1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
//===- MBlazeSchedule5.td - MBlaze Scheduling Definitions --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MBlaze instruction itineraries for the five stage pipeline.
//===----------------------------------------------------------------------===//
def MBlazePipe5Itineraries : ProcessorItineraries<
[IF,ID,EX,MA,WB], [], [
// ALU instruction with one destination register and either two register
// source operands or one register source operand and one immediate operand.
// The instruction takes one cycle to execute in each of the stages. The
// two source operands are read during the decode stage and the result is
// ready after the execute stage.
InstrItinData< IIC_ALU,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 2 // result ready after two cycles
, 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// ALU multiply instruction with one destination register and either two
// register source operands or one register source operand and one immediate
// operand. The instruction takes one cycle to execute in each of the
// pipeline stages. The two source operands are read during the decode stage
// and the result is ready after the execute stage.
InstrItinData< IIC_ALUm,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 2 // result ready after two cycles
, 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// ALU divide instruction with one destination register two register source
// operands. The instruction takes one cycle to execute in each the pipeline
// stages except the memory access stage, which takes 31 cycles. The two
// source operands are read during the decode stage and the result is ready
// after the memory access stage.
InstrItinData< IIC_ALUd,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<31,[MA]> // 31 cycles in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 33 // result ready after 33 cycles
, 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// Shift instruction with one destination register and either two register
// source operands or one register source operand and one immediate operand.
// The instruction takes one cycle to execute in each of the pipeline stages.
// The two source operands are read during the decode stage and the result is
// ready after the memory access stage.
InstrItinData< IIC_SHT,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 3 // result ready after three cycles
, 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// Branch instruction with one source operand register. The instruction takes
// one cycle to execute in each of the pipeline stages. The source operand is
// read during the decode stage.
InstrItinData< IIC_BR,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 1 ]>, // first operand read after one cycle
// Conditional branch instruction with two source operand registers. The
// instruction takes one cycle to execute in each of the pipeline stages. The
// two source operands are read during the decode stage.
InstrItinData< IIC_BRc,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// Branch and link instruction with one destination register and one source
// operand register. The instruction takes one cycle to execute in each of
// the pipeline stages. The source operand is read during the decode stage
// and the destination register is ready after the writeback stage.
InstrItinData< IIC_BRl,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 4 // result ready after four cycles
, 1 ]>, // first operand read after one cycle
// Cache control instruction with two source operand registers. The
// instruction takes one cycle to execute in each of the pipeline stages
// except the memory access stage, which takes two cycles. The source
// operands are read during the decode stage.
InstrItinData< IIC_WDC,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<2,[MA]> // two cycles in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// Floating point instruction with one destination register and two source
// operand registers. The instruction takes one cycle to execute in each of
// the pipeline stages except the memory access stage, which takes two
// cycles. The source operands are read during the decode stage and the
// results are ready after the writeback stage.
InstrItinData< IIC_FPU,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<2,[MA]> // two cycles in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 5 // result ready after five cycles
, 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// Floating point divide instruction with one destination register and two
// source operand registers. The instruction takes one cycle to execute in
// each of the pipeline stages except the memory access stage, which takes 26
// cycles. The source operands are read during the decode stage and the
// results are ready after the writeback stage.
InstrItinData< IIC_FPUd,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<26,[MA]> // 26 cycles in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 29 // result ready after 29 cycles
, 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// Convert floating point to integer instruction with one destination
// register and one source operand register. The instruction takes one cycle
// to execute in each of the pipeline stages except the memory access stage,
// which takes three cycles. The source operands are read during the decode
// stage and the results are ready after the writeback stage.
InstrItinData< IIC_FPUi,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<3,[MA]> // three cycles in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 6 // result ready after six cycles
, 1 ]>, // first operand read after one cycle
// Convert integer to floating point instruction with one destination
// register and one source operand register. The instruction takes one cycle
// to execute in each of the pipeline stages except the memory access stage,
// which takes two cycles. The source operands are read during the decode
// stage and the results are ready after the writeback stage.
InstrItinData< IIC_FPUf,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<2,[MA]> // two cycles in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 5 // result ready after five cycles
, 1 ]>, // first operand read after one cycle
// Floating point square root instruction with one destination register and
// one source operand register. The instruction takes one cycle to execute in
// each of the pipeline stages except the memory access stage, which takes 25
// cycles. The source operands are read during the decode stage and the
// results are ready after the writeback stage.
InstrItinData< IIC_FPUs,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<25,[MA]> // 25 cycles in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 28 // result ready after 28 cycles
, 1 ]>, // first operand read after one cycle
// Floating point comparison instruction with one destination register and
// two source operand registers. The instruction takes one cycle to execute
// in each of the pipeline stages. The source operands are read during the
// decode stage and the results are ready after the execute stage.
InstrItinData< IIC_FPUc,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 2 // result ready after two cycles
, 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// FSL get instruction with one register or immediate source operand and one
// destination register. The instruction takes one cycle to execute in each
// of the pipeline stages. The one source operand is read during the decode
// stage and the result is ready after the execute stage.
InstrItinData< IIC_FSLg,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 2 // result ready after two cycles
, 1 ]>, // first operand read after one cycle
// FSL put instruction with either two register source operands or one
// register source operand and one immediate operand. There is no result
// produced by the instruction. The instruction takes one cycle to execute in
// each of the pipeline stages. The two source operands are read during the
// decode stage.
InstrItinData< IIC_FSLp,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 1 // first operand read after one cycle
, 1 ]>, // second operand read after one cycle
// Memory store instruction with either three register source operands or two
// register source operands and one immediate operand. There is no result
// produced by the instruction. The instruction takes one cycle to execute in
// each of the pipeline stages. All of the source operands are read during
// the decode stage.
InstrItinData< IIC_MEMs,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 1 // first operand read after one cycle
, 1 // second operand read after one cycle
, 1 ]>, // third operand read after one cycle
// Memory load instruction with one destination register and either two
// register source operands or one register source operand and one immediate
// operand. The instruction takes one cycle to execute in each of the
// pipeline stages. All of the source operands are read during the decode
// stage and the result is ready after the writeback stage.
InstrItinData< IIC_MEMl,
[ InstrStage<1,[IF]> // one cycle in fetch stage
, InstrStage<1,[ID]> // one cycle in decode stage
, InstrStage<1,[EX]> // one cycle in execute stage
, InstrStage<1,[MA]> // one cycle in memory access stage
, InstrStage<1,[WB]>], // one cycle in write back stage
[ 4 // result ready after four cycles
, 1 // second operand read after one cycle
, 1 ]> // third operand read after one cycle
]>;
|