1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCAsmBackend.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Object/MachOFormat.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Option to allow disabling arithmetic relaxation to workaround PR9807, which
// is useful when running bitwise comparison experiments on Darwin. We should be
// able to remove this once PR9807 is resolved.
static cl::opt<bool>
MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
cl::desc("Disable relaxation of arithmetic instruction for X86"));
static unsigned getFixupKindLog2Size(unsigned Kind) {
switch (Kind) {
default: assert(0 && "invalid fixup kind!");
case FK_PCRel_1:
case FK_Data_1: return 0;
case FK_PCRel_2:
case FK_Data_2: return 1;
case FK_PCRel_4:
case X86::reloc_riprel_4byte:
case X86::reloc_riprel_4byte_movq_load:
case X86::reloc_signed_4byte:
case X86::reloc_global_offset_table:
case FK_Data_4: return 2;
case FK_PCRel_8:
case FK_Data_8: return 3;
}
}
namespace {
class X86ELFObjectWriter : public MCELFObjectTargetWriter {
public:
X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine,
bool HasRelocationAddend)
: MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {}
};
class X86AsmBackend : public MCAsmBackend {
public:
X86AsmBackend(const Target &T)
: MCAsmBackend() {}
unsigned getNumFixupKinds() const {
return X86::NumTargetFixupKinds;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
{ "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
{ "reloc_signed_4byte", 0, 4 * 8, 0},
{ "reloc_global_offset_table", 0, 4 * 8, 0}
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value) const {
unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
assert(Fixup.getOffset() + Size <= DataSize &&
"Invalid fixup offset!");
// Check that uppper bits are either all zeros or all ones.
// Specifically ignore overflow/underflow as long as the leakage is
// limited to the lower bits. This is to remain compatible with
// other assemblers.
assert(isIntN(Size * 8 + 1, Value) &&
"Value does not fit in the Fixup field");
for (unsigned i = 0; i != Size; ++i)
Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}
bool MayNeedRelaxation(const MCInst &Inst) const;
void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
};
} // end anonymous namespace
static unsigned getRelaxedOpcodeBranch(unsigned Op) {
switch (Op) {
default:
return Op;
case X86::JAE_1: return X86::JAE_4;
case X86::JA_1: return X86::JA_4;
case X86::JBE_1: return X86::JBE_4;
case X86::JB_1: return X86::JB_4;
case X86::JE_1: return X86::JE_4;
case X86::JGE_1: return X86::JGE_4;
case X86::JG_1: return X86::JG_4;
case X86::JLE_1: return X86::JLE_4;
case X86::JL_1: return X86::JL_4;
case X86::JMP_1: return X86::JMP_4;
case X86::JNE_1: return X86::JNE_4;
case X86::JNO_1: return X86::JNO_4;
case X86::JNP_1: return X86::JNP_4;
case X86::JNS_1: return X86::JNS_4;
case X86::JO_1: return X86::JO_4;
case X86::JP_1: return X86::JP_4;
case X86::JS_1: return X86::JS_4;
}
}
static unsigned getRelaxedOpcodeArith(unsigned Op) {
switch (Op) {
default:
return Op;
// IMUL
case X86::IMUL16rri8: return X86::IMUL16rri;
case X86::IMUL16rmi8: return X86::IMUL16rmi;
case X86::IMUL32rri8: return X86::IMUL32rri;
case X86::IMUL32rmi8: return X86::IMUL32rmi;
case X86::IMUL64rri8: return X86::IMUL64rri32;
case X86::IMUL64rmi8: return X86::IMUL64rmi32;
// AND
case X86::AND16ri8: return X86::AND16ri;
case X86::AND16mi8: return X86::AND16mi;
case X86::AND32ri8: return X86::AND32ri;
case X86::AND32mi8: return X86::AND32mi;
case X86::AND64ri8: return X86::AND64ri32;
case X86::AND64mi8: return X86::AND64mi32;
// OR
case X86::OR16ri8: return X86::OR16ri;
case X86::OR16mi8: return X86::OR16mi;
case X86::OR32ri8: return X86::OR32ri;
case X86::OR32mi8: return X86::OR32mi;
case X86::OR64ri8: return X86::OR64ri32;
case X86::OR64mi8: return X86::OR64mi32;
// XOR
case X86::XOR16ri8: return X86::XOR16ri;
case X86::XOR16mi8: return X86::XOR16mi;
case X86::XOR32ri8: return X86::XOR32ri;
case X86::XOR32mi8: return X86::XOR32mi;
case X86::XOR64ri8: return X86::XOR64ri32;
case X86::XOR64mi8: return X86::XOR64mi32;
// ADD
case X86::ADD16ri8: return X86::ADD16ri;
case X86::ADD16mi8: return X86::ADD16mi;
case X86::ADD32ri8: return X86::ADD32ri;
case X86::ADD32mi8: return X86::ADD32mi;
case X86::ADD64ri8: return X86::ADD64ri32;
case X86::ADD64mi8: return X86::ADD64mi32;
// SUB
case X86::SUB16ri8: return X86::SUB16ri;
case X86::SUB16mi8: return X86::SUB16mi;
case X86::SUB32ri8: return X86::SUB32ri;
case X86::SUB32mi8: return X86::SUB32mi;
case X86::SUB64ri8: return X86::SUB64ri32;
case X86::SUB64mi8: return X86::SUB64mi32;
// CMP
case X86::CMP16ri8: return X86::CMP16ri;
case X86::CMP16mi8: return X86::CMP16mi;
case X86::CMP32ri8: return X86::CMP32ri;
case X86::CMP32mi8: return X86::CMP32mi;
case X86::CMP64ri8: return X86::CMP64ri32;
case X86::CMP64mi8: return X86::CMP64mi32;
// PUSH
case X86::PUSHi8: return X86::PUSHi32;
case X86::PUSHi16: return X86::PUSHi32;
case X86::PUSH64i8: return X86::PUSH64i32;
case X86::PUSH64i16: return X86::PUSH64i32;
}
}
static unsigned getRelaxedOpcode(unsigned Op) {
unsigned R = getRelaxedOpcodeArith(Op);
if (R != Op)
return R;
return getRelaxedOpcodeBranch(Op);
}
bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
// Branches can always be relaxed.
if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
return true;
if (MCDisableArithRelaxation)
return false;
// Check if this instruction is ever relaxable.
if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
return false;
// Check if it has an expression and is not RIP relative.
bool hasExp = false;
bool hasRIP = false;
for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
const MCOperand &Op = Inst.getOperand(i);
if (Op.isExpr())
hasExp = true;
if (Op.isReg() && Op.getReg() == X86::RIP)
hasRIP = true;
}
// FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
// how we do relaxations?
return hasExp && !hasRIP;
}
// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
// The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
if (RelaxedOp == Inst.getOpcode()) {
SmallString<256> Tmp;
raw_svector_ostream OS(Tmp);
Inst.dump_pretty(OS);
OS << "\n";
report_fatal_error("unexpected instruction to relax: " + OS.str());
}
Res = Inst;
Res.setOpcode(RelaxedOp);
}
/// WriteNopData - Write optimal nops to the output file for the \arg Count
/// bytes. This returns the number of bytes written. It may return 0 if
/// the \arg Count is more than the maximum optimal nops.
bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
static const uint8_t Nops[10][10] = {
// nop
{0x90},
// xchg %ax,%ax
{0x66, 0x90},
// nopl (%[re]ax)
{0x0f, 0x1f, 0x00},
// nopl 0(%[re]ax)
{0x0f, 0x1f, 0x40, 0x00},
// nopl 0(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopw 0(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopl 0L(%[re]ax)
{0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
// nopl 0L(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw 0L(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw %cs:0L(%[re]ax,%[re]ax,1)
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
};
// Write an optimal sequence for the first 15 bytes.
const uint64_t OptimalCount = (Count < 16) ? Count : 15;
const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
for (uint64_t i = 0, e = Prefixes; i != e; i++)
OW->Write8(0x66);
const uint64_t Rest = OptimalCount - Prefixes;
for (uint64_t i = 0, e = Rest; i != e; i++)
OW->Write8(Nops[Rest - 1][i]);
// Finish with single byte nops.
for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
OW->Write8(0x90);
return true;
}
/* *** */
namespace {
class ELFX86AsmBackend : public X86AsmBackend {
public:
Triple::OSType OSType;
ELFX86AsmBackend(const Target &T, Triple::OSType _OSType)
: X86AsmBackend(T), OSType(_OSType) {
HasReliableSymbolDifference = true;
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
return ES.getFlags() & ELF::SHF_MERGE;
}
};
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType)
: ELFX86AsmBackend(T, OSType) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createELFObjectWriter(createELFObjectTargetWriter(),
OS, /*IsLittleEndian*/ true);
}
MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false);
}
};
class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType)
: ELFX86AsmBackend(T, OSType) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createELFObjectWriter(createELFObjectTargetWriter(),
OS, /*IsLittleEndian*/ true);
}
MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true);
}
};
class WindowsX86AsmBackend : public X86AsmBackend {
bool Is64Bit;
public:
WindowsX86AsmBackend(const Target &T, bool is64Bit)
: X86AsmBackend(T)
, Is64Bit(is64Bit) {
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createWinCOFFObjectWriter(OS, Is64Bit);
}
};
class DarwinX86AsmBackend : public X86AsmBackend {
public:
DarwinX86AsmBackend(const Target &T)
: X86AsmBackend(T) { }
};
class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_32AsmBackend(const Target &T)
: DarwinX86AsmBackend(T) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
object::mach::CTM_i386,
object::mach::CSX86_ALL);
}
};
class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_64AsmBackend(const Target &T)
: DarwinX86AsmBackend(T) {
HasReliableSymbolDifference = true;
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
object::mach::CTM_x86_64,
object::mach::CSX86_ALL);
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
// Temporary labels in the string literals sections require symbols. The
// issue is that the x86_64 relocation format does not allow symbol +
// offset, and so the linker does not have enough information to resolve the
// access to the appropriate atom unless an external relocation is used. For
// non-cstring sections, we expect the compiler to use a non-temporary label
// for anything that could have an addend pointing outside the symbol.
//
// See <rdar://problem/4765733>.
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
}
virtual bool isSectionAtomizable(const MCSection &Section) const {
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
// Fixed sized data sections are uniqued, they cannot be diced into atoms.
switch (SMO.getType()) {
default:
return true;
case MCSectionMachO::S_4BYTE_LITERALS:
case MCSectionMachO::S_8BYTE_LITERALS:
case MCSectionMachO::S_16BYTE_LITERALS:
case MCSectionMachO::S_LITERAL_POINTERS:
case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
case MCSectionMachO::S_INTERPOSING:
return false;
}
}
};
} // end anonymous namespace
MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return new DarwinX86_32AsmBackend(T);
if (TheTriple.isOSWindows())
return new WindowsX86AsmBackend(T, false);
return new ELFX86_32AsmBackend(T, TheTriple.getOS());
}
MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return new DarwinX86_64AsmBackend(T);
if (TheTriple.isOSWindows())
return new WindowsX86AsmBackend(T, true);
return new ELFX86_64AsmBackend(T, TheTriple.getOS());
}
|