1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/ErrorHandling.h"
#include <cctype>
using namespace llvm;
//===----------------------------------------------------------------------===//
// TargetInstrInfo
//===----------------------------------------------------------------------===//
TargetInstrInfo::~TargetInstrInfo() {
}
const TargetRegisterClass*
TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
const TargetRegisterInfo *TRI) const {
if (OpNum >= MCID.getNumOperands())
return 0;
short RegClass = MCID.OpInfo[OpNum].RegClass;
if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
return TRI->getPointerRegClass(RegClass);
// Instructions like INSERT_SUBREG do not have fixed register classes.
if (RegClass < 0)
return 0;
// Otherwise just look it up normally.
return TRI->getRegClass(RegClass);
}
unsigned
TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
const MachineInstr *MI) const {
if (!ItinData || ItinData->isEmpty())
return 1;
unsigned Class = MI->getDesc().getSchedClass();
unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
if (UOps)
return UOps;
// The # of u-ops is dynamically determined. The specific target should
// override this function to return the right number.
return 1;
}
int
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const {
if (!ItinData || ItinData->isEmpty())
return -1;
unsigned DefClass = DefMI->getDesc().getSchedClass();
unsigned UseClass = UseMI->getDesc().getSchedClass();
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}
int
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const {
if (!ItinData || ItinData->isEmpty())
return -1;
if (!DefNode->isMachineOpcode())
return -1;
unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
if (!UseNode->isMachineOpcode())
return ItinData->getOperandCycle(DefClass, DefIdx);
unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}
int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost) const {
if (!ItinData || ItinData->isEmpty())
return 1;
return ItinData->getStageLatency(MI->getDesc().getSchedClass());
}
int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
SDNode *N) const {
if (!ItinData || ItinData->isEmpty())
return 1;
if (!N->isMachineOpcode())
return 1;
return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
}
bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
const MachineInstr *DefMI,
unsigned DefIdx) const {
if (!ItinData || ItinData->isEmpty())
return false;
unsigned DefClass = DefMI->getDesc().getSchedClass();
int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
return (DefCycle != -1 && DefCycle <= 1);
}
/// insertNoop - Insert a noop into the instruction stream at the specified
/// point.
void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
llvm_unreachable("Target didn't implement insertNoop!");
}
bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
const MCInstrDesc &MCID = MI->getDesc();
if (!MCID.isTerminator()) return false;
// Conditional branch is a special case.
if (MCID.isBranch() && !MCID.isBarrier())
return true;
if (!MCID.isPredicable())
return true;
return !isPredicated(MI);
}
/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
const MCAsmInfo &MAI) const {
// Count the number of instructions in the asm.
bool atInsnStart = true;
unsigned Length = 0;
for (; *Str; ++Str) {
if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
strlen(MAI.getSeparatorString())) == 0)
atInsnStart = true;
if (atInsnStart && !std::isspace(*Str)) {
Length += MAI.getMaxInstLength();
atInsnStart = false;
}
if (atInsnStart && strncmp(Str, MAI.getCommentString(),
strlen(MAI.getCommentString())) == 0)
atInsnStart = false;
}
return Length;
}
|