1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Mips FPU instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
// - 32 64-bit registers (default mode)
// - 16 even 32-bit registers (32-bit compatible mode) for
// single and double access.
// * 32bit fp:
// - 16 even 32-bit registers - single and double (aliased)
// - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//
// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
SDTCisVT<1, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
SDTCisVT<2, i32>]>;
def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisVT<1, f64>,
SDTCisVT<2, i32>]>;
def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
[SDNPHasChain, SDNPOptInGlue]>;
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
SDT_MipsExtractElementF64>;
// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
def condcode : Operand<i32>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
def IsFP64bit : Predicate<"Subtarget.isFP64bit()">, AssemblerPredicate<"FeatureFP64Bit">;
def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">, AssemblerPredicate<"!FeatureFP64Bit">;
def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">, AssemblerPredicate<"FeatureSingleFloat">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">, AssemblerPredicate<"!FeatureSingleFloat">;
// FP immediate patterns.
def fpimm0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fpimm0neg : PatLeaf<(fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address the register usage.
//
// S32 - single precision in 16 32bit even fp registers
// single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//
// Only S32 and D32 are supported right now.
//===----------------------------------------------------------------------===//
// FP load.
let DecoderMethod = "DecodeFMem" in {
class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
!strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load_a addr:$addr))],
IILoad>;
// FP store.
class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
!strconcat(opstr, "\t$ft, $addr"), [(store_a RC:$ft, addr:$addr)],
IIStore>;
}
// FP indexed load.
class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC,
RegisterClass PRC, PatFrag FOp>:
FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index),
!strconcat(opstr, "\t$fd, $index($base)"),
[(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> {
let fs = 0;
}
// FP indexed store.
class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC,
RegisterClass PRC, PatFrag FOp>:
FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index),
!strconcat(opstr, "\t$fs, $index($base)"),
[(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> {
let fd = 0;
}
// Instructions that convert an FP value to 32-bit fixed point.
multiclass FFR1_W_M<bits<6> funct, string opstr> {
def _S : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
Requires<[NotFP64bit]>;
def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
Requires<[IsFP64bit]> {
let DecoderNamespace = "Mips64";
}
}
// Instructions that convert an FP value to 64-bit fixed point.
let Predicates = [IsFP64bit], DecoderNamespace = "Mips64" in
multiclass FFR1_L_M<bits<6> funct, string opstr> {
def _S : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
}
// FP-to-FP conversion instructions.
multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
def _S : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
Requires<[NotFP64bit]>;
def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
Requires<[IsFP64bit]> {
let DecoderNamespace = "Mips64";
}
}
multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
let isCommutable = isComm in {
def _S : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
Requires<[NotFP64bit]>;
def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
Requires<[IsFP64bit]> {
let DecoderNamespace = "Mips64";
}
}
}
// FP madd/msub/nmadd/nmsub instruction classes.
class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
SDNode OpNode, RegisterClass RC> :
FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
!strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
[(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>;
class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
SDNode OpNode, RegisterClass RC> :
FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
!strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
[(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>;
//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
defm ROUND_W : FFR1_W_M<0xc, "round">;
defm ROUND_L : FFR1_L_M<0x8, "round">;
defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
defm CEIL_W : FFR1_W_M<0xe, "ceil">;
defm CEIL_L : FFR1_L_M<0xa, "ceil">;
defm FLOOR_W : FFR1_W_M<0xf, "floor">;
defm FLOOR_L : FFR1_L_M<0xb, "floor">;
defm CVT_W : FFR1_W_M<0x24, "cvt">;
//defm CVT_L : FFR1_L_M<0x25, "cvt">;
def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
def CVT_L_S : FFR1<0x25, 16, "cvt", "l.s", FGR64, FGR32>;
def CVT_L_D64: FFR1<0x25, 17, "cvt", "l.d", FGR64, FGR64>;
let Predicates = [NotFP64bit] in {
def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
}
let Predicates = [IsFP64bit], DecoderNamespace = "Mips64" in {
def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
def CVT_S_L : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
}
let Predicates = [NoNaNsFPMath] in {
defm FABS : FFR1P_M<0x5, "abs", fabs>;
defm FNEG : FFR1P_M<0x7, "neg", fneg>;
}
defm FSQRT : FFR1P_M<0x4, "sqrt", fsqrt>;
// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.
class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
bits<5> rt;
let ft = rt;
let fd = 0;
}
/// Move Control Registers From/To CPU Registers
def CFC1 : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
"cfc1\t$rt, $fs", []>;
def CTC1 : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
"ctc1\t$rt, $fs", []>;
def MFC1 : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
"mfc1\t$rt, $fs",
[(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
def MTC1 : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
"mtc1\t$rt, $fs",
[(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
"dmfc1\t$rt, $fs",
[(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;
def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
"dmtc1\t$rt, $fs",
[(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;
def FMOV_S : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
Requires<[NotFP64bit]>;
def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
Requires<[IsFP64bit]> {
let DecoderNamespace = "Mips64";
}
/// Floating Point Memory Instructions
let Predicates = [IsN64], DecoderNamespace = "Mips64" in {
def LWC1_P8 : FPLoad<0x31, "lwc1", FGR32, mem64>;
def SWC1_P8 : FPStore<0x39, "swc1", FGR32, mem64>;
def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> {
let isCodeGenOnly =1;
}
def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> {
let isCodeGenOnly =1;
}
}
let Predicates = [NotN64] in {
def LWC1 : FPLoad<0x31, "lwc1", FGR32, mem>;
def SWC1 : FPStore<0x39, "swc1", FGR32, mem>;
}
let Predicates = [NotN64, HasMips64], DecoderNamespace = "Mips64" in {
def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>;
def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>;
}
let Predicates = [NotN64, NotMips64] in {
def LDC1 : FPLoad<0x35, "ldc1", AFGR64, mem>;
def SDC1 : FPStore<0x3d, "sdc1", AFGR64, mem>;
}
// Indexed loads and stores.
let Predicates = [HasMips32r2Or64] in {
def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load_a>;
def LUXC1 : FPIdxLoad<0x5, "luxc1", FGR32, CPURegs, load_u>;
def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store_a>;
def SUXC1 : FPIdxStore<0xd, "suxc1", FGR32, CPURegs, store_u>;
}
let Predicates = [HasMips32r2, NotMips64] in {
def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load_a>;
def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store_a>;
}
let Predicates = [HasMips64, NotN64], DecoderNamespace="Mips64" in {
def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load_a>;
def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store_a>;
}
// n64
let Predicates = [IsN64], isCodeGenOnly=1 in {
def LWXC1_P8 : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load_a>;
def LUXC1_P8 : FPIdxLoad<0x5, "luxc1", FGR32, CPU64Regs, load_u>;
def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load_a>;
def SWXC1_P8 : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store_a>;
def SUXC1_P8 : FPIdxStore<0xd, "suxc1", FGR32, CPU64Regs, store_u>;
def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store_a>;
}
/// Floating-point Aritmetic
defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
defm FDIV : FFR2P_M<0x03, "div", fdiv>;
defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
defm FSUB : FFR2P_M<0x01, "sub", fsub>;
let Predicates = [HasMips32r2] in {
def MADD_S : FMADDSUB<0x4, 0, "madd", "s", fadd, FGR32>;
def MSUB_S : FMADDSUB<0x5, 0, "msub", "s", fsub, FGR32>;
}
let Predicates = [HasMips32r2, NoNaNsFPMath] in {
def NMADD_S : FNMADDSUB<0x6, 0, "nmadd", "s", fadd, FGR32>;
def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub", "s", fsub, FGR32>;
}
let Predicates = [HasMips32r2, NotFP64bit] in {
def MADD_D32 : FMADDSUB<0x4, 1, "madd", "d", fadd, AFGR64>;
def MSUB_D32 : FMADDSUB<0x5, 1, "msub", "d", fsub, AFGR64>;
}
let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath] in {
def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, AFGR64>;
def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, AFGR64>;
}
let Predicates = [HasMips32r2, IsFP64bit], isCodeGenOnly=1 in {
def MADD_D64 : FMADDSUB<0x4, 1, "madd", "d", fadd, FGR64>;
def MSUB_D64 : FMADDSUB<0x5, 1, "msub", "d", fsub, FGR64>;
}
let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath], isCodeGenOnly=1 in {
def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, FGR64>;
def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, FGR64>;
}
//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
/// Floating Point Branch of False/True (Likely)
let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
[(MipsFPBrcond op, bb:$dst)]> {
let Inst{20-18} = 0;
let Inst{17} = nd;
let Inst{16} = tf;
}
let DecoderMethod = "DecodeBC1" in {
def BC1F : FBRANCH<0, 0, MIPS_BRANCH_F, "bc1f">;
def BC1T : FBRANCH<0, 1, MIPS_BRANCH_T, "bc1t">;
}
//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_FCOND_F : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>;
def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
!strconcat("c.$cc.", typestr, "\t$fs, $ft"),
[(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;
/// Floating Point Compare
let Defs=[FCR31] in {
def FCMP_S32 : FCMP<0x10, FGR32, "s">;
def FCMP_D32 : FCMP<0x11, AFGR64, "d">, Requires<[NotFP64bit]>;
def FCMP_D64 : FCMP<0x11, FGR64, "d">, Requires<[IsFP64bit]> {
let DecoderNamespace = "Mips64";
}
}
//===----------------------------------------------------------------------===//
// Floating Point Pseudo-Instructions
//===----------------------------------------------------------------------===//
def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
"# MOVCCRToCCR", []>;
// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
def BuildPairF64 :
MipsPseudo<(outs AFGR64:$dst),
(ins CPURegs:$lo, CPURegs:$hi), "",
[(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
def ExtractElementF64 :
MipsPseudo<(outs CPURegs:$dst),
(ins AFGR64:$src, i32imm:$n), "",
[(set CPURegs:$dst,
(MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
let Predicates = [NotFP64bit] in {
def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
}
let Predicates = [IsFP64bit] in {
def : Pat<(f64 fpimm0), (DMTC1 ZERO_64)>;
def : Pat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D64_W (MTC1 CPURegs:$src))>;
def : Pat<(f32 (sint_to_fp CPU64Regs:$src)),
(CVT_S_L (DMTC1 CPU64Regs:$src))>;
def : Pat<(f64 (sint_to_fp CPU64Regs:$src)),
(CVT_D64_L (DMTC1 CPU64Regs:$src))>;
def : Pat<(i32 (fp_to_sint FGR64:$src)), (MFC1 (TRUNC_W_D64 FGR64:$src))>;
def : Pat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
def : Pat<(i64 (fp_to_sint FGR64:$src)), (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
def : Pat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
def : Pat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
}
// Patterns for unaligned floating point loads and stores.
let Predicates = [HasMips32r2Or64, NotN64] in {
def : Pat<(f32 (load_u CPURegs:$addr)), (LUXC1 CPURegs:$addr, ZERO)>;
def : Pat<(store_u FGR32:$src, CPURegs:$addr),
(SUXC1 FGR32:$src, CPURegs:$addr, ZERO)>;
}
let Predicates = [IsN64] in {
def : Pat<(f32 (load_u CPU64Regs:$addr)), (LUXC1_P8 CPU64Regs:$addr, ZERO_64)>;
def : Pat<(store_u FGR32:$src, CPU64Regs:$addr),
(SUXC1_P8 FGR32:$src, CPU64Regs:$addr, ZERO_64)>;
}
|