1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/IntervalMap.h"
#include "RuntimeDyldELF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/ELF.h"
#include "JITRegistrar.h"
using namespace llvm;
using namespace llvm::object;
namespace {
template<support::endianness target_endianness, bool is64Bits>
class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
typedef typename ELFObjectFile<target_endianness, is64Bits>::
Elf_Ehdr Elf_Ehdr;
typedef typename ELFDataTypeTypedefHelper<
target_endianness, is64Bits>::value_type addr_type;
protected:
// This duplicates the 'Data' member in the 'Binary' base class
// but it is necessary to workaround a bug in gcc 4.2
MemoryBuffer *InputData;
public:
DyldELFObject(MemoryBuffer *Object, error_code &ec);
void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
const MemoryBuffer& getBuffer() const { return *InputData; }
// Methods for type inquiry through isa, cast, and dyn_cast
static inline bool classof(const Binary *v) {
return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
&& classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
}
static inline bool classof(
const ELFObjectFile<target_endianness, is64Bits> *v) {
return v->isDyldType();
}
static inline bool classof(const DyldELFObject *v) {
return true;
}
};
template<support::endianness target_endianness, bool is64Bits>
class ELFObjectImage : public ObjectImage {
protected:
DyldELFObject<target_endianness, is64Bits> *DyldObj;
bool Registered;
public:
ELFObjectImage(DyldELFObject<target_endianness, is64Bits> *Obj)
: ObjectImage(Obj),
DyldObj(Obj),
Registered(false) {}
virtual ~ELFObjectImage() {
if (Registered)
deregisterWithDebugger();
}
// Subclasses can override these methods to update the image with loaded
// addresses for sections and common symbols
virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
{
DyldObj->updateSectionAddress(Sec, Addr);
}
virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
{
DyldObj->updateSymbolAddress(Sym, Addr);
}
virtual void registerWithDebugger()
{
JITRegistrar::getGDBRegistrar().registerObject(DyldObj->getBuffer());
Registered = true;
}
virtual void deregisterWithDebugger()
{
JITRegistrar::getGDBRegistrar().deregisterObject(DyldObj->getBuffer());
}
};
template<support::endianness target_endianness, bool is64Bits>
DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Object,
error_code &ec)
: ELFObjectFile<target_endianness, is64Bits>(Object, ec),
InputData(Object) {
this->isDyldELFObject = true;
}
template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
const SectionRef &Sec,
uint64_t Addr) {
DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
// This assumes the address passed in matches the target address bitness
// The template-based type cast handles everything else.
shdr->sh_addr = static_cast<addr_type>(Addr);
}
template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
const SymbolRef &SymRef,
uint64_t Addr) {
Elf_Sym *sym = const_cast<Elf_Sym*>(
ELFObjectFile<target_endianness, is64Bits>::
getSymbol(SymRef.getRawDataRefImpl()));
// This assumes the address passed in matches the target address bitness
// The template-based type cast handles everything else.
sym->st_value = static_cast<addr_type>(Addr);
}
} // namespace
namespace llvm {
ObjectImage *RuntimeDyldELF::createObjectImage(
const MemoryBuffer *ConstInputBuffer) {
MemoryBuffer *InputBuffer = const_cast<MemoryBuffer*>(ConstInputBuffer);
std::pair<unsigned char, unsigned char> Ident = getElfArchType(InputBuffer);
error_code ec;
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
DyldELFObject<support::little, false> *Obj =
new DyldELFObject<support::little, false>(InputBuffer, ec);
return new ELFObjectImage<support::little, false>(Obj);
}
else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
DyldELFObject<support::big, false> *Obj =
new DyldELFObject<support::big, false>(InputBuffer, ec);
return new ELFObjectImage<support::big, false>(Obj);
}
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
DyldELFObject<support::big, true> *Obj =
new DyldELFObject<support::big, true>(InputBuffer, ec);
return new ELFObjectImage<support::big, true>(Obj);
}
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
DyldELFObject<support::little, true> *Obj =
new DyldELFObject<support::little, true>(InputBuffer, ec);
return new ELFObjectImage<support::little, true>(Obj);
}
else
llvm_unreachable("Unexpected ELF format");
}
void RuntimeDyldELF::handleObjectLoaded(ObjectImage *Obj)
{
Obj->registerWithDebugger();
// Save the loaded object. It will deregister itself when deleted
LoadedObject = Obj;
}
RuntimeDyldELF::~RuntimeDyldELF() {
if (LoadedObject)
delete LoadedObject;
}
void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) {
switch (Type) {
default:
llvm_unreachable("Relocation type not implemented yet!");
break;
case ELF::R_X86_64_64: {
uint64_t *Target = (uint64_t*)(LocalAddress);
*Target = Value + Addend;
break;
}
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S: {
Value += Addend;
// FIXME: Handle the possibility of this assertion failing
assert((Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
(Type == ELF::R_X86_64_32S &&
(Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress);
*Target = TruncatedAddr;
break;
}
case ELF::R_X86_64_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
assert(RealOffset <= 214783647 && RealOffset >= -214783648);
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Placeholder = TruncOffset;
break;
}
}
}
void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
uint32_t FinalAddress,
uint32_t Value,
uint32_t Type,
int32_t Addend) {
switch (Type) {
case ELF::R_386_32: {
uint32_t *Target = (uint32_t*)(LocalAddress);
uint32_t Placeholder = *Target;
*Target = Placeholder + Value + Addend;
break;
}
case ELF::R_386_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
*Placeholder = RealOffset;
break;
}
default:
// There are other relocation types, but it appears these are the
// only ones currently used by the LLVM ELF object writer
llvm_unreachable("Relocation type not implemented yet!");
break;
}
}
void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress,
uint32_t FinalAddress,
uint32_t Value,
uint32_t Type,
int32_t Addend) {
// TODO: Add Thumb relocations.
uint32_t* TargetPtr = (uint32_t*)LocalAddress;
Value += Addend;
DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress
<< " FinalAddress: " << format("%p",FinalAddress)
<< " Value: " << format("%x",Value)
<< " Type: " << format("%x",Type)
<< " Addend: " << format("%x",Addend)
<< "\n");
switch(Type) {
default:
llvm_unreachable("Not implemented relocation type!");
// Just write 32bit value to relocation address
case ELF::R_ARM_ABS32 :
*TargetPtr = Value;
break;
// Write first 16 bit of 32 bit value to the mov instruction.
// Last 4 bit should be shifted.
case ELF::R_ARM_MOVW_ABS_NC :
Value = Value & 0xFFFF;
*TargetPtr |= Value & 0xFFF;
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
break;
// Write last 16 bit of 32 bit value to the mov instruction.
// Last 4 bit should be shifted.
case ELF::R_ARM_MOVT_ABS :
Value = (Value >> 16) & 0xFFFF;
*TargetPtr |= Value & 0xFFF;
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
break;
// Write 24 bit relative value to the branch instruction.
case ELF::R_ARM_PC24 : // Fall through.
case ELF::R_ARM_CALL : // Fall through.
case ELF::R_ARM_JUMP24 :
int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
RelValue = (RelValue & 0x03FFFFFC) >> 2;
*TargetPtr &= 0xFF000000;
*TargetPtr |= RelValue;
break;
}
}
void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
uint64_t FinalAddress,
uint64_t Value,
uint32_t Type,
int64_t Addend) {
switch (Arch) {
case Triple::x86_64:
resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
break;
case Triple::x86:
resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
(uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
case Triple::arm: // Fall through.
case Triple::thumb:
resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
(uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
default: llvm_unreachable("Unsupported CPU type!");
}
}
void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID,
LocalSymbolMap &Symbols,
StubMap &Stubs) {
uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
RelocationValueRef Value;
StringRef TargetName;
const SymbolRef &Symbol = Rel.Symbol;
Symbol.getName(TargetName);
DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
<< " TargetName: " << TargetName
<< "\n");
// First look the symbol in object file symbols.
LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data());
if (lsi != Symbols.end()) {
Value.SectionID = lsi->second.first;
Value.Addend = lsi->second.second;
} else {
// Second look the symbol in global symbol table.
StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data());
if (gsi != SymbolTable.end()) {
Value.SectionID = gsi->second.first;
Value.Addend = gsi->second.second;
} else {
SymbolRef::Type SymType;
Symbol.getType(SymType);
switch (SymType) {
case SymbolRef::ST_Debug: {
// TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
// and can be changed by another developers. Maybe best way is add
// a new symbol type ST_Section to SymbolRef and use it.
section_iterator si = Obj.end_sections();
Symbol.getSection(si);
if (si == Obj.end_sections())
llvm_unreachable("Symbol section not found, bad object file format!");
DEBUG(dbgs() << "\t\tThis is section symbol\n");
Value.SectionID = findOrEmitSection(Obj, (*si), true, ObjSectionToID);
Value.Addend = Addend;
break;
}
case SymbolRef::ST_Unknown: {
Value.SymbolName = TargetName.data();
Value.Addend = Addend;
break;
}
default:
llvm_unreachable("Unresolved symbol type!");
break;
}
}
}
DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
<< " Rel.Offset: " << Rel.Offset
<< "\n");
if (Arch == Triple::arm &&
(RelType == ELF::R_ARM_PC24 ||
RelType == ELF::R_ARM_CALL ||
RelType == ELF::R_ARM_JUMP24)) {
// This is an ARM branch relocation, need to use a stub function.
DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
SectionEntry &Section = Sections[Rel.SectionID];
uint8_t *Target = Section.Address + Rel.Offset;
// Look up for existing stub.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end()) {
resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
i->second, RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
// Create a new stub function.
DEBUG(dbgs() << " Create a new stub function\n");
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr = createStubFunction(Section.Address +
Section.StubOffset);
AddRelocation(Value, Rel.SectionID,
StubTargetAddr - Section.Address, ELF::R_ARM_ABS32);
resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
Section.StubOffset, RelType, 0);
Section.StubOffset += getMaxStubSize();
}
} else
AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
}
bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
} // namespace llvm
|