1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
|
//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library converts LLVM code to C code, compilable by GCC and other C
// compilers.
//
//===----------------------------------------------------------------------===//
#include "CTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/InlineAsm.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/Host.h"
#include "llvm/Config/config.h"
#include <algorithm>
// Some ms header decided to define setjmp as _setjmp, undo this for this file.
#ifdef _MSC_VER
#undef setjmp
#endif
using namespace llvm;
extern "C" void LLVMInitializeCBackendTarget() {
// Register the target.
RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
}
namespace {
class CBEMCAsmInfo : public MCAsmInfo {
public:
CBEMCAsmInfo() {
GlobalPrefix = "";
PrivateGlobalPrefix = "";
}
};
/// CWriter - This class is the main chunk of code that converts an LLVM
/// module to a C translation unit.
class CWriter : public FunctionPass, public InstVisitor<CWriter> {
formatted_raw_ostream &Out;
IntrinsicLowering *IL;
Mangler *Mang;
LoopInfo *LI;
const Module *TheModule;
const MCAsmInfo* TAsm;
const MCRegisterInfo *MRI;
const MCObjectFileInfo *MOFI;
MCContext *TCtx;
const TargetData* TD;
std::map<const ConstantFP *, unsigned> FPConstantMap;
std::set<Function*> intrinsicPrototypesAlreadyGenerated;
std::set<const Argument*> ByValParams;
unsigned FPCounter;
unsigned OpaqueCounter;
DenseMap<const Value*, unsigned> AnonValueNumbers;
unsigned NextAnonValueNumber;
/// UnnamedStructIDs - This contains a unique ID for each struct that is
/// either anonymous or has no name.
DenseMap<StructType*, unsigned> UnnamedStructIDs;
public:
static char ID;
explicit CWriter(formatted_raw_ostream &o)
: FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0),
TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0),
OpaqueCounter(0), NextAnonValueNumber(0) {
initializeLoopInfoPass(*PassRegistry::getPassRegistry());
FPCounter = 0;
}
virtual const char *getPassName() const { return "C backend"; }
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
virtual bool doInitialization(Module &M);
bool runOnFunction(Function &F) {
// Do not codegen any 'available_externally' functions at all, they have
// definitions outside the translation unit.
if (F.hasAvailableExternallyLinkage())
return false;
LI = &getAnalysis<LoopInfo>();
// Get rid of intrinsics we can't handle.
lowerIntrinsics(F);
// Output all floating point constants that cannot be printed accurately.
printFloatingPointConstants(F);
printFunction(F);
return false;
}
virtual bool doFinalization(Module &M) {
// Free memory...
delete IL;
delete TD;
delete Mang;
delete TCtx;
delete TAsm;
delete MRI;
delete MOFI;
FPConstantMap.clear();
ByValParams.clear();
intrinsicPrototypesAlreadyGenerated.clear();
UnnamedStructIDs.clear();
return false;
}
raw_ostream &printType(raw_ostream &Out, Type *Ty,
bool isSigned = false,
const std::string &VariableName = "",
bool IgnoreName = false,
const AttrListPtr &PAL = AttrListPtr());
raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty,
bool isSigned,
const std::string &NameSoFar = "");
void printStructReturnPointerFunctionType(raw_ostream &Out,
const AttrListPtr &PAL,
PointerType *Ty);
std::string getStructName(StructType *ST);
/// writeOperandDeref - Print the result of dereferencing the specified
/// operand with '*'. This is equivalent to printing '*' then using
/// writeOperand, but avoids excess syntax in some cases.
void writeOperandDeref(Value *Operand) {
if (isAddressExposed(Operand)) {
// Already something with an address exposed.
writeOperandInternal(Operand);
} else {
Out << "*(";
writeOperand(Operand);
Out << ")";
}
}
void writeOperand(Value *Operand, bool Static = false);
void writeInstComputationInline(Instruction &I);
void writeOperandInternal(Value *Operand, bool Static = false);
void writeOperandWithCast(Value* Operand, unsigned Opcode);
void writeOperandWithCast(Value* Operand, const ICmpInst &I);
bool writeInstructionCast(const Instruction &I);
void writeMemoryAccess(Value *Operand, Type *OperandType,
bool IsVolatile, unsigned Alignment);
private :
std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
void lowerIntrinsics(Function &F);
/// Prints the definition of the intrinsic function F. Supports the
/// intrinsics which need to be explicitly defined in the CBackend.
void printIntrinsicDefinition(const Function &F, raw_ostream &Out);
void printModuleTypes();
void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &);
void printFloatingPointConstants(Function &F);
void printFloatingPointConstants(const Constant *C);
void printFunctionSignature(const Function *F, bool Prototype);
void printFunction(Function &);
void printBasicBlock(BasicBlock *BB);
void printLoop(Loop *L);
void printCast(unsigned opcode, Type *SrcTy, Type *DstTy);
void printConstant(Constant *CPV, bool Static);
void printConstantWithCast(Constant *CPV, unsigned Opcode);
bool printConstExprCast(const ConstantExpr *CE, bool Static);
void printConstantArray(ConstantArray *CPA, bool Static);
void printConstantVector(ConstantVector *CV, bool Static);
/// isAddressExposed - Return true if the specified value's name needs to
/// have its address taken in order to get a C value of the correct type.
/// This happens for global variables, byval parameters, and direct allocas.
bool isAddressExposed(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return ByValParams.count(A);
return isa<GlobalVariable>(V) || isDirectAlloca(V);
}
// isInlinableInst - Attempt to inline instructions into their uses to build
// trees as much as possible. To do this, we have to consistently decide
// what is acceptable to inline, so that variable declarations don't get
// printed and an extra copy of the expr is not emitted.
//
static bool isInlinableInst(const Instruction &I) {
// Always inline cmp instructions, even if they are shared by multiple
// expressions. GCC generates horrible code if we don't.
if (isa<CmpInst>(I))
return true;
// Must be an expression, must be used exactly once. If it is dead, we
// emit it inline where it would go.
if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
isa<InsertValueInst>(I))
// Don't inline a load across a store or other bad things!
return false;
// Must not be used in inline asm, extractelement, or shufflevector.
if (I.hasOneUse()) {
const Instruction &User = cast<Instruction>(*I.use_back());
if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
isa<ShuffleVectorInst>(User))
return false;
}
// Only inline instruction it if it's use is in the same BB as the inst.
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
}
// isDirectAlloca - Define fixed sized allocas in the entry block as direct
// variables which are accessed with the & operator. This causes GCC to
// generate significantly better code than to emit alloca calls directly.
//
static const AllocaInst *isDirectAlloca(const Value *V) {
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
if (!AI) return 0;
if (AI->isArrayAllocation())
return 0; // FIXME: we can also inline fixed size array allocas!
if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
return 0;
return AI;
}
// isInlineAsm - Check if the instruction is a call to an inline asm chunk.
static bool isInlineAsm(const Instruction& I) {
if (const CallInst *CI = dyn_cast<CallInst>(&I))
return isa<InlineAsm>(CI->getCalledValue());
return false;
}
// Instruction visitation functions
friend class InstVisitor<CWriter>;
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitSwitchInst(SwitchInst &I);
void visitIndirectBrInst(IndirectBrInst &I);
void visitInvokeInst(InvokeInst &I) {
llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitUnwindInst(UnwindInst &I) {
llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitResumeInst(ResumeInst &I) {
llvm_unreachable("DwarfEHPrepare pass didn't work!");
}
void visitUnreachableInst(UnreachableInst &I);
void visitPHINode(PHINode &I);
void visitBinaryOperator(Instruction &I);
void visitICmpInst(ICmpInst &I);
void visitFCmpInst(FCmpInst &I);
void visitCastInst (CastInst &I);
void visitSelectInst(SelectInst &I);
void visitCallInst (CallInst &I);
void visitInlineAsm(CallInst &I);
bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
void visitAllocaInst(AllocaInst &I);
void visitLoadInst (LoadInst &I);
void visitStoreInst (StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitVAArgInst (VAArgInst &I);
void visitInsertElementInst(InsertElementInst &I);
void visitExtractElementInst(ExtractElementInst &I);
void visitShuffleVectorInst(ShuffleVectorInst &SVI);
void visitInsertValueInst(InsertValueInst &I);
void visitExtractValueInst(ExtractValueInst &I);
void visitInstruction(Instruction &I) {
#ifndef NDEBUG
errs() << "C Writer does not know about " << I;
#endif
llvm_unreachable(0);
}
void outputLValue(Instruction *I) {
Out << " " << GetValueName(I) << " = ";
}
bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
void printPHICopiesForSuccessor(BasicBlock *CurBlock,
BasicBlock *Successor, unsigned Indent);
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
unsigned Indent);
void printGEPExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E, bool Static);
std::string GetValueName(const Value *Operand);
};
}
char CWriter::ID = 0;
static std::string CBEMangle(const std::string &S) {
std::string Result;
for (unsigned i = 0, e = S.size(); i != e; ++i)
if (isalnum(S[i]) || S[i] == '_') {
Result += S[i];
} else {
Result += '_';
Result += 'A'+(S[i]&15);
Result += 'A'+((S[i]>>4)&15);
Result += '_';
}
return Result;
}
std::string CWriter::getStructName(StructType *ST) {
if (!ST->isLiteral() && !ST->getName().empty())
return CBEMangle("l_"+ST->getName().str());
return "l_unnamed_" + utostr(UnnamedStructIDs[ST]);
}
/// printStructReturnPointerFunctionType - This is like printType for a struct
/// return type, except, instead of printing the type as void (*)(Struct*, ...)
/// print it as "Struct (*)(...)", for struct return functions.
void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
const AttrListPtr &PAL,
PointerType *TheTy) {
FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
std::string tstr;
raw_string_ostream FunctionInnards(tstr);
FunctionInnards << " (*) (";
bool PrintedType = false;
FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
Type *RetTy = cast<PointerType>(*I)->getElementType();
unsigned Idx = 1;
for (++I, ++Idx; I != E; ++I, ++Idx) {
if (PrintedType)
FunctionInnards << ", ";
Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(ArgTy->isPointerTy());
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
PrintedType = true;
}
if (FTy->isVarArg()) {
if (!PrintedType)
FunctionInnards << " int"; //dummy argument for empty vararg functs
FunctionInnards << ", ...";
} else if (!PrintedType) {
FunctionInnards << "void";
}
FunctionInnards << ')';
printType(Out, RetTy,
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
}
raw_ostream &
CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned,
const std::string &NameSoFar) {
assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
"Invalid type for printSimpleType");
switch (Ty->getTypeID()) {
case Type::VoidTyID: return Out << "void " << NameSoFar;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return Out << "bool " << NameSoFar;
else if (NumBits <= 8)
return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
else if (NumBits <= 16)
return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
else if (NumBits <= 32)
return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
else if (NumBits <= 64)
return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
else {
assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
}
}
case Type::FloatTyID: return Out << "float " << NameSoFar;
case Type::DoubleTyID: return Out << "double " << NameSoFar;
// Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
// present matches host 'long double'.
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: return Out << "long double " << NameSoFar;
case Type::X86_MMXTyID:
return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
" __attribute__((vector_size(64))) " + NameSoFar);
case Type::VectorTyID: {
VectorType *VTy = cast<VectorType>(Ty);
return printSimpleType(Out, VTy->getElementType(), isSigned,
" __attribute__((vector_size(" +
utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
}
default:
#ifndef NDEBUG
errs() << "Unknown primitive type: " << *Ty << "\n";
#endif
llvm_unreachable(0);
}
}
// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty,
bool isSigned, const std::string &NameSoFar,
bool IgnoreName, const AttrListPtr &PAL) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
printSimpleType(Out, Ty, isSigned, NameSoFar);
return Out;
}
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
FunctionType *FTy = cast<FunctionType>(Ty);
std::string tstr;
raw_string_ostream FunctionInnards(tstr);
FunctionInnards << " (" << NameSoFar << ") (";
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(ArgTy->isPointerTy());
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
if (I != FTy->param_begin())
FunctionInnards << ", ";
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
++Idx;
}
if (FTy->isVarArg()) {
if (!FTy->getNumParams())
FunctionInnards << " int"; //dummy argument for empty vaarg functs
FunctionInnards << ", ...";
} else if (!FTy->getNumParams()) {
FunctionInnards << "void";
}
FunctionInnards << ')';
printType(Out, FTy->getReturnType(),
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
return Out;
}
case Type::StructTyID: {
StructType *STy = cast<StructType>(Ty);
// Check to see if the type is named.
if (!IgnoreName)
return Out << getStructName(STy) << ' ' << NameSoFar;
Out << NameSoFar + " {\n";
unsigned Idx = 0;
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
Out << " ";
printType(Out, *I, false, "field" + utostr(Idx++));
Out << ";\n";
}
Out << '}';
if (STy->isPacked())
Out << " __attribute__ ((packed))";
return Out;
}
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(Ty);
std::string ptrName = "*" + NameSoFar;
if (PTy->getElementType()->isArrayTy() ||
PTy->getElementType()->isVectorTy())
ptrName = "(" + ptrName + ")";
if (!PAL.isEmpty())
// Must be a function ptr cast!
return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
return printType(Out, PTy->getElementType(), false, ptrName);
}
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
if (NumElements == 0) NumElements = 1;
// Arrays are wrapped in structs to allow them to have normal
// value semantics (avoiding the array "decay").
Out << NameSoFar << " { ";
printType(Out, ATy->getElementType(), false,
"array[" + utostr(NumElements) + "]");
return Out << "; }";
}
default:
llvm_unreachable("Unhandled case in getTypeProps!");
}
return Out;
}
void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
Type *ETy = CPA->getType()->getElementType();
bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
ETy == Type::getInt8Ty(CPA->getContext()));
// Make sure the last character is a null char, as automatically added by C
if (isString && (CPA->getNumOperands() == 0 ||
!cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
isString = false;
if (isString) {
Out << '\"';
// Keep track of whether the last number was a hexadecimal escape.
bool LastWasHex = false;
// Do not include the last character, which we know is null
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
// Print it out literally if it is a printable character. The only thing
// to be careful about is when the last letter output was a hex escape
// code, in which case we have to be careful not to print out hex digits
// explicitly (the C compiler thinks it is a continuation of the previous
// character, sheesh...)
//
if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
LastWasHex = false;
if (C == '"' || C == '\\')
Out << "\\" << (char)C;
else
Out << (char)C;
} else {
LastWasHex = false;
switch (C) {
case '\n': Out << "\\n"; break;
case '\t': Out << "\\t"; break;
case '\r': Out << "\\r"; break;
case '\v': Out << "\\v"; break;
case '\a': Out << "\\a"; break;
case '\"': Out << "\\\""; break;
case '\'': Out << "\\\'"; break;
default:
Out << "\\x";
Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
LastWasHex = true;
break;
}
}
}
Out << '\"';
} else {
Out << '{';
if (CPA->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPA->getOperand(0)), Static);
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPA->getOperand(i)), Static);
}
}
Out << " }";
}
}
void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
Out << '{';
if (CP->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CP->getOperand(0)), Static);
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CP->getOperand(i)), Static);
}
}
Out << " }";
}
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
// textually as a double (rather than as a reference to a stack-allocated
// variable). We decide this by converting CFP to a string and back into a
// double, and then checking whether the conversion results in a bit-equal
// double to the original value of CFP. This depends on us and the target C
// compiler agreeing on the conversion process (which is pretty likely since we
// only deal in IEEE FP).
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
bool ignored;
// Do long doubles in hex for now.
if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
CFP->getType() != Type::getDoubleTy(CFP->getContext()))
return false;
APFloat APF = APFloat(CFP->getValueAPF()); // copy
if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%a", APF.convertToDouble());
if (!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3))
return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
return false;
#else
std::string StrVal = ftostr(APF);
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like "Inf"
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
return false;
#endif
}
/// Print out the casting for a cast operation. This does the double casting
/// necessary for conversion to the destination type, if necessary.
/// @brief Print a cast
void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) {
// Print the destination type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::IntToPtr:
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
Out << '(';
printType(Out, DstTy);
Out << ')';
break;
case Instruction::ZExt:
case Instruction::PtrToInt:
case Instruction::FPToUI: // For these, make sure we get an unsigned dest
Out << '(';
printSimpleType(Out, DstTy, false);
Out << ')';
break;
case Instruction::SExt:
case Instruction::FPToSI: // For these, make sure we get a signed dest
Out << '(';
printSimpleType(Out, DstTy, true);
Out << ')';
break;
default:
llvm_unreachable("Invalid cast opcode");
}
// Print the source type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::ZExt:
Out << '(';
printSimpleType(Out, SrcTy, false);
Out << ')';
break;
case Instruction::SIToFP:
case Instruction::SExt:
Out << '(';
printSimpleType(Out, SrcTy, true);
Out << ')';
break;
case Instruction::IntToPtr:
case Instruction::PtrToInt:
// Avoid "cast to pointer from integer of different size" warnings
Out << "(unsigned long)";
break;
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::FPToSI:
case Instruction::FPToUI:
break; // These don't need a source cast.
default:
llvm_unreachable("Invalid cast opcode");
break;
}
}
// printConstant - The LLVM Constant to C Constant converter.
void CWriter::printConstant(Constant *CPV, bool Static) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
switch (CE->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Out << "(";
printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
if (CE->getOpcode() == Instruction::SExt &&
CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
// Make sure we really sext from bool here by subtracting from 0
Out << "0-";
}
printConstant(CE->getOperand(0), Static);
if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
(CE->getOpcode() == Instruction::Trunc ||
CE->getOpcode() == Instruction::FPToUI ||
CE->getOpcode() == Instruction::FPToSI ||
CE->getOpcode() == Instruction::PtrToInt)) {
// Make sure we really truncate to bool here by anding with 1
Out << "&1u";
}
Out << ')';
return;
case Instruction::GetElementPtr:
Out << "(";
printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
gep_type_end(CPV), Static);
Out << ")";
return;
case Instruction::Select:
Out << '(';
printConstant(CE->getOperand(0), Static);
Out << '?';
printConstant(CE->getOperand(1), Static);
Out << ':';
printConstant(CE->getOperand(2), Static);
Out << ')';
return;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
{
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE, Static);
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
switch (CE->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd: Out << " + "; break;
case Instruction::Sub:
case Instruction::FSub: Out << " - "; break;
case Instruction::Mul:
case Instruction::FMul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl: Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
case Instruction::ICmp:
switch (CE->getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: Out << " < "; break;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE: Out << " <= "; break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT: Out << " > "; break;
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE: Out << " >= "; break;
default: llvm_unreachable("Illegal ICmp predicate");
}
break;
default: llvm_unreachable("Illegal opcode here!");
}
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
if (NeedsClosingParens)
Out << "))";
Out << ')';
return;
}
case Instruction::FCmp: {
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE, Static);
if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
Out << "0";
else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
Out << "1";
else {
const char* op = 0;
switch (CE->getPredicate()) {
default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
Out << ", ";
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
Out << ")";
}
if (NeedsClosingParens)
Out << "))";
Out << ')';
return;
}
default:
#ifndef NDEBUG
errs() << "CWriter Error: Unhandled constant expression: "
<< *CE << "\n";
#endif
llvm_unreachable(0);
}
} else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*UNDEF*/";
if (!CPV->getType()->isVectorTy()) {
Out << "0)";
} else {
Out << "{})";
}
return;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
Type* Ty = CI->getType();
if (Ty == Type::getInt1Ty(CPV->getContext()))
Out << (CI->getZExtValue() ? '1' : '0');
else if (Ty == Type::getInt32Ty(CPV->getContext()))
Out << CI->getZExtValue() << 'u';
else if (Ty->getPrimitiveSizeInBits() > 32)
Out << CI->getZExtValue() << "ull";
else {
Out << "((";
printSimpleType(Out, Ty, false) << ')';
if (CI->isMinValue(true))
Out << CI->getZExtValue() << 'u';
else
Out << CI->getSExtValue();
Out << ')';
}
return;
}
switch (CPV->getType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: {
ConstantFP *FPC = cast<ConstantFP>(CPV);
std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
if (I != FPConstantMap.end()) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
"float" :
FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
"double" :
"long double")
<< "*)&FPConstant" << I->second << ')';
} else {
double V;
if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
V = FPC->getValueAPF().convertToFloat();
else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
V = FPC->getValueAPF().convertToDouble();
else {
// Long double. Convert the number to double, discarding precision.
// This is not awesome, but it at least makes the CBE output somewhat
// useful.
APFloat Tmp = FPC->getValueAPF();
bool LosesInfo;
Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
V = Tmp.convertToDouble();
}
if (IsNAN(V)) {
// The value is NaN
// FIXME the actual NaN bits should be emitted.
// The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
// it's 0x7ff4.
const unsigned long QuietNaN = 0x7ff8UL;
//const unsigned long SignalNaN = 0x7ff4UL;
// We need to grab the first part of the FP #
char Buffer[100];
uint64_t ll = DoubleToBits(V);
sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
std::string Num(&Buffer[0], &Buffer[6]);
unsigned long Val = strtoul(Num.c_str(), 0, 16);
if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
<< Buffer << "\") /*nan*/ ";
else
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
<< Buffer << "\") /*nan*/ ";
} else if (IsInf(V)) {
// The value is Inf
if (V < 0) Out << '-';
Out << "LLVM_INF" <<
(FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
<< " /*inf*/ ";
} else {
std::string Num;
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
// Print out the constant as a floating point number.
char Buffer[100];
sprintf(Buffer, "%a", V);
Num = Buffer;
#else
Num = ftostr(FPC->getValueAPF());
#endif
Out << Num;
}
}
break;
}
case Type::ArrayTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
Out << "{ "; // Arrays are wrapped in struct types.
if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
printConstantArray(CA, Static);
} else {
assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
ArrayType *AT = cast<ArrayType>(CPV->getType());
Out << '{';
if (AT->getNumElements()) {
Out << ' ';
Constant *CZ = Constant::getNullValue(AT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ, Static);
}
}
Out << " }";
}
Out << " }"; // Arrays are wrapped in struct types.
break;
case Type::VectorTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
printConstantVector(CV, Static);
} else {
assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
VectorType *VT = cast<VectorType>(CPV->getType());
Out << "{ ";
Constant *CZ = Constant::getNullValue(VT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ, Static);
}
Out << " }";
}
break;
case Type::StructTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
StructType *ST = cast<StructType>(CPV->getType());
Out << '{';
if (ST->getNumElements()) {
Out << ' ';
printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
}
}
Out << " }";
} else {
Out << '{';
if (CPV->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPV->getOperand(0)), Static);
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPV->getOperand(i)), Static);
}
}
Out << " }";
}
break;
case Type::PointerTyID:
if (isa<ConstantPointerNull>(CPV)) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*NULL*/0)";
break;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
writeOperand(GV, Static);
break;
}
// FALL THROUGH
default:
#ifndef NDEBUG
errs() << "Unknown constant type: " << *CPV << "\n";
#endif
llvm_unreachable(0);
}
}
// Some constant expressions need to be casted back to the original types
// because their operands were casted to the expected type. This function takes
// care of detecting that case and printing the cast for the ConstantExpr.
bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
bool NeedsExplicitCast = false;
Type *Ty = CE->getOperand(0)->getType();
bool TypeIsSigned = false;
switch (CE->getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv: NeedsExplicitCast = true; break;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
case Instruction::SExt:
Ty = CE->getType();
NeedsExplicitCast = true;
TypeIsSigned = true;
break;
case Instruction::ZExt:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Ty = CE->getType();
NeedsExplicitCast = true;
break;
default: break;
}
if (NeedsExplicitCast) {
Out << "((";
if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
printSimpleType(Out, Ty, TypeIsSigned);
else
printType(Out, Ty); // not integer, sign doesn't matter
Out << ")(";
}
return NeedsExplicitCast;
}
// Print a constant assuming that it is the operand for a given Opcode. The
// opcodes that care about sign need to cast their operands to the expected
// type before the operation proceeds. This function does the casting.
void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
// Extract the operand's type, we'll need it.
Type* OpTy = CPV->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
bool typeIsSigned = false;
// Based on the Opcode for which this Constant is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true so it gets
// casted below.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem:
shouldCast = true;
break;
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem:
shouldCast = true;
typeIsSigned = true;
break;
}
// Write out the casted constant if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, typeIsSigned);
Out << ")";
printConstant(CPV, false);
Out << ")";
} else
printConstant(CPV, false);
}
std::string CWriter::GetValueName(const Value *Operand) {
// Resolve potential alias.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
if (const Value *V = GA->resolveAliasedGlobal(false))
Operand = V;
}
// Mangle globals with the standard mangler interface for LLC compatibility.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
SmallString<128> Str;
Mang->getNameWithPrefix(Str, GV, false);
return CBEMangle(Str.str().str());
}
std::string Name = Operand->getName();
if (Name.empty()) { // Assign unique names to local temporaries.
unsigned &No = AnonValueNumbers[Operand];
if (No == 0)
No = ++NextAnonValueNumber;
Name = "tmp__" + utostr(No);
}
std::string VarName;
VarName.reserve(Name.capacity());
for (std::string::iterator I = Name.begin(), E = Name.end();
I != E; ++I) {
char ch = *I;
if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
(ch >= '0' && ch <= '9') || ch == '_')) {
char buffer[5];
sprintf(buffer, "_%x_", ch);
VarName += buffer;
} else
VarName += ch;
}
return "llvm_cbe_" + VarName;
}
/// writeInstComputationInline - Emit the computation for the specified
/// instruction inline, with no destination provided.
void CWriter::writeInstComputationInline(Instruction &I) {
// We can't currently support integer types other than 1, 8, 16, 32, 64.
// Validate this.
Type *Ty = I.getType();
if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
Ty!=Type::getInt8Ty(I.getContext()) &&
Ty!=Type::getInt16Ty(I.getContext()) &&
Ty!=Type::getInt32Ty(I.getContext()) &&
Ty!=Type::getInt64Ty(I.getContext()))) {
report_fatal_error("The C backend does not currently support integer "
"types of widths other than 1, 8, 16, 32, 64.\n"
"This is being tracked as PR 4158.");
}
// If this is a non-trivial bool computation, make sure to truncate down to
// a 1 bit value. This is important because we want "add i1 x, y" to return
// "0" when x and y are true, not "2" for example.
bool NeedBoolTrunc = false;
if (I.getType() == Type::getInt1Ty(I.getContext()) &&
!isa<ICmpInst>(I) && !isa<FCmpInst>(I))
NeedBoolTrunc = true;
if (NeedBoolTrunc)
Out << "((";
visit(I);
if (NeedBoolTrunc)
Out << ")&1)";
}
void CWriter::writeOperandInternal(Value *Operand, bool Static) {
if (Instruction *I = dyn_cast<Instruction>(Operand))
// Should we inline this instruction to build a tree?
if (isInlinableInst(*I) && !isDirectAlloca(I)) {
Out << '(';
writeInstComputationInline(*I);
Out << ')';
return;
}
Constant* CPV = dyn_cast<Constant>(Operand);
if (CPV && !isa<GlobalValue>(CPV))
printConstant(CPV, Static);
else
Out << GetValueName(Operand);
}
void CWriter::writeOperand(Value *Operand, bool Static) {
bool isAddressImplicit = isAddressExposed(Operand);
if (isAddressImplicit)
Out << "(&"; // Global variables are referenced as their addresses by llvm
writeOperandInternal(Operand, Static);
if (isAddressImplicit)
Out << ')';
}
// Some instructions need to have their result value casted back to the
// original types because their operands were casted to the expected type.
// This function takes care of detecting that case and printing the cast
// for the Instruction.
bool CWriter::writeInstructionCast(const Instruction &I) {
Type *Ty = I.getOperand(0)->getType();
switch (I.getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv:
Out << "((";
printSimpleType(Out, Ty, false);
Out << ")(";
return true;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv:
Out << "((";
printSimpleType(Out, Ty, true);
Out << ")(";
return true;
default: break;
}
return false;
}
// Write the operand with a cast to another type based on the Opcode being used.
// This will be used in cases where an instruction has specific type
// requirements (usually signedness) for its operands.
void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
// Extract the operand's type, we'll need it.
Type* OpTy = Operand->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
// Indicate whether the cast should be to a signed type or not.
bool castIsSigned = false;
// Based on the Opcode for which this Operand is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem: // Cast to unsigned first
shouldCast = true;
castIsSigned = false;
break;
case Instruction::GetElementPtr:
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem: // Cast to signed first
shouldCast = true;
castIsSigned = true;
break;
}
// Write out the casted operand if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
Out << ")";
writeOperand(Operand);
Out << ")";
} else
writeOperand(Operand);
}
// Write the operand with a cast to another type based on the icmp predicate
// being used.
void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
// This has to do a cast to ensure the operand has the right signedness.
// Also, if the operand is a pointer, we make sure to cast to an integer when
// doing the comparison both for signedness and so that the C compiler doesn't
// optimize things like "p < NULL" to false (p may contain an integer value
// f.e.).
bool shouldCast = Cmp.isRelational();
// Write out the casted operand if we should, otherwise just write the
// operand.
if (!shouldCast) {
writeOperand(Operand);
return;
}
// Should this be a signed comparison? If so, convert to signed.
bool castIsSigned = Cmp.isSigned();
// If the operand was a pointer, convert to a large integer type.
Type* OpTy = Operand->getType();
if (OpTy->isPointerTy())
OpTy = TD->getIntPtrType(Operand->getContext());
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
Out << ")";
writeOperand(Operand);
Out << ")";
}
// generateCompilerSpecificCode - This is where we add conditional compilation
// directives to cater to specific compilers as need be.
//
static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
const TargetData *TD) {
// Alloca is hard to get, and we don't want to include stdlib.h here.
Out << "/* get a declaration for alloca */\n"
<< "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
<< "#define alloca(x) __builtin_alloca((x))\n"
<< "#define _alloca(x) __builtin_alloca((x))\n"
<< "#elif defined(__APPLE__)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#define longjmp _longjmp\n"
<< "#define setjmp _setjmp\n"
<< "#elif defined(__sun__)\n"
<< "#if defined(__sparcv9)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#else\n"
<< "extern void *__builtin_alloca(unsigned int);\n"
<< "#endif\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(_MSC_VER)\n"
<< "#define inline _inline\n"
<< "#define alloca(x) _alloca(x)\n"
<< "#else\n"
<< "#include <alloca.h>\n"
<< "#endif\n\n";
// We output GCC specific attributes to preserve 'linkonce'ness on globals.
// If we aren't being compiled with GCC, just drop these attributes.
Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
<< "#define __attribute__(X)\n"
<< "#endif\n\n";
// On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __EXTERNAL_WEAK__\n"
<< "#endif\n\n";
// For now, turn off the weak linkage attribute on Mac OS X. (See above.)
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#endif\n\n";
// Add hidden visibility support. FIXME: APPLE_CC?
Out << "#if defined(__GNUC__)\n"
<< "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
<< "#endif\n\n";
// Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
// From the GCC documentation:
//
// double __builtin_nan (const char *str)
//
// This is an implementation of the ISO C99 function nan.
//
// Since ISO C99 defines this function in terms of strtod, which we do
// not implement, a description of the parsing is in order. The string is
// parsed as by strtol; that is, the base is recognized by leading 0 or
// 0x prefixes. The number parsed is placed in the significand such that
// the least significant bit of the number is at the least significant
// bit of the significand. The number is truncated to fit the significand
// field provided. The significand is forced to be a quiet NaN.
//
// This function, if given a string literal, is evaluated early enough
// that it is considered a compile-time constant.
//
// float __builtin_nanf (const char *str)
//
// Similar to __builtin_nan, except the return type is float.
//
// double __builtin_inf (void)
//
// Similar to __builtin_huge_val, except a warning is generated if the
// target floating-point format does not support infinities. This
// function is suitable for implementing the ISO C99 macro INFINITY.
//
// float __builtin_inff (void)
//
// Similar to __builtin_inf, except the return type is float.
Out << "#ifdef __GNUC__\n"
<< "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
<< "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
<< "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
<< "#define LLVM_INF __builtin_inf() /* Double */\n"
<< "#define LLVM_INFF __builtin_inff() /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) "
"__builtin_prefetch(addr,rw,locality)\n"
<< "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
<< "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
<< "#define LLVM_ASM __asm__\n"
<< "#else\n"
<< "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_INF ((double)0.0) /* Double */\n"
<< "#define LLVM_INFF 0.0F /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
<< "#define __ATTRIBUTE_CTOR__\n"
<< "#define __ATTRIBUTE_DTOR__\n"
<< "#define LLVM_ASM(X)\n"
<< "#endif\n\n";
Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
<< "#define __builtin_stack_save() 0 /* not implemented */\n"
<< "#define __builtin_stack_restore(X) /* noop */\n"
<< "#endif\n\n";
// Output typedefs for 128-bit integers. If these are needed with a
// 32-bit target or with a C compiler that doesn't support mode(TI),
// more drastic measures will be needed.
Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
<< "typedef int __attribute__((mode(TI))) llvmInt128;\n"
<< "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
<< "#endif\n\n";
// Output target-specific code that should be inserted into main.
Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
}
/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
/// the StaticTors set.
static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
Constant *FP = CS->getOperand(1);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP))
StaticTors.insert(F);
}
}
enum SpecialGlobalClass {
NotSpecial = 0,
GlobalCtors, GlobalDtors,
NotPrinted
};
/// getGlobalVariableClass - If this is a global that is specially recognized
/// by LLVM, return a code that indicates how we should handle it.
static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
// If this is a global ctors/dtors list, handle it now.
if (GV->hasAppendingLinkage() && GV->use_empty()) {
if (GV->getName() == "llvm.global_ctors")
return GlobalCtors;
else if (GV->getName() == "llvm.global_dtors")
return GlobalDtors;
}
// Otherwise, if it is other metadata, don't print it. This catches things
// like debug information.
if (GV->getSection() == "llvm.metadata")
return NotPrinted;
return NotSpecial;
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const char *Str, unsigned Length,
raw_ostream &Out) {
for (unsigned i = 0; i != Length; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '\\' && C != '"')
Out << C;
else if (C == '\\')
Out << "\\\\";
else if (C == '\"')
Out << "\\\"";
else if (C == '\t')
Out << "\\t";
else
Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
PrintEscapedString(Str.c_str(), Str.size(), Out);
}
bool CWriter::doInitialization(Module &M) {
FunctionPass::doInitialization(M);
// Initialize
TheModule = &M;
TD = new TargetData(&M);
IL = new IntrinsicLowering(*TD);
IL->AddPrototypes(M);
#if 0
std::string Triple = TheModule->getTargetTriple();
if (Triple.empty())
Triple = llvm::sys::getHostTriple();
std::string E;
if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
TAsm = Match->createMCAsmInfo(Triple);
#endif
TAsm = new CBEMCAsmInfo();
MRI = new MCRegisterInfo();
TCtx = new MCContext(*TAsm, *MRI, NULL);
Mang = new Mangler(*TCtx, *TD);
// Keep track of which functions are static ctors/dtors so they can have
// an attribute added to their prototypes.
std::set<Function*> StaticCtors, StaticDtors;
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
switch (getGlobalVariableClass(I)) {
default: break;
case GlobalCtors:
FindStaticTors(I, StaticCtors);
break;
case GlobalDtors:
FindStaticTors(I, StaticDtors);
break;
}
}
// get declaration for alloca
Out << "/* Provide Declarations */\n";
Out << "#include <stdarg.h>\n"; // Varargs support
Out << "#include <setjmp.h>\n"; // Unwind support
Out << "#include <limits.h>\n"; // With overflow intrinsics support.
generateCompilerSpecificCode(Out, TD);
// Provide a definition for `bool' if not compiling with a C++ compiler.
Out << "\n"
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
<< "\n\n/* Support for floating point constants */\n"
<< "typedef unsigned long long ConstantDoubleTy;\n"
<< "typedef unsigned int ConstantFloatTy;\n"
<< "typedef struct { unsigned long long f1; unsigned short f2; "
"unsigned short pad[3]; } ConstantFP80Ty;\n"
// This is used for both kinds of 128-bit long double; meaning differs.
<< "typedef struct { unsigned long long f1; unsigned long long f2; }"
" ConstantFP128Ty;\n"
<< "\n\n/* Global Declarations */\n";
// First output all the declarations for the program, because C requires
// Functions & globals to be declared before they are used.
//
if (!M.getModuleInlineAsm().empty()) {
Out << "/* Module asm statements */\n"
<< "asm(";
// Split the string into lines, to make it easier to read the .ll file.
std::string Asm = M.getModuleInlineAsm();
size_t CurPos = 0;
size_t NewLine = Asm.find_first_of('\n', CurPos);
while (NewLine != std::string::npos) {
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "\"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
Out);
Out << "\\n\"\n";
CurPos = NewLine+1;
NewLine = Asm.find_first_of('\n', CurPos);
}
Out << "\"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
Out << "\");\n"
<< "/* End Module asm statements */\n";
}
// Loop over the symbol table, emitting all named constants.
printModuleTypes();
// Global variable declarations...
if (!M.global_empty()) {
Out << "\n/* External Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
I->hasCommonLinkage())
Out << "extern ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else
continue; // Internal Global
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false, GetValueName(I));
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
Out << ";\n";
}
}
// Function declarations
Out << "\n/* Function Declarations */\n";
Out << "double fmod(double, double);\n"; // Support for FP rem
Out << "float fmodf(float, float);\n";
Out << "long double fmodl(long double, long double);\n";
// Store the intrinsics which will be declared/defined below.
SmallVector<const Function*, 8> intrinsicsToDefine;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
// Don't print declarations for intrinsic functions.
// Store the used intrinsics, which need to be explicitly defined.
if (I->isIntrinsic()) {
switch (I->getIntrinsicID()) {
default:
break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
intrinsicsToDefine.push_back(I);
break;
}
continue;
}
if (I->getName() == "setjmp" ||
I->getName() == "longjmp" || I->getName() == "_setjmp")
continue;
if (I->hasExternalWeakLinkage())
Out << "extern ";
printFunctionSignature(I, true);
if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (StaticCtors.count(I))
Out << " __ATTRIBUTE_CTOR__";
if (StaticDtors.count(I))
Out << " __ATTRIBUTE_DTOR__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
if (I->hasName() && I->getName()[0] == 1)
Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
Out << ";\n";
}
// Output the global variable declarations
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasLocalLinkage())
Out << "static ";
else
Out << "extern ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasCommonLinkage()) // FIXME is this right?
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
Out << ";\n";
}
}
// Output the global variable definitions and contents...
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasLocalLinkage())
Out << "static ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else if (I->hasDLLExportLinkage())
Out << "__declspec(dllexport) ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasCommonLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
// If the initializer is not null, emit the initializer. If it is null,
// we try to avoid emitting large amounts of zeros. The problem with
// this, however, occurs when the variable has weak linkage. In this
// case, the assembler will complain about the variable being both weak
// and common, so we disable this optimization.
// FIXME common linkage should avoid this problem.
if (!I->getInitializer()->isNullValue()) {
Out << " = " ;
writeOperand(I->getInitializer(), true);
} else if (I->hasWeakLinkage()) {
// We have to specify an initializer, but it doesn't have to be
// complete. If the value is an aggregate, print out { 0 }, and let
// the compiler figure out the rest of the zeros.
Out << " = " ;
if (I->getInitializer()->getType()->isStructTy() ||
I->getInitializer()->getType()->isVectorTy()) {
Out << "{ 0 }";
} else if (I->getInitializer()->getType()->isArrayTy()) {
// As with structs and vectors, but with an extra set of braces
// because arrays are wrapped in structs.
Out << "{ { 0 } }";
} else {
// Just print it out normally.
writeOperand(I->getInitializer(), true);
}
}
Out << ";\n";
}
}
if (!M.empty())
Out << "\n\n/* Function Bodies */\n";
// Emit some helper functions for dealing with FCMP instruction's
// predicates
Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
Out << "return X == X && Y == Y; }\n";
Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
Out << "return X != X || Y != Y; }\n";
Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
Out << "return X != Y; }\n";
Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
Out << "return X == Y ; }\n";
Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
Out << "return X < Y ; }\n";
Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
Out << "return X > Y ; }\n";
Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
Out << "return X <= Y ; }\n";
Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
Out << "return X >= Y ; }\n";
// Emit definitions of the intrinsics.
for (SmallVector<const Function*, 8>::const_iterator
I = intrinsicsToDefine.begin(),
E = intrinsicsToDefine.end(); I != E; ++I) {
printIntrinsicDefinition(**I, Out);
}
return false;
}
/// Output all floating point constants that cannot be printed accurately...
void CWriter::printFloatingPointConstants(Function &F) {
// Scan the module for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
I != E; ++I)
printFloatingPointConstants(*I);
Out << '\n';
}
void CWriter::printFloatingPointConstants(const Constant *C) {
// If this is a constant expression, recursively check for constant fp values.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
printFloatingPointConstants(CE->getOperand(i));
return;
}
// Otherwise, check for a FP constant that we need to print.
const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
if (FPC == 0 ||
// Do not put in FPConstantMap if safe.
isFPCSafeToPrint(FPC) ||
// Already printed this constant?
FPConstantMap.count(FPC))
return;
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
double Val = FPC->getValueAPF().convertToDouble();
uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
float Val = FPC->getValueAPF().convertToFloat();
uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
getZExtValue();
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "U; /* " << Val << " */\n";
} else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
// api needed to prevent premature destruction
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
<< " = { 0x" << utohexstr(p[0])
<< "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
<< "}; /* Long double constant */\n";
} else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
<< " = { 0x"
<< utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
<< "}; /* Long double constant */\n";
} else {
llvm_unreachable("Unknown float type!");
}
}
/// printSymbolTable - Run through symbol table looking for type names. If a
/// type name is found, emit its declaration...
///
void CWriter::printModuleTypes() {
Out << "/* Helper union for bitcasts */\n";
Out << "typedef union {\n";
Out << " unsigned int Int32;\n";
Out << " unsigned long long Int64;\n";
Out << " float Float;\n";
Out << " double Double;\n";
Out << "} llvmBitCastUnion;\n";
// Get all of the struct types used in the module.
std::vector<StructType*> StructTypes;
TheModule->findUsedStructTypes(StructTypes);
if (StructTypes.empty()) return;
Out << "/* Structure forward decls */\n";
unsigned NextTypeID = 0;
// If any of them are missing names, add a unique ID to UnnamedStructIDs.
// Print out forward declarations for structure types.
for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
StructType *ST = StructTypes[i];
if (ST->isLiteral() || ST->getName().empty())
UnnamedStructIDs[ST] = NextTypeID++;
std::string Name = getStructName(ST);
Out << "typedef struct " << Name << ' ' << Name << ";\n";
}
Out << '\n';
// Keep track of which structures have been printed so far.
SmallPtrSet<Type *, 16> StructPrinted;
// Loop over all structures then push them into the stack so they are
// printed in the correct order.
//
Out << "/* Structure contents */\n";
for (unsigned i = 0, e = StructTypes.size(); i != e; ++i)
if (StructTypes[i]->isStructTy())
// Only print out used types!
printContainedStructs(StructTypes[i], StructPrinted);
}
// Push the struct onto the stack and recursively push all structs
// this one depends on.
//
// TODO: Make this work properly with vector types
//
void CWriter::printContainedStructs(Type *Ty,
SmallPtrSet<Type *, 16> &StructPrinted) {
// Don't walk through pointers.
if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
return;
// Print all contained types first.
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I)
printContainedStructs(*I, StructPrinted);
if (StructType *ST = dyn_cast<StructType>(Ty)) {
// Check to see if we have already printed this struct.
if (!StructPrinted.insert(Ty)) return;
// Print structure type out.
printType(Out, ST, false, getStructName(ST), true);
Out << ";\n\n";
}
}
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F->hasStructRetAttr();
if (F->hasLocalLinkage()) Out << "static ";
if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Out << "__attribute__((stdcall)) ";
break;
case CallingConv::X86_FastCall:
Out << "__attribute__((fastcall)) ";
break;
case CallingConv::X86_ThisCall:
Out << "__attribute__((thiscall)) ";
break;
default:
break;
}
// Loop over the arguments, printing them...
FunctionType *FT = cast<FunctionType>(F->getFunctionType());
const AttrListPtr &PAL = F->getAttributes();
std::string tstr;
raw_string_ostream FunctionInnards(tstr);
// Print out the name...
FunctionInnards << GetValueName(F) << '(';
bool PrintedArg = false;
if (!F->isDeclaration()) {
if (!F->arg_empty()) {
Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
unsigned Idx = 1;
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
++Idx;
}
std::string ArgName;
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
if (I->hasName() || !Prototype)
ArgName = GetValueName(I);
else
ArgName = "";
Type *ArgTy = I->getType();
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
ArgTy = cast<PointerType>(ArgTy)->getElementType();
ByValParams.insert(I);
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
ArgName);
PrintedArg = true;
++Idx;
}
}
} else {
// Loop over the arguments, printing them.
FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
unsigned Idx = 1;
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
++Idx;
}
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(ArgTy->isPointerTy());
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
PrintedArg = true;
++Idx;
}
}
if (!PrintedArg && FT->isVarArg()) {
FunctionInnards << "int vararg_dummy_arg";
PrintedArg = true;
}
// Finish printing arguments... if this is a vararg function, print the ...,
// unless there are no known types, in which case, we just emit ().
//
if (FT->isVarArg() && PrintedArg) {
FunctionInnards << ",..."; // Output varargs portion of signature!
} else if (!FT->isVarArg() && !PrintedArg) {
FunctionInnards << "void"; // ret() -> ret(void) in C.
}
FunctionInnards << ')';
// Get the return tpe for the function.
Type *RetTy;
if (!isStructReturn)
RetTy = F->getReturnType();
else {
// If this is a struct-return function, print the struct-return type.
RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
}
// Print out the return type and the signature built above.
printType(Out, RetTy,
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
FunctionInnards.str());
}
static inline bool isFPIntBitCast(const Instruction &I) {
if (!isa<BitCastInst>(I))
return false;
Type *SrcTy = I.getOperand(0)->getType();
Type *DstTy = I.getType();
return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
(DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
}
void CWriter::printFunction(Function &F) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F.hasStructRetAttr();
printFunctionSignature(&F, false);
Out << " {\n";
// If this is a struct return function, handle the result with magic.
if (isStructReturn) {
Type *StructTy =
cast<PointerType>(F.arg_begin()->getType())->getElementType();
Out << " ";
printType(Out, StructTy, false, "StructReturn");
Out << "; /* Struct return temporary */\n";
Out << " ";
printType(Out, F.arg_begin()->getType(), false,
GetValueName(F.arg_begin()));
Out << " = &StructReturn;\n";
}
bool PrintedVar = false;
// print local variable information for the function
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
if (const AllocaInst *AI = isDirectAlloca(&*I)) {
Out << " ";
printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
Out << "; /* Address-exposed local */\n";
PrintedVar = true;
} else if (I->getType() != Type::getVoidTy(F.getContext()) &&
!isInlinableInst(*I)) {
Out << " ";
printType(Out, I->getType(), false, GetValueName(&*I));
Out << ";\n";
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
Out << " ";
printType(Out, I->getType(), false,
GetValueName(&*I)+"__PHI_TEMPORARY");
Out << ";\n";
}
PrintedVar = true;
}
// We need a temporary for the BitCast to use so it can pluck a value out
// of a union to do the BitCast. This is separate from the need for a
// variable to hold the result of the BitCast.
if (isFPIntBitCast(*I)) {
Out << " llvmBitCastUnion " << GetValueName(&*I)
<< "__BITCAST_TEMPORARY;\n";
PrintedVar = true;
}
}
if (PrintedVar)
Out << '\n';
if (F.hasExternalLinkage() && F.getName() == "main")
Out << " CODE_FOR_MAIN();\n";
// print the basic blocks
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (Loop *L = LI->getLoopFor(BB)) {
if (L->getHeader() == BB && L->getParentLoop() == 0)
printLoop(L);
} else {
printBasicBlock(BB);
}
}
Out << "}\n\n";
}
void CWriter::printLoop(Loop *L) {
Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
<< "' to make GCC happy */\n";
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
BasicBlock *BB = L->getBlocks()[i];
Loop *BBLoop = LI->getLoopFor(BB);
if (BBLoop == L)
printBasicBlock(BB);
else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
printLoop(BBLoop);
}
Out << " } while (1); /* end of syntactic loop '"
<< L->getHeader()->getName() << "' */\n";
}
void CWriter::printBasicBlock(BasicBlock *BB) {
// Don't print the label for the basic block if there are no uses, or if
// the only terminator use is the predecessor basic block's terminator.
// We have to scan the use list because PHI nodes use basic blocks too but
// do not require a label to be generated.
//
bool NeedsLabel = false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (isGotoCodeNecessary(*PI, BB)) {
NeedsLabel = true;
break;
}
if (NeedsLabel) Out << GetValueName(BB) << ":\n";
// Output all of the instructions in the basic block...
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
++II) {
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
if (II->getType() != Type::getVoidTy(BB->getContext()) &&
!isInlineAsm(*II))
outputLValue(II);
else
Out << " ";
writeInstComputationInline(*II);
Out << ";\n";
}
}
// Don't emit prefix or suffix for the terminator.
visit(*BB->getTerminator());
}
// Specific Instruction type classes... note that all of the casts are
// necessary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
// If this is a struct return function, return the temporary struct.
bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
if (isStructReturn) {
Out << " return StructReturn;\n";
return;
}
// Don't output a void return if this is the last basic block in the function
if (I.getNumOperands() == 0 &&
&*--I.getParent()->getParent()->end() == I.getParent() &&
!I.getParent()->size() == 1) {
return;
}
Out << " return";
if (I.getNumOperands()) {
Out << ' ';
writeOperand(I.getOperand(0));
}
Out << ";\n";
}
void CWriter::visitSwitchInst(SwitchInst &SI) {
Value* Cond = SI.getCondition();
Out << " switch (";
writeOperand(Cond);
Out << ") {\n default:\n";
printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
Out << ";\n";
unsigned NumCases = SI.getNumCases();
// Skip the first item since that's the default case.
for (unsigned i = 1; i < NumCases; ++i) {
ConstantInt* CaseVal = SI.getCaseValue(i);
BasicBlock* Succ = SI.getSuccessor(i);
Out << " case ";
writeOperand(CaseVal);
Out << ":\n";
printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
printBranchToBlock(SI.getParent(), Succ, 2);
if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent())))
Out << " break;\n";
}
Out << " }\n";
}
void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
Out << " goto *(void*)(";
writeOperand(IBI.getOperand(0));
Out << ");\n";
}
void CWriter::visitUnreachableInst(UnreachableInst &I) {
Out << " /*UNREACHABLE*/;\n";
}
bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
/// FIXME: This should be reenabled, but loop reordering safe!!
return true;
if (llvm::next(Function::iterator(From)) != Function::iterator(To))
return true; // Not the direct successor, we need a goto.
//isa<SwitchInst>(From->getTerminator())
if (LI->getLoopFor(From) != LI->getLoopFor(To))
return true;
return false;
}
void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
BasicBlock *Successor,
unsigned Indent) {
for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// Now we have to do the printing.
Value *IV = PN->getIncomingValueForBlock(CurBlock);
if (!isa<UndefValue>(IV)) {
Out << std::string(Indent, ' ');
Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
writeOperand(IV);
Out << "; /* for PHI node */\n";
}
}
}
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
unsigned Indent) {
if (isGotoCodeNecessary(CurBB, Succ)) {
Out << std::string(Indent, ' ') << " goto ";
writeOperand(Succ);
Out << ";\n";
}
}
// Branch instruction printing - Avoid printing out a branch to a basic block
// that immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
if (I.isConditional()) {
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
Out << " if (";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
Out << " } else {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
} else {
// First goto not necessary, assume second one is...
Out << " if (!";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
Out << " }\n";
} else {
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
}
Out << "\n";
}
// PHI nodes get copied into temporary values at the end of predecessor basic
// blocks. We now need to copy these temporary values into the REAL value for
// the PHI.
void CWriter::visitPHINode(PHINode &I) {
writeOperand(&I);
Out << "__PHI_TEMPORARY";
}
void CWriter::visitBinaryOperator(Instruction &I) {
// binary instructions, shift instructions, setCond instructions.
assert(!I.getType()->isPointerTy());
// We must cast the results of binary operations which might be promoted.
bool needsCast = false;
if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
(I.getType() == Type::getInt16Ty(I.getContext()))
|| (I.getType() == Type::getFloatTy(I.getContext()))) {
needsCast = true;
Out << "((";
printType(Out, I.getType(), false);
Out << ")(";
}
// If this is a negation operation, print it out as such. For FP, we don't
// want to print "-0.0 - X".
if (BinaryOperator::isNeg(&I)) {
Out << "-(";
writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
Out << ")";
} else if (BinaryOperator::isFNeg(&I)) {
Out << "-(";
writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
Out << ")";
} else if (I.getOpcode() == Instruction::FRem) {
// Output a call to fmod/fmodf instead of emitting a%b
if (I.getType() == Type::getFloatTy(I.getContext()))
Out << "fmodf(";
else if (I.getType() == Type::getDoubleTy(I.getContext()))
Out << "fmod(";
else // all 3 flavors of long double
Out << "fmodl(";
writeOperand(I.getOperand(0));
Out << ", ";
writeOperand(I.getOperand(1));
Out << ")";
} else {
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain instructions require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I.getOpcode());
switch (I.getOpcode()) {
case Instruction::Add:
case Instruction::FAdd: Out << " + "; break;
case Instruction::Sub:
case Instruction::FSub: Out << " - "; break;
case Instruction::Mul:
case Instruction::FMul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl : Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
default:
#ifndef NDEBUG
errs() << "Invalid operator type!" << I;
#endif
llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I.getOpcode());
if (NeedsClosingParens)
Out << "))";
}
if (needsCast) {
Out << "))";
}
}
void CWriter::visitICmpInst(ICmpInst &I) {
// We must cast the results of icmp which might be promoted.
bool needsCast = false;
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain icmp predicate require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I);
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE: Out << " <= "; break;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE: Out << " >= "; break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT: Out << " < "; break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: Out << " > "; break;
default:
#ifndef NDEBUG
errs() << "Invalid icmp predicate!" << I;
#endif
llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I);
if (NeedsClosingParens)
Out << "))";
if (needsCast) {
Out << "))";
}
}
void CWriter::visitFCmpInst(FCmpInst &I) {
if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
Out << "0";
return;
}
if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
Out << "1";
return;
}
const char* op = 0;
switch (I.getPredicate()) {
default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
// Write the first operand
writeOperand(I.getOperand(0));
Out << ", ";
// Write the second operand
writeOperand(I.getOperand(1));
Out << ")";
}
static const char * getFloatBitCastField(Type *Ty) {
switch (Ty->getTypeID()) {
default: llvm_unreachable("Invalid Type");
case Type::FloatTyID: return "Float";
case Type::DoubleTyID: return "Double";
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits <= 32)
return "Int32";
else
return "Int64";
}
}
}
void CWriter::visitCastInst(CastInst &I) {
Type *DstTy = I.getType();
Type *SrcTy = I.getOperand(0)->getType();
if (isFPIntBitCast(I)) {
Out << '(';
// These int<->float and long<->double casts need to be handled specially
Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
writeOperand(I.getOperand(0));
Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getType());
Out << ')';
return;
}
Out << '(';
printCast(I.getOpcode(), SrcTy, DstTy);
// Make a sext from i1 work by subtracting the i1 from 0 (an int).
if (SrcTy == Type::getInt1Ty(I.getContext()) &&
I.getOpcode() == Instruction::SExt)
Out << "0-";
writeOperand(I.getOperand(0));
if (DstTy == Type::getInt1Ty(I.getContext()) &&
(I.getOpcode() == Instruction::Trunc ||
I.getOpcode() == Instruction::FPToUI ||
I.getOpcode() == Instruction::FPToSI ||
I.getOpcode() == Instruction::PtrToInt)) {
// Make sure we really get a trunc to bool by anding the operand with 1
Out << "&1u";
}
Out << ')';
}
void CWriter::visitSelectInst(SelectInst &I) {
Out << "((";
writeOperand(I.getCondition());
Out << ") ? (";
writeOperand(I.getTrueValue());
Out << ") : (";
writeOperand(I.getFalseValue());
Out << "))";
}
// Returns the macro name or value of the max or min of an integer type
// (as defined in limits.h).
static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax,
raw_ostream &Out) {
const char* type;
const char* sprefix = "";
unsigned NumBits = Ty.getBitWidth();
if (NumBits <= 8) {
type = "CHAR";
sprefix = "S";
} else if (NumBits <= 16) {
type = "SHRT";
} else if (NumBits <= 32) {
type = "INT";
} else if (NumBits <= 64) {
type = "LLONG";
} else {
llvm_unreachable("Bit widths > 64 not implemented yet");
}
if (isSigned)
Out << sprefix << type << (isMax ? "_MAX" : "_MIN");
else
Out << "U" << type << (isMax ? "_MAX" : "0");
}
#ifndef NDEBUG
static bool isSupportedIntegerSize(IntegerType &T) {
return T.getBitWidth() == 8 || T.getBitWidth() == 16 ||
T.getBitWidth() == 32 || T.getBitWidth() == 64;
}
#endif
void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) {
FunctionType *funT = F.getFunctionType();
Type *retT = F.getReturnType();
IntegerType *elemT = cast<IntegerType>(funT->getParamType(1));
assert(isSupportedIntegerSize(*elemT) &&
"CBackend does not support arbitrary size integers.");
assert(cast<StructType>(retT)->getElementType(0) == elemT &&
elemT == funT->getParamType(0) && funT->getNumParams() == 2);
switch (F.getIntrinsicID()) {
default:
llvm_unreachable("Unsupported Intrinsic.");
case Intrinsic::uadd_with_overflow:
// static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) {
// Rty r;
// r.field0 = a + b;
// r.field1 = (r.field0 < a);
// return r;
// }
Out << "static inline ";
printType(Out, retT);
Out << GetValueName(&F);
Out << "(";
printSimpleType(Out, elemT, false);
Out << "a,";
printSimpleType(Out, elemT, false);
Out << "b) {\n ";
printType(Out, retT);
Out << "r;\n";
Out << " r.field0 = a + b;\n";
Out << " r.field1 = (r.field0 < a);\n";
Out << " return r;\n}\n";
break;
case Intrinsic::sadd_with_overflow:
// static inline Rty sadd_ixx(ixx a, ixx b) {
// Rty r;
// r.field1 = (b > 0 && a > XX_MAX - b) ||
// (b < 0 && a < XX_MIN - b);
// r.field0 = r.field1 ? 0 : a + b;
// return r;
// }
Out << "static ";
printType(Out, retT);
Out << GetValueName(&F);
Out << "(";
printSimpleType(Out, elemT, true);
Out << "a,";
printSimpleType(Out, elemT, true);
Out << "b) {\n ";
printType(Out, retT);
Out << "r;\n";
Out << " r.field1 = (b > 0 && a > ";
printLimitValue(*elemT, true, true, Out);
Out << " - b) || (b < 0 && a < ";
printLimitValue(*elemT, true, false, Out);
Out << " - b);\n";
Out << " r.field0 = r.field1 ? 0 : a + b;\n";
Out << " return r;\n}\n";
break;
}
}
void CWriter::lowerIntrinsics(Function &F) {
// This is used to keep track of intrinsics that get generated to a lowered
// function. We must generate the prototypes before the function body which
// will only be expanded on first use (by the loop below).
std::vector<Function*> prototypesToGen;
// Examine all the instructions in this function to find the intrinsics that
// need to be lowered.
for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
case Intrinsic::vastart:
case Intrinsic::vacopy:
case Intrinsic::vaend:
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
case Intrinsic::setjmp:
case Intrinsic::longjmp:
case Intrinsic::prefetch:
case Intrinsic::powi:
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
case Intrinsic::x86_sse2_cmp_sd:
case Intrinsic::x86_sse2_cmp_pd:
case Intrinsic::ppc_altivec_lvsl:
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
// We directly implement these intrinsics
break;
default:
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we handle it.
const char *BuiltinName = "";
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
// If we handle it, don't lower it.
if (BuiltinName[0]) break;
// All other intrinsic calls we must lower.
Instruction *Before = 0;
if (CI != &BB->front())
Before = prior(BasicBlock::iterator(CI));
IL->LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
// If the intrinsic got lowered to another call, and that call has
// a definition then we need to make sure its prototype is emitted
// before any calls to it.
if (CallInst *Call = dyn_cast<CallInst>(I))
if (Function *NewF = Call->getCalledFunction())
if (!NewF->isDeclaration())
prototypesToGen.push_back(NewF);
break;
}
// We may have collected some prototypes to emit in the loop above.
// Emit them now, before the function that uses them is emitted. But,
// be careful not to emit them twice.
std::vector<Function*>::iterator I = prototypesToGen.begin();
std::vector<Function*>::iterator E = prototypesToGen.end();
for ( ; I != E; ++I) {
if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
Out << '\n';
printFunctionSignature(*I, true);
Out << ";\n";
}
}
}
void CWriter::visitCallInst(CallInst &I) {
if (isa<InlineAsm>(I.getCalledValue()))
return visitInlineAsm(I);
bool WroteCallee = false;
// Handle intrinsic function calls first...
if (Function *F = I.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
if (visitBuiltinCall(I, ID, WroteCallee))
return;
Value *Callee = I.getCalledValue();
PointerType *PTy = cast<PointerType>(Callee->getType());
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
// If this is a call to a struct-return function, assign to the first
// parameter instead of passing it to the call.
const AttrListPtr &PAL = I.getAttributes();
bool hasByVal = I.hasByValArgument();
bool isStructRet = I.hasStructRetAttr();
if (isStructRet) {
writeOperandDeref(I.getArgOperand(0));
Out << " = ";
}
if (I.isTailCall()) Out << " /*tail*/ ";
if (!WroteCallee) {
// If this is an indirect call to a struct return function, we need to cast
// the pointer. Ditto for indirect calls with byval arguments.
bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
// GCC is a real PITA. It does not permit codegening casts of functions to
// function pointers if they are in a call (it generates a trap instruction
// instead!). We work around this by inserting a cast to void* in between
// the function and the function pointer cast. Unfortunately, we can't just
// form the constant expression here, because the folder will immediately
// nuke it.
//
// Note finally, that this is completely unsafe. ANSI C does not guarantee
// that void* and function pointers have the same size. :( To deal with this
// in the common case, we handle casts where the number of arguments passed
// match exactly.
//
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
if (CE->isCast())
if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
NeedsCast = true;
Callee = RF;
}
if (NeedsCast) {
// Ok, just cast the pointer type.
Out << "((";
if (isStructRet)
printStructReturnPointerFunctionType(Out, PAL,
cast<PointerType>(I.getCalledValue()->getType()));
else if (hasByVal)
printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
else
printType(Out, I.getCalledValue()->getType());
Out << ")(void*)";
}
writeOperand(Callee);
if (NeedsCast) Out << ')';
}
Out << '(';
bool PrintedArg = false;
if(FTy->isVarArg() && !FTy->getNumParams()) {
Out << "0 /*dummy arg*/";
PrintedArg = true;
}
unsigned NumDeclaredParams = FTy->getNumParams();
CallSite CS(&I);
CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
unsigned ArgNo = 0;
if (isStructRet) { // Skip struct return argument.
++AI;
++ArgNo;
}
for (; AI != AE; ++AI, ++ArgNo) {
if (PrintedArg) Out << ", ";
if (ArgNo < NumDeclaredParams &&
(*AI)->getType() != FTy->getParamType(ArgNo)) {
Out << '(';
printType(Out, FTy->getParamType(ArgNo),
/*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
Out << ')';
}
// Check if the argument is expected to be passed by value.
if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
writeOperandDeref(*AI);
else
writeOperand(*AI);
PrintedArg = true;
}
Out << ')';
}
/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
/// if the entire call is handled, return false if it wasn't handled, and
/// optionally set 'WroteCallee' if the callee has already been printed out.
bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
bool &WroteCallee) {
switch (ID) {
default: {
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we emit it here.
const char *BuiltinName = "";
Function *F = I.getCalledFunction();
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
Out << BuiltinName;
WroteCallee = true;
return false;
}
case Intrinsic::vastart:
Out << "0; ";
Out << "va_start(*(va_list*)";
writeOperand(I.getArgOperand(0));
Out << ", ";
// Output the last argument to the enclosing function.
if (I.getParent()->getParent()->arg_empty())
Out << "vararg_dummy_arg";
else
writeOperand(--I.getParent()->getParent()->arg_end());
Out << ')';
return true;
case Intrinsic::vaend:
if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
Out << "0; va_end(*(va_list*)";
writeOperand(I.getArgOperand(0));
Out << ')';
} else {
Out << "va_end(*(va_list*)0)";
}
return true;
case Intrinsic::vacopy:
Out << "0; ";
Out << "va_copy(*(va_list*)";
writeOperand(I.getArgOperand(0));
Out << ", *(va_list*)";
writeOperand(I.getArgOperand(1));
Out << ')';
return true;
case Intrinsic::returnaddress:
Out << "__builtin_return_address(";
writeOperand(I.getArgOperand(0));
Out << ')';
return true;
case Intrinsic::frameaddress:
Out << "__builtin_frame_address(";
writeOperand(I.getArgOperand(0));
Out << ')';
return true;
case Intrinsic::powi:
Out << "__builtin_powi(";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ')';
return true;
case Intrinsic::setjmp:
Out << "setjmp(*(jmp_buf*)";
writeOperand(I.getArgOperand(0));
Out << ')';
return true;
case Intrinsic::longjmp:
Out << "longjmp(*(jmp_buf*)";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ')';
return true;
case Intrinsic::prefetch:
Out << "LLVM_PREFETCH((const void *)";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ", ";
writeOperand(I.getArgOperand(2));
Out << ")";
return true;
case Intrinsic::stacksave:
// Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
// to work around GCC bugs (see PR1809).
Out << "0; *((void**)&" << GetValueName(&I)
<< ") = __builtin_stack_save()";
return true;
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
case Intrinsic::x86_sse2_cmp_sd:
case Intrinsic::x86_sse2_cmp_pd:
Out << '(';
printType(Out, I.getType());
Out << ')';
// Multiple GCC builtins multiplex onto this intrinsic.
switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
case 0: Out << "__builtin_ia32_cmpeq"; break;
case 1: Out << "__builtin_ia32_cmplt"; break;
case 2: Out << "__builtin_ia32_cmple"; break;
case 3: Out << "__builtin_ia32_cmpunord"; break;
case 4: Out << "__builtin_ia32_cmpneq"; break;
case 5: Out << "__builtin_ia32_cmpnlt"; break;
case 6: Out << "__builtin_ia32_cmpnle"; break;
case 7: Out << "__builtin_ia32_cmpord"; break;
}
if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
Out << 'p';
else
Out << 's';
if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
Out << 's';
else
Out << 'd';
Out << "(";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ")";
return true;
case Intrinsic::ppc_altivec_lvsl:
Out << '(';
printType(Out, I.getType());
Out << ')';
Out << "__builtin_altivec_lvsl(0, (void*)";
writeOperand(I.getArgOperand(0));
Out << ")";
return true;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
Out << GetValueName(I.getCalledFunction()) << "(";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ")";
return true;
}
}
//This converts the llvm constraint string to something gcc is expecting.
//TODO: work out platform independent constraints and factor those out
// of the per target tables
// handle multiple constraint codes
std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
// Grab the translation table from MCAsmInfo if it exists.
const MCAsmInfo *TargetAsm;
std::string Triple = TheModule->getTargetTriple();
if (Triple.empty())
Triple = llvm::sys::getHostTriple();
std::string E;
if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
TargetAsm = Match->createMCAsmInfo(Triple);
else
return c.Codes[0];
const char *const *table = TargetAsm->getAsmCBE();
// Search the translation table if it exists.
for (int i = 0; table && table[i]; i += 2)
if (c.Codes[0] == table[i]) {
delete TargetAsm;
return table[i+1];
}
// Default is identity.
delete TargetAsm;
return c.Codes[0];
}
//TODO: import logic from AsmPrinter.cpp
static std::string gccifyAsm(std::string asmstr) {
for (std::string::size_type i = 0; i != asmstr.size(); ++i)
if (asmstr[i] == '\n')
asmstr.replace(i, 1, "\\n");
else if (asmstr[i] == '\t')
asmstr.replace(i, 1, "\\t");
else if (asmstr[i] == '$') {
if (asmstr[i + 1] == '{') {
std::string::size_type a = asmstr.find_first_of(':', i + 1);
std::string::size_type b = asmstr.find_first_of('}', i + 1);
std::string n = "%" +
asmstr.substr(a + 1, b - a - 1) +
asmstr.substr(i + 2, a - i - 2);
asmstr.replace(i, b - i + 1, n);
i += n.size() - 1;
} else
asmstr.replace(i, 1, "%");
}
else if (asmstr[i] == '%')//grr
{ asmstr.replace(i, 1, "%%"); ++i;}
return asmstr;
}
//TODO: assumptions about what consume arguments from the call are likely wrong
// handle communitivity
void CWriter::visitInlineAsm(CallInst &CI) {
InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
std::vector<std::pair<Value*, int> > ResultVals;
if (CI.getType() == Type::getVoidTy(CI.getContext()))
;
else if (StructType *ST = dyn_cast<StructType>(CI.getType())) {
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
ResultVals.push_back(std::make_pair(&CI, (int)i));
} else {
ResultVals.push_back(std::make_pair(&CI, -1));
}
// Fix up the asm string for gcc and emit it.
Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
Out << " :";
unsigned ValueCount = 0;
bool IsFirst = true;
// Convert over all the output constraints.
for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isOutput) {
++ValueCount;
continue; // Ignore non-output constraints.
}
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
// Unpack the dest.
Value *DestVal;
int DestValNo = -1;
if (ValueCount < ResultVals.size()) {
DestVal = ResultVals[ValueCount].first;
DestValNo = ResultVals[ValueCount].second;
} else
DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
if (I->isEarlyClobber)
C = "&"+C;
Out << "\"=" << C << "\"(" << GetValueName(DestVal);
if (DestValNo != -1)
Out << ".field" << DestValNo; // Multiple retvals.
Out << ")";
++ValueCount;
}
// Convert over all the input constraints.
Out << "\n :";
IsFirst = true;
ValueCount = 0;
for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isInput) {
++ValueCount;
continue; // Ignore non-input constraints.
}
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
Out << "\"" << C << "\"(";
if (!I->isIndirect)
writeOperand(SrcVal);
else
writeOperandDeref(SrcVal);
Out << ")";
}
// Convert over the clobber constraints.
IsFirst = true;
for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isClobber)
continue; // Ignore non-input constraints.
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
Out << '\"' << C << '"';
}
Out << ")";
}
void CWriter::visitAllocaInst(AllocaInst &I) {
Out << '(';
printType(Out, I.getType());
Out << ") alloca(sizeof(";
printType(Out, I.getType()->getElementType());
Out << ')';
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ')';
}
void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E, bool Static) {
// If there are no indices, just print out the pointer.
if (I == E) {
writeOperand(Ptr);
return;
}
// Find out if the last index is into a vector. If so, we have to print this
// specially. Since vectors can't have elements of indexable type, only the
// last index could possibly be of a vector element.
VectorType *LastIndexIsVector = 0;
{
for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
}
Out << "(";
// If the last index is into a vector, we can't print it as &a[i][j] because
// we can't index into a vector with j in GCC. Instead, emit this as
// (((float*)&a[i])+j)
if (LastIndexIsVector) {
Out << "((";
printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
Out << ")(";
}
Out << '&';
// If the first index is 0 (very typical) we can do a number of
// simplifications to clean up the code.
Value *FirstOp = I.getOperand();
if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
// First index isn't simple, print it the hard way.
writeOperand(Ptr);
} else {
++I; // Skip the zero index.
// Okay, emit the first operand. If Ptr is something that is already address
// exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
if (isAddressExposed(Ptr)) {
writeOperandInternal(Ptr, Static);
} else if (I != E && (*I)->isStructTy()) {
// If we didn't already emit the first operand, see if we can print it as
// P->f instead of "P[0].f"
writeOperand(Ptr);
Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
++I; // eat the struct index as well.
} else {
// Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
Out << "(*";
writeOperand(Ptr);
Out << ")";
}
}
for (; I != E; ++I) {
if ((*I)->isStructTy()) {
Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
} else if ((*I)->isArrayTy()) {
Out << ".array[";
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << ']';
} else if (!(*I)->isVectorTy()) {
Out << '[';
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << ']';
} else {
// If the last index is into a vector, then print it out as "+j)". This
// works with the 'LastIndexIsVector' code above.
if (isa<Constant>(I.getOperand()) &&
cast<Constant>(I.getOperand())->isNullValue()) {
Out << "))"; // avoid "+0".
} else {
Out << ")+(";
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << "))";
}
}
}
Out << ")";
}
void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType,
bool IsVolatile, unsigned Alignment) {
bool IsUnaligned = Alignment &&
Alignment < TD->getABITypeAlignment(OperandType);
if (!IsUnaligned)
Out << '*';
if (IsVolatile || IsUnaligned) {
Out << "((";
if (IsUnaligned)
Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
if (IsUnaligned) {
Out << "; } ";
if (IsVolatile) Out << "volatile ";
Out << "*";
}
Out << ")";
}
writeOperand(Operand);
if (IsVolatile || IsUnaligned) {
Out << ')';
if (IsUnaligned)
Out << "->data";
}
}
void CWriter::visitLoadInst(LoadInst &I) {
writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
I.getAlignment());
}
void CWriter::visitStoreInst(StoreInst &I) {
writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
I.isVolatile(), I.getAlignment());
Out << " = ";
Value *Operand = I.getOperand(0);
Constant *BitMask = 0;
if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
if (!ITy->isPowerOf2ByteWidth())
// We have a bit width that doesn't match an even power-of-2 byte
// size. Consequently we must & the value with the type's bit mask
BitMask = ConstantInt::get(ITy, ITy->getBitMask());
if (BitMask)
Out << "((";
writeOperand(Operand);
if (BitMask) {
Out << ") & ";
printConstant(BitMask, false);
Out << ")";
}
}
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
gep_type_end(I), false);
}
void CWriter::visitVAArgInst(VAArgInst &I) {
Out << "va_arg(*(va_list*)";
writeOperand(I.getOperand(0));
Out << ", ";
printType(Out, I.getType());
Out << ");\n ";
}
void CWriter::visitInsertElementInst(InsertElementInst &I) {
Type *EltTy = I.getType()->getElementType();
writeOperand(I.getOperand(0));
Out << ";\n ";
Out << "((";
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(&I) << "))[";
writeOperand(I.getOperand(2));
Out << "] = (";
writeOperand(I.getOperand(1));
Out << ")";
}
void CWriter::visitExtractElementInst(ExtractElementInst &I) {
// We know that our operand is not inlined.
Out << "((";
Type *EltTy =
cast<VectorType>(I.getOperand(0)->getType())->getElementType();
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
writeOperand(I.getOperand(1));
Out << "]";
}
void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
Out << "(";
printType(Out, SVI.getType());
Out << "){ ";
VectorType *VT = SVI.getType();
unsigned NumElts = VT->getNumElements();
Type *EltTy = VT->getElementType();
for (unsigned i = 0; i != NumElts; ++i) {
if (i) Out << ", ";
int SrcVal = SVI.getMaskValue(i);
if ((unsigned)SrcVal >= NumElts*2) {
Out << " 0/*undef*/ ";
} else {
Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
if (isa<Instruction>(Op)) {
// Do an extractelement of this value from the appropriate input.
Out << "((";
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(Op)
<< "))[" << (SrcVal & (NumElts-1)) << "]";
} else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
Out << "0";
} else {
printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
(NumElts-1)),
false);
}
}
}
Out << "}";
}
void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
// Start by copying the entire aggregate value into the result variable.
writeOperand(IVI.getOperand(0));
Out << ";\n ";
// Then do the insert to update the field.
Out << GetValueName(&IVI);
for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
i != e; ++i) {
Type *IndexedTy =
ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(),
makeArrayRef(b, i+1));
if (IndexedTy->isArrayTy())
Out << ".array[" << *i << "]";
else
Out << ".field" << *i;
}
Out << " = ";
writeOperand(IVI.getOperand(1));
}
void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
Out << "(";
if (isa<UndefValue>(EVI.getOperand(0))) {
Out << "(";
printType(Out, EVI.getType());
Out << ") 0/*UNDEF*/";
} else {
Out << GetValueName(EVI.getOperand(0));
for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
i != e; ++i) {
Type *IndexedTy =
ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(),
makeArrayRef(b, i+1));
if (IndexedTy->isArrayTy())
Out << ".array[" << *i << "]";
else
Out << ".field" << *i;
}
}
Out << ")";
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
formatted_raw_ostream &o,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel,
bool DisableVerify) {
if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
PM.add(createGCLoweringPass());
PM.add(createLowerInvokePass());
PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
PM.add(new CWriter(o));
PM.add(createGCInfoDeleter());
return false;
}
|