1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
//===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Mips FPU instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
// - 32 64-bit registers (default mode)
// - 16 even 32-bit registers (32-bit compatible mode) for
// single and double access.
// * 32bit fp:
// - 16 even 32-bit registers - single and double (aliased)
// - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//
// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
SDTCisVT<1, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
SDTCisVT<2, i32>]>;
def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisVT<1, f64>,
SDTCisVT<2, i32>]>;
def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
[SDNPHasChain, SDNPOptInGlue]>;
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
SDT_MipsExtractElementF64>;
// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand" in
def condcode : Operand<i32>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
def IsFP64bit : Predicate<"Subtarget.isFP64bit()">;
def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">;
def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address the register usage.
//
// S32 - single precision in 16 32bit even fp registers
// single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//
// Only S32 and D32 are supported right now.
//===----------------------------------------------------------------------===//
// FP load.
class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
Operand MemOpnd>:
FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
!strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (FOp addr:$addr))],
IILoad>;
// FP store.
class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
Operand MemOpnd>:
FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
!strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
IIStore>;
// Instructions that convert an FP value to 32-bit fixed point.
multiclass FFR1_W_M<bits<6> funct, string opstr> {
def _S : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
Requires<[NotFP64bit]>;
def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
Requires<[IsFP64bit]>;
}
// Instructions that convert an FP value to 64-bit fixed point.
let Predicates = [IsFP64bit] in
multiclass FFR1_L_M<bits<6> funct, string opstr> {
def _S : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
}
// FP-to-FP conversion instructions.
multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
def _S : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
Requires<[NotFP64bit]>;
def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
Requires<[IsFP64bit]>;
}
multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
let isCommutable = isComm in {
def _S : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
Requires<[NotFP64bit]>;
def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
Requires<[IsFP64bit]>;
}
}
//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
defm ROUND_W : FFR1_W_M<0xc, "round">;
defm ROUND_L : FFR1_L_M<0x8, "round">;
defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
defm CEIL_W : FFR1_W_M<0xe, "ceil">;
defm CEIL_L : FFR1_L_M<0xa, "ceil">;
defm FLOOR_W : FFR1_W_M<0xf, "floor">;
defm FLOOR_L : FFR1_L_M<0xb, "floor">;
defm CVT_W : FFR1_W_M<0x24, "cvt">;
defm CVT_L : FFR1_L_M<0x25, "cvt">;
def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
let Predicates = [NotFP64bit] in {
def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
}
let Predicates = [IsFP64bit] in {
def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
def CVT_S_L : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
}
defm FABS : FFR1P_M<0x5, "abs", fabs>;
defm FNEG : FFR1P_M<0x7, "neg", fneg>;
defm FSQRT : FFR1P_M<0x4, "sqrt", fsqrt>;
// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.
class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
bits<5> rt;
let ft = rt;
let fd = 0;
}
/// Move Control Registers From/To CPU Registers
def CFC1 : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
"cfc1\t$rt, $fs", []>;
def CTC1 : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
"ctc1\t$rt, $fs", []>;
def MFC1 : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
"mfc1\t$rt, $fs",
[(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
def MTC1 : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
"mtc1\t$rt, $fs",
[(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
def FMOV_S : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
Requires<[NotFP64bit]>;
def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
Requires<[IsFP64bit]>;
/// Floating Point Memory Instructions
let Predicates = [IsN64] in {
def LWC1_P8 : FPLoad<0x31, "lwc1", load, FGR32, mem64>;
def SWC1_P8 : FPStore<0x39, "swc1", store, FGR32, mem64>;
def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>;
def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>;
}
let Predicates = [NotN64] in {
def LWC1 : FPLoad<0x31, "lwc1", load, FGR32, mem>;
def SWC1 : FPStore<0x39, "swc1", store, FGR32, mem>;
let Predicates = [HasMips64] in {
def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>;
def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>;
}
let Predicates = [NotMips64] in {
def LDC1 : FPLoad<0x35, "ldc1", load, AFGR64, mem>;
def SDC1 : FPStore<0x3d, "sdc1", store, AFGR64, mem>;
}
}
/// Floating-point Aritmetic
defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
defm FDIV : FFR2P_M<0x03, "div", fdiv>;
defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
defm FSUB : FFR2P_M<0x01, "sub", fsub>;
//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
/// Floating Point Branch of False/True (Likely)
let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
[(MipsFPBrcond op, bb:$dst)]> {
let Inst{20-18} = 0;
let Inst{17} = nd;
let Inst{16} = tf;
}
def BC1F : FBRANCH<0, 0, MIPS_BRANCH_F, "bc1f">;
def BC1T : FBRANCH<0, 1, MIPS_BRANCH_T, "bc1t">;
//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_FCOND_F : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>;
def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
/// Floating Point Compare
let Defs=[FCR31] in {
def FCMP_S32 : FCC<0x10, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
"c.$cc.s\t$fs, $ft",
[(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>;
def FCMP_D32 : FCC<0x11, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
"c.$cc.d\t$fs, $ft",
[(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>,
Requires<[NotFP64bit]>;
}
// Conditional moves:
// These instructions are expanded in
// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
// conditional move instructions.
// flag:int, data:float
let usesCustomInserter = 1, Constraints = "$F = $dst" in
class CondMovIntFP<RegisterClass RC, bits<5> fmt, bits<6> func,
string instr_asm> :
FFR<0x11, func, fmt, (outs RC:$dst), (ins RC:$T, CPURegs:$cond, RC:$F),
!strconcat(instr_asm, "\t$dst, $T, $cond"), []>;
def MOVZ_S : CondMovIntFP<FGR32, 16, 18, "movz.s">;
def MOVN_S : CondMovIntFP<FGR32, 16, 19, "movn.s">;
let Predicates = [NotFP64bit] in {
def MOVZ_D : CondMovIntFP<AFGR64, 17, 18, "movz.d">;
def MOVN_D : CondMovIntFP<AFGR64, 17, 19, "movn.d">;
}
defm : MovzPats<FGR32, MOVZ_S>;
defm : MovnPats<FGR32, MOVN_S>;
let Predicates = [NotFP64bit] in {
defm : MovzPats<AFGR64, MOVZ_D>;
defm : MovnPats<AFGR64, MOVN_D>;
}
let cc = 0, usesCustomInserter = 1, Uses = [FCR31],
Constraints = "$F = $dst" in {
// flag:float, data:int
class CondMovFPInt<SDNode cmov, bits<1> tf, string instr_asm> :
FCMOV<tf, (outs CPURegs:$dst), (ins CPURegs:$T, CPURegs:$F),
!strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
[(set CPURegs:$dst, (cmov CPURegs:$T, CPURegs:$F))]>;
// flag:float, data:float
let cc = 0 in
class CondMovFPFP<RegisterClass RC, SDNode cmov, bits<5> fmt, bits<1> tf,
string instr_asm> :
FFCMOV<fmt, tf, (outs RC:$dst), (ins RC:$T, RC:$F),
!strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
[(set RC:$dst, (cmov RC:$T, RC:$F))]>;
}
def MOVT : CondMovFPInt<MipsCMovFP_T, 1, "movt">;
def MOVF : CondMovFPInt<MipsCMovFP_F, 0, "movf">;
def MOVT_S : CondMovFPFP<FGR32, MipsCMovFP_T, 16, 1, "movt.s">;
def MOVF_S : CondMovFPFP<FGR32, MipsCMovFP_F, 16, 0, "movf.s">;
let Predicates = [NotFP64bit] in {
def MOVT_D : CondMovFPFP<AFGR64, MipsCMovFP_T, 17, 1, "movt.d">;
def MOVF_D : CondMovFPFP<AFGR64, MipsCMovFP_F, 17, 0, "movf.d">;
}
//===----------------------------------------------------------------------===//
// Floating Point Pseudo-Instructions
//===----------------------------------------------------------------------===//
def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
"# MOVCCRToCCR", []>;
// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
def BuildPairF64 :
MipsPseudo<(outs AFGR64:$dst),
(ins CPURegs:$lo, CPURegs:$hi), "",
[(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
def ExtractElementF64 :
MipsPseudo<(outs CPURegs:$dst),
(ins AFGR64:$src, i32imm:$n), "",
[(set CPURegs:$dst,
(MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def fpimm0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fpimm0neg : PatLeaf<(fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
let Predicates = [NotFP64bit] in {
def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
}
|