remember the base address of the inline jump table.
uintptr_t JTBase = MCE.getCurrentPCValue();
JTI->addJumpTableBaseAddr(JTIndex, JTBase);
DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
<< '\n');
// Now emit the jump table entries.
const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
if (IsPIC)
// DestBB address - JT base.
emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
else
// Absolute DestBB address.
emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
emitWordLE(0);
}
}
void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Handle jump tables.
if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
// First emit a ldr pc, [] instruction.
emitDataProcessingInstruction(MI, ARM::PC);
// Then emit the inline jump table.
unsigned JTIndex =
(MCID.Opcode == ARM::BR_JTr)
? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
emitInlineJumpTable(JTIndex);
return;
} else if (MCID.Opcode == ARM::BR_JTm) {
// First emit a ldr pc, [] instruction.
emitLoadStoreInstruction(MI, ARM::PC);
// Then emit the inline jump table.
emitInlineJumpTable(MI.getOperand(3).getIndex());
return;
}
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
// The return register is LR.
Binary |= getARMRegisterNumbering(ARM::LR);
else
// otherwise, set the return register
Binary |= getMachineOpValue(MI, 0);
emitWordLE(Binary);
}
static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegD = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
RegD = getARMRegisterNumbering(RegD);
if (!isSPVFP)
Binary |= RegD << ARMII::RegRdShift;
else {
Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
Binary |= (RegD & 0x01) << ARMII::D_BitShift;
}
return Binary;
}
static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegN = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
RegN = getARMRegisterNumbering(RegN);
if (!isSPVFP)
Binary |= RegN << ARMII::RegRnShift;
else {
Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
Binary |= (RegN & 0x01) << ARMII::N_BitShift;
}
return Binary;
}
static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegM = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
RegM = getARMRegisterNumbering(RegM);
if (!isSPVFP)
Binary |= RegM;
else {
Binary |= ((RegM & 0x1E) >> 1);
Binary |= (RegM & 0x01) << ARMII::M_BitShift;
}
return Binary;
}
void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
assert((Binary & ARMII::D_BitShift) == 0 &&
(Binary & ARMII::N_BitShift) == 0 &&
(Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, OpIdx++);
// If this is a two-address operand, skip it, e.g. FMACD.
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
// Encode Dn / Sn.
if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
Binary |= encodeVFPRn(MI, OpIdx++);
if (OpIdx == MCID.getNumOperands() ||
MCID.OpInfo[OpIdx].isPredicate() ||
MCID.OpInfo[OpIdx].isOptionalDef()) {
// FCMPEZD etc. has only one operand.
emitWordLE(Binary);
return;
}
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, OpIdx);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Form = MCID.TSFlags & ARMII::FormMask;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
switch (Form) {
default: break;
case ARMII::VFPConv1Frm:
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, 0);
break;
case ARMII::VFPConv4Frm:
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 0);
break;
case ARMII::VFPConv5Frm:
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 0);
break;
}
switch (Form) {
default: break;
case ARMII::VFPConv1Frm:
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 1);
break;
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 1);
break;
case ARMII::VFPConv4Frm:
case ARMII::VFPConv5Frm:
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, 1);
break;
}
if (Form == ARMII::VFPConv5Frm)
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 2);
else if (Form == ARMII::VFPConv3Frm)
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 2);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, OpIdx++);
// Encode address base.
const MachineOperand &Base = MI.getOperand(OpIdx++);
Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
// If there is a non-zero immediate offset, encode it.
if (Base.isReg()) {
const MachineOperand &Offset = MI.getOperand(OpIdx);
if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
Binary |= 1 << ARMII::U_BitShift;
Binary |= ImmOffs;
emitWordLE(Binary);
return;
}
}
// If immediate offset is omitted, default to +0.
Binary |= 1 << ARMII::U_BitShift;
emitWordLE(Binary);
}
void
ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Skip operand 0 of an instruction with base register update.
unsigned OpIdx = 0;
if (IsUpdating)
++OpIdx;
// Set base address operand
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// Set addressing mode by modifying bits U(23) and P(24)
ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
// Set bit W(21)
if (IsUpdating)
Binary |= 0x1 << ARMII::W_BitShift;
// First register is encoded in Dd.
Binary |= encodeVFPRd(MI, OpIdx+2);
// Count the number of registers.
unsigned NumRegs = 1;
for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
++NumRegs;
}
// Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
// Otherwise, it will be 0, in the case of 32-bit registers.
if(Binary & 0x100)
Binary |= NumRegs * 2;
else
Binary |= NumRegs;
emitWordLE(Binary);
}
static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegD = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
RegD = getARMRegisterNumbering(RegD);
Binary |= (RegD & 0xf) << ARMII::RegRdShift;
Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
return Binary;
}
static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegN = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
RegN = getARMRegisterNumbering(RegN);
Binary |= (RegN & 0xf) << ARMII::RegRnShift;
Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
return Binary;
}
static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegM = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
RegM = getARMRegisterNumbering(RegM);
Binary |= (RegM & 0xf);
Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
return Binary;
}
/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
/// data-processing instruction to the corresponding Thumb encoding.
static unsigned convertNEONDataProcToThumb(unsigned Binary) {
assert((Binary & 0xfe000000) == 0xf2000000 &&
"not an ARM NEON data-processing instruction");
unsigned UBit = (Binary >> 24) & 1;
return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
}
void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
unsigned Binary = getBinaryCodeForInstr(MI);
unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
const MCInstrDesc &MCID = MI.getDesc();
if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
RegTOpIdx = 0;
RegNOpIdx = 1;
LnOpIdx = 2;
} else { // ARMII::NSetLnFrm
RegTOpIdx = 2;
RegNOpIdx = 0;
LnOpIdx = 3;
}
// Set the conditional execution predicate
Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
RegT = getARMRegisterNumbering(RegT);
Binary |= (RegT << ARMII::RegRdShift);
Binary |= encodeNEONRn(MI, RegNOpIdx);
unsigned LaneShift;
if ((Binary & (1 << 22)) != 0)
LaneShift = 0; // 8-bit elements
else if ((Binary & (1 << 5)) != 0)
LaneShift = 1; // 16-bit elements
else
LaneShift = 2; // 32-bit elements
unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
unsigned Opc1 = Lane >> 2;
unsigned Opc2 = Lane & 3;
assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
Binary |= (Opc1 << 21);
Binary |= (Opc2 << 5);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
unsigned RegT = MI.getOperand(1).getReg();
RegT = getARMRegisterNumbering(RegT);
Binary |= (RegT << ARMII::RegRdShift);
Binary |= encodeNEONRn(MI, 0);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
unsigned Binary = getBinaryCodeForInstr(MI);
// Destination register is encoded in Dd.
Binary |= encodeNEONRd(MI, 0);
// Immediate fields: Op, Cmode, I, Imm3, Imm4
unsigned Imm = MI.getOperand(1).getImm();
unsigned Op = (Imm >> 12) & 1;
unsigned Cmode = (Imm >> 8) & 0xf;
unsigned I = (Imm >> 7) & 1;
unsigned Imm3 = (Imm >> 4) & 0x7;
unsigned Imm4 = Imm & 0xf;
Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
if (IsThumb)
Binary = convertNEONDataProcToThumb(Binary);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Binary = getBinaryCodeForInstr(MI);
// Destination register is encoded in Dd; source register in Dm.
unsigned OpIdx = 0;
Binary |= encodeNEONRd(MI, OpIdx++);
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
Binary |= encodeNEONRm(MI, OpIdx);
if (IsThumb)
Binary = convertNEONDataProcToThumb(Binary);
// FIXME: This does not handle VDUPfdf or VDUPfqf.
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Binary = getBinaryCodeForInstr(MI);
// Destination register is encoded in Dd; source registers in Dn and Dm.
unsigned OpIdx = 0;
Binary |= encodeNEONRd(MI, OpIdx++);
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
Binary |= encodeNEONRn(MI, OpIdx++);
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
Binary |= encodeNEONRm(MI, OpIdx);
if (IsThumb)
Binary = convertNEONDataProcToThumb(Binary);
// FIXME: This does not handle VMOVDneon or VMOVQ.
emitWordLE(Binary);
}
#include "ARMGenCodeEmitter.inc"
|