1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Kaleidoscope: Implementing a Parser and AST</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="author" content="Chris Lattner">
<meta name="author" content="Max Shawabkeh">
<link rel="stylesheet"
href="http://www.llvm.org/docs/llvm.css"
type="text/css">
</head>
<body>
<div class="doc_title">Kaleidoscope: Implementing a Parser and AST</div>
<ul>
<li>
<a href="http://www.llvm.org/docs/tutorial/index.html">
Up to Tutorial Index
</a>
</li>
<li>Chapter 2
<ol>
<li><a href="#intro">Chapter 2 Introduction</a></li>
<li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
<li><a href="#parserbasics">Parser Basics</a></li>
<li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
<li><a href="#parserbinops">Binary Expression Parsing</a></li>
<li><a href="#parsertop">Parsing the Rest</a></li>
<li><a href="#driver">The Driver</a></li>
<li><a href="#conclusions">Conclusions</a></li>
<li><a href="#code">Full Code Listing</a></li>
</ol>
</li>
<li><a href="PythonLangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
</ul>
<div class="doc_author">
<p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
and <a href="http://max99x.com">Max Shawabkeh</a>
</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="intro">Chapter 2 Introduction</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>Welcome to Chapter 2 of the
"<a href="http://www.llvm.org/docs/tutorial/index.html">Implementing a language
with LLVM</a>" tutorial. This chapter shows you how to use the lexer, built in
<a href="PythonLangImpl1.html">Chapter 1</a>, to build a full <a
href="http://en.wikipedia.org/wiki/Parsing">parser</a> for
our Kaleidoscope language. Once we have a parser, we'll define and build an <a
href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax
Tree</a> (AST).</p>
<p>The parser we will build uses a combination of <a
href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
Parsing</a> and <a href=
"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
Parsing</a> to parse the Kaleidoscope language (the latter for
binary expressions and the former for everything else). Before we get to
parsing though, lets talk about the output of the parser: the Abstract Syntax
Tree.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="ast">The Abstract Syntax Tree (AST)</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The AST for a program captures its behavior in such a way that it is easy for
later stages of the compiler (e.g. code generation) to interpret. We basically
want one object for each construct in the language, and the AST should closely
model the language. In Kaleidoscope, we have expressions, a prototype, and a
function object. We'll start with expressions first:</p>
<div class="doc_code">
<pre>
# Base class for all expression nodes.
class ExpressionNode(object):
pass
# Expression class for numeric literals like "1.0".
class NumberExpressionNode(ExpressionNode):
def __init__(self, value):
self.value = value
</pre>
</div>
<p>The code above shows the definition of the base ExpressionNode class and one
subclass which we use for numeric literals. The important thing to note about
this code is that the NumberExpressionNode class captures the numeric value of
the literal as an instance variable. This allows later phases of the compiler to
know what the stored numeric value is.</p>
<p>Right now we only create the AST, so there are no useful methods on them.
It would be very easy to add a virtual method to pretty print the code, for
example. Here are the other expression AST node definitions that we'll use
in the basic form of the Kaleidoscope language:
</p>
<div class="doc_code">
<pre>
# Expression class for referencing a variable, like "a".
class VariableExpressionNode(ExpressionNode):
def __init__(self, name):
self.name = name
# Expression class for a binary operator.
class BinaryOperatorExpressionNode(ExpressionNode):
def __init__(self, operator, left, right):
self.operator = operator
self.left = left
self.right = right
# Expression class for function calls.
class CallExpressionNode(ExpressionNode):
def __init__(self, callee, args):
self.callee = callee
self.args = args
</pre>
</div>
<p>This is all (intentionally) rather straight-forward: variables capture the
variable name, binary operators capture their opcode (e.g. '+'), and calls
capture a function name as well as a list of any argument expressions. One thing
that is nice about our AST is that it captures the language features without
talking about the syntax of the language. Note that there is no discussion about
precedence of binary operators, lexical structure, etc.</p>
<p>For our basic language, these are all of the expression nodes we'll define.
Because it doesn't have conditional control flow, it isn't Turing-complete;
we'll fix that in a later installment. The two things we need next are a way
to talk about the interface to a function, and a way to talk about functions
themselves:</p>
<div class="doc_code">
<pre>
# This class represents the "prototype" for a function, which captures its name,
# and its argument names (thus implicitly the number of arguments the function
# takes).
class PrototypeNode(object):
def __init__(self, name, args):
self.name = name
self.args = args
# This class represents a function definition itself.
class FunctionNode(object):
def __init__(self, prototype, body):
self.prototype = prototype
self.body = body
</pre>
</div>
<p>In Kaleidoscope, functions are typed with just a count of their arguments.
Since all values are double precision floating point, the type of each argument
doesn't need to be stored anywhere. In a more aggressive and realistic
language, the <tt>ExpressionNode</tt> class would probably have a type field.
</p>
<p>With this scaffolding, we can now talk about parsing expressions and function
bodies in Kaleidoscope.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="parserbasics">Parser Basics</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>Now that we have an AST to build, we need to define the parser code to build
it. The idea here is that we want to parse something like <tt>"x+y"</tt> (which
is returned as three tokens by the lexer) into an AST that could be generated
with calls like this:</p>
<div class="doc_code">
<pre>
x = VariableExpressionNode('x')
y = VariableExpressionNode('y')
result = BinaryOperatorExpressionNode('+', x, y)
</pre>
</div>
<p>In order to do this, we'll start by defining a lightweight <tt>Parser</tt>
class with some basic helper routines:</p>
<div class="doc_code">
<pre>
class Parser(object):
def __init__(self, tokens, binop_precedence):
self.tokens = tokens
self.binop_precedence = binop_precedence
self.Next()
# Provide a simple token buffer. Parser.current is the current token the
# parser is looking at. Parser.Next() reads another token from the lexer and
# updates Parser.current with its results.
def Next(self):
self.current = self.tokens.next()
</pre>
</div>
<p>
This implements a simple token buffer around the lexer. This allows
us to look one token ahead at what the lexer is returning. Every function in
our parser will assume that <tt>self.current</tt> is the current token that
needs to be parsed. Note that the first token is read as soon as the parser is
instantiated. Let us ignore the <tt>binop_precedence</tt> parameter for now. It
will be explained when we start <a href="#parserbinops">parsing binary
operators</a>.</p>
<p>With these basic helper functions, we can implement the first
piece of our grammar: numeric literals.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="parserprimexprs">Basic Expression
Parsing</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>We start with numeric literals, because they are the simplest to process.
For each production in our grammar, we'll define a function which parses that
production. For numeric literals, we have:
</p>
<div class="doc_code">
<pre>
# numberexpr ::= number
def ParseNumberExpr(self):
result = NumberExpressionNode(self.current.value)
self.Next() # consume the number.
return result
</pre>
</div>
<p>This method is very simple: it expects to be called when the current token
is a <tt>NumberToken</tt>. It takes the current number value, creates a
<tt>NumberExpressionNode</tt>, advances to the next token, and finally returns.
</p>
<p>There are some interesting aspects to this. The most important one is that
this routine eats all of the tokens that correspond to the production and
returns the lexer buffer with the next token (which is not part of the grammar
production) ready to go. This is a fairly standard way to go for recursive
descent parsers. For a better example, the parenthesis operator is defined like
this:</p>
<div class="doc_code">
<pre>
# parenexpr ::= '(' expression ')'
def ParseParenExpr(self):
self.Next() # eat '('.
contents = self.ParseExpression()
if self.current != CharacterToken(')'):
raise RuntimeError('Expected ")".')
self.Next() # eat ')'.
return contents
</pre>
</div>
<p>This function illustrates an interesting aspect of the parser. The function
uses recursion by calling <tt>ParseExpression</tt> (we will soon see that
<tt>ParseExpression</tt> can call <tt>ParseParenExpr</tt>). This is powerful
because it allows us to handle recursive grammars, and keeps each production
very simple. Note that parentheses do not cause construction of AST nodes
themselves. While we could do it this way, the most important role of
parentheses are to guide the parser and provide grouping. Once the parser
constructs the AST, parentheses are not needed.</p>
<p>The next simple production is for handling variable references and function
calls:</p>
<div class="doc_code">
<pre>
# identifierexpr ::= identifier | identifier '(' expression* ')'
def ParseIdentifierExpr(self):
identifier_name = self.current.name
self.Next() # eat identifier.
if self.current != CharacterToken('('): # Simple variable reference.
return VariableExpressionNode(identifier_name);
# Call.
self.Next() # eat '('.
args = []
if self.current != CharacterToken(')'):
while True:
args.append(self.ParseExpression())
if self.current == CharacterToken(')'):
break
elif self.current != CharacterToken(','):
raise RuntimeError('Expected ")" or "," in argument list.')
self.Next()
self.Next() # eat ')'.
return CallExpressionNode(identifier_name, args)
</pre>
</div>
<p>This routine follows the same style as the other routines. It expects to be
called if the current token is an <tt>IdentifierToken</tt>. It also has
recursion and error handling. One interesting aspect of this is that it uses
<em>look-ahead</em> to determine if the current identifier is a stand alone
variable reference or if it is a function call expression. It handles this by
checking to see if the token after the identifier is a '(' token, constructing
either a <tt>VariableExpressionNode</tt> or <tt>CallExpressionNode</tt> as
appropriate.</p>
<p>Now that we have all of our simple expression-parsing logic in place, we can
define a helper function to wrap it together into one entry point. We call this
class of expressions "primary" expressions, for reasons that will become more
clear <a href="PythonLangImpl6.html#unary">later in the tutorial</a>. In order
to parse an arbitrary primary expression, we need to determine what sort of
expression it is:</p>
<div class="doc_code">
<pre>
# primary ::= identifierexpr | numberexpr | parenexpr
def ParsePrimary(self):
if isinstance(self.current, IdentifierToken):
return self.ParseIdentifierExpr()
elif isinstance(self.current, NumberToken):
return self.ParseNumberExpr();
elif self.current == CharacterToken('('):
return self.ParseParenExpr()
else:
raise RuntimeError('Unknown token when expecting an expression.')
</pre>
</div>
<p>Now that you see the definition of this function, it is more obvious why we
can assume the state of <tt>Parser.current</tt> in the various functions. This
uses look-ahead to determine which sort of expression is being inspected, and
then parses it with a function call.</p>
<p>Now that basic expressions are handled, we need to handle binary expressions.
They are a bit more complex.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="parserbinops">Binary Expression
Parsing</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>Binary expressions are significantly harder to parse because they are often
ambiguous. For example, when given the string "x+y*z", the parser can choose
to parse it as either "(x+y)*z" or "x+(y*z)". With common definitions from
mathematics, we expect the later parse, because "*" (multiplication) has
higher <em>precedence</em> than "+" (addition).</p>
<p>There are many ways to handle this, but an elegant and efficient way is to
use <a href=
"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
Parsing</a>. This parsing technique uses the precedence of binary operators to
guide recursion. To start with, we need a table of precedences. Remember the
<tt>binop_precedence</tt> parameter we passed to the <tt>Parser</tt>
constructor? Now is the time to use it:</p>
<div class="doc_code">
<pre>
def main():
# Install standard binary operators.
# 1 is lowest possible precedence. 40 is the highest.
operator_precedence = {
'<': 10,
'+': 20,
'-': 20,
'*': 40
}
# Run the main "interpreter loop".
while True:
...
parser = Parser(Tokenize(raw), operator_precedence)
</pre>
</div>
<p>For the basic form of Kaleidoscope, we will only support 4 binary operators
(this can obviously be extended by you, our brave and intrepid reader). Having a
dictionary makes it easy to add new operators and makes it clear that the
algorithm doesn't depend on the specific operators involved, but it would be
easy enough to eliminate the map and hardcode the comparisons.<p>
<p>We also define a helper function to get the precedence of the current token,
or -1 if the token is not a binary operator:
</p>
<div class="doc_code">
<pre>
# Gets the precedence of the current token, or -1 if the token is not a binary
# operator.
def GetCurrentTokenPrecedence(self):
if isinstance(self.current, CharacterToken):
return self.binop_precedence.get(self.current.char, -1)
else:
return -1
</pre>
</div>
<p>With the helper above defined, we can now start parsing binary expressions.
The basic idea of operator precedence parsing is to break down an expression
with potentially ambiguous binary operators into pieces. Consider, for example,
the expression "a+b+(c+d)*e*f+g". Operator precedence parsing considers this
as a stream of primary expressions separated by binary operators. As such,
it will first parse the leading primary expression "a", then it will see the
pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses
are primary expressions, the binary expression parser doesn't need to worry
about nested subexpressions like (c+d) at all.
</p>
<p>
To start, an expression is a primary expression potentially followed by a
sequence of [binop,primaryexpr] pairs:</p>
<div class="doc_code">
<pre>
# expression ::= primary binoprhs
def ParseExpression(self):
left = self.ParsePrimary()
return self.ParseBinOpRHS(left, 0)
</pre>
</div>
<p><tt>ParseBinOpRHS</tt> is the function that parses the sequence of pairs for
us. It takes a precedence and a pointer to an expression for the part that has
been parsed so far. Note that "x" is a perfectly valid expression: As such,
"binoprhs" is allowed to be empty, in which case it returns the expression that
is passed into it. In our example above, the code passes the expression for "a"
into <tt>ParseBinOpRHS</tt> and the current token is "+".</p>
<p>The precedence value passed into <tt>ParseBinOpRHS</tt> indicates the <em>
minimal operator precedence</em> that the function is allowed to eat. For
example, if the current pair stream is [+, x] and <tt>ParseBinOpRHS</tt> is
passed in a precedence of 40, it will not consume any tokens (because the
precedence of '+' is only 20). With this in mind, <tt>ParseBinOpRHS</tt> starts
with:</p>
<div class="doc_code">
<pre>
# binoprhs ::= (operator primary)*
def ParseBinOpRHS(self, left, left_precedence):
# If this is a binary operator, find its precedence.
while True:
precedence = self.GetCurrentTokenPrecedence()
# If this is a binary operator that binds at least as tightly as the
# current one, consume it; otherwise we are done.
if precedence < left_precedence:
return left
</pre>
</div>
<p>This code gets the precedence of the current token and checks to see if if is
too low. Because we defined invalid tokens to have a precedence of -1, this
check implicitly knows that the pair-stream ends when the token stream runs out
of binary operators. If this check succeeds, we know that the token is a binary
operator and that it will be included in this expression:</p>
<div class="doc_code">
<pre>
binary_operator = self.current.char
self.Next() # eat the operator.
# Parse the primary expression after the binary operator.
right = self.ParsePrimary()
</pre>
</div>
<p>As such, this code eats (and remembers) the binary operator and then parses
the primary expression that follows. This builds up the whole pair, the first of
which is [+, b] for the running example.</p>
<p>Now that we parsed the left-hand side of an expression and one pair of the
RHS sequence, we have to decide which way the expression associates. In
particular, we could have "(a+b) binop unparsed" or "a + (b binop unparsed)".
To determine this, we look ahead at "binop" to determine its precedence and
compare it to BinOp's precedence (which is '+' in this case):</p>
<div class="doc_code">
<pre>
# If binary_operator binds less tightly with right than the operator after
# right, let the pending operator take right as its left.
next_precedence = self.GetCurrentTokenPrecedence()
if precedence < next_precedence:
</pre>
</div>
<p>If the precedence of the binop to the right of "RHS" is lower or equal to the
precedence of our current operator, then we know that the parentheses associate
as "(a+b) binop ...". In our example, the current operator is "+" and the next
operator is "+", we know that they have the same precedence. In this case we'll
create the AST node for "a+b", and then continue parsing:</p>
<div class="doc_code">
<pre>
if precedence < next_precedence:
... if body omitted ...
# Merge left/right.
left = BinaryOperatorExpressionNode(binary_operator, left, right);
</pre>
</div>
<p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
iteration of the loop, with "+" as the current token. The code above will eat,
remember, and parse "(c+d)" as the primary expression, which makes the
current pair equal to [+, (c+d)]. It will then evaluate the 'if' conditional
above with "*" as the binop to the right of the primary. In this case, the
precedence of "*" is higher than the precedence of "+" so the if condition will
be entered.</p>
<p>The critical question left here is "how can the if condition parse the right
hand side in full"? In particular, to build the AST correctly for our example,
it needs to get all of "(c+d)*e*f" as the RHS expression variable. The code to
do this is surprisingly simple (code from the above two blocks duplicated for
context):</p>
<div class="doc_code">
<pre>
# If binary_operator binds less tightly with right than the operator after
# right, let the pending operator take right as its left.
next_precedence = self.GetCurrentTokenPrecedence()
if precedence < next_precedence:
right = self.ParseBinOpRHS(right, precedence + 1)
# Merge left/right.
left = BinaryOperatorExpressionNode(binary_operator, left, right)
</pre>
</div>
<p>At this point, we know that the binary operator to the RHS of our primary
has higher precedence than the binop we are currently parsing. As such, we know
that any sequence of pairs whose operators are all higher precedence than "+"
should be parsed together and returned as "RHS". To do this, we recursively
invoke the <tt>ParseBinOpRHS</tt> function specifying "precedence + 1" as the
minimum precedence required for it to continue. In our example above, this
will cause it to return the AST node for "(c+d)*e*f" as RHS, which is then set
as the RHS of the '+' expression.</p>
<p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
and added to the AST. With this little bit of code (11 non-trivial lines), we
correctly handle fully general binary expression parsing in a very elegant way.
This was a whirlwind tour of this code, and it is somewhat subtle. I recommend
running through it with a few tough examples to see how it works.
</p>
<p>This wraps up handling of expressions. At this point, we can point the
parser at an arbitrary token stream and build an expression from it, stopping
at the first token that is not part of the expression. Next up we need to
handle function definitions, etc.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="parsertop">Parsing the Rest</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>
The next thing missing is handling of function prototypes. In Kaleidoscope,
these are used both for 'extern' function declarations as well as function body
definitions. The code to do this is straight-forward and not very interesting
(once you've survived expressions):
</p>
<div class="doc_code">
<pre>
# prototype ::= id '(' id* ')'
def ParsePrototype(self):
if not isinstance(self.current, IdentifierToken):
raise RuntimeError('Expected function name in prototype.')
function_name = self.current.name
self.Next() # eat function name.
if self.current != CharacterToken('('):
raise RuntimeError('Expected "(" in prototype.')
self.Next() # eat '('.
arg_names = []
while isinstance(self.current, IdentifierToken):
arg_names.append(self.current.name)
self.Next()
if self.current != CharacterToken(')'):
raise RuntimeError('Expected ")" in prototype.')
# Success.
self.Next() # eat ')'.
return PrototypeNode(function_name, arg_names)
</pre>
</div>
<p>Given this, a function definition is very simple, just a prototype plus
an expression to implement the body:</p>
<div class="doc_code">
<pre>
# definition ::= 'def' prototype expression
def ParseDefinition(self):
self.Next() # eat def.
proto = self.ParsePrototype()
body = self.ParseExpression()
return FunctionNode(proto, body)
</pre>
</div>
<p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
well as to support forward declaration of user functions. These 'extern's are
just prototypes with no body:</p>
<div class="doc_code">
<pre>
# external ::= 'extern' prototype
def ParseExtern(self):
self.Next() # eat extern.
return self.ParsePrototype()
</pre>
</div>
<p>Finally, we'll also let the user type in arbitrary top-level expressions and
evaluate them on the fly. We will handle this by defining anonymous nullary
(zero argument) functions for them:</p>
<div class="doc_code">
<pre>
# toplevelexpr ::= expression
def ParseTopLevelExpr(self):
proto = PrototypeNode('', [])
return FunctionNode(proto, self.ParseExpression())
</pre>
</div>
<p>Now that we have all the pieces, let's build a little driver that will let us
actually <em>execute</em> this code we've built!</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="driver">The Driver</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The driver for this simply invokes all of the parsing pieces with a top-level
dispatch loop. There isn't much interesting here, so I'll just include the
top-level loop. See <a href="#code">below</a> for full code.</p>
<div class="doc_code">
<pre>
# Run the main "interpreter loop".
while True:
print 'ready>',
try:
raw = raw_input()
except KeyboardInterrupt:
return
parser = Parser(Tokenize(raw), operator_precedence)
while True:
# top ::= definition | external | expression | EOF
if isinstance(parser.current, EOFToken):
break
if isinstance(parser.current, DefToken):
parser.HandleDefinition()
elif isinstance(parser.current, ExternToken):
parser.HandleExtern()
else:
parser.HandleTopLevelExpression()
</pre>
</div>
<p>Here we create a new <tt>Parser</tt> for each line read, and try to parse out
all the expressions, declarations and definitions in the line. We also allow the
user to quit using Ctrl+C.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="conclusions">Conclusions</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>With just under 330 lines of commented code (200 lines of non-comment,
non-blank code), we fully defined our minimal language, including a lexer,
parser, and AST builder. With this done, the executable will validate
Kaleidoscope code and tell us if it is grammatically invalid. For
example, here is a sample interaction:</p>
<div class="doc_code">
<pre>
$ <b>python kaleidoscope.py</b>
ready> <b>def foo(x y) x+foo(y, 4.0)</b>
Parsed a function definition.
ready> <b>def foo(x y) x+y y</b>
Parsed a function definition.
Parsed a top-level expression.
ready> <b>def foo(x y) x+y )</b>
Parsed a function definition.
Error: Unknown token when expecting an expression.
ready> <b>extern sin(a);</b>
Parsed an extern.
ready> <b>^C</b>
$
</pre>
</div>
<p>There is a lot of room for extension here. You can define new AST nodes,
extend the language in many ways, etc. In the
<a href="PythonLangImpl3.html">next installment</a>, we will describe how to
generate LLVM Intermediate Representation (IR) from the AST.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="code">Full Code Listing</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>
Here is the complete code listing for this and the previous chapter.
Note that it is fully self-contained: you don't need LLVM or any external
libraries at all for this.</p>
<div class="doc_code">
<pre>
#!/usr/bin/env python
import re
################################################################################
## Lexer
################################################################################
# The lexer yields one of these types for each token.
class EOFToken(object):
pass
class DefToken(object):
pass
class ExternToken(object):
pass
class IdentifierToken(object):
def __init__(self, name): self.name = name
class NumberToken(object):
def __init__(self, value): self.value = value
class CharacterToken(object):
def __init__(self, char): self.char = char
def __eq__(self, other):
return isinstance(other, CharacterToken) and self.char == other.char
def __ne__(self, other): return not self == other
# Regular expressions that tokens and comments of our language.
REGEX_NUMBER = re.compile('[0-9]+(?:\.[0-9]+)?')
REGEX_IDENTIFIER = re.compile('[a-zA-Z][a-zA-Z0-9]*')
REGEX_COMMENT = re.compile('#.*')
def Tokenize(string):
while string:
# Skip whitespace.
if string[0].isspace():
string = string[1:]
continue
# Run regexes.
comment_match = REGEX_COMMENT.match(string)
number_match = REGEX_NUMBER.match(string)
identifier_match = REGEX_IDENTIFIER.match(string)
# Check if any of the regexes matched and yield the appropriate result.
if comment_match:
comment = comment_match.group(0)
string = string[len(comment):]
elif number_match:
number = number_match.group(0)
yield NumberToken(float(number))
string = string[len(number):]
elif identifier_match:
identifier = identifier_match.group(0)
# Check if we matched a keyword.
if identifier == 'def':
yield DefToken()
elif identifier == 'extern':
yield ExternToken()
else:
yield IdentifierToken(identifier)
string = string[len(identifier):]
else:
# Yield the ASCII value of the unknown character.
yield CharacterToken(string[0])
string = string[1:]
yield EOFToken()
################################################################################
## Abstract Syntax Tree (aka Parse Tree)
################################################################################
# Base class for all expression nodes.
class ExpressionNode(object):
pass
# Expression class for numeric literals like "1.0".
class NumberExpressionNode(ExpressionNode):
def __init__(self, value):
self.value = value
# Expression class for referencing a variable, like "a".
class VariableExpressionNode(ExpressionNode):
def __init__(self, name):
self.name = name
# Expression class for a binary operator.
class BinaryOperatorExpressionNode(ExpressionNode):
def __init__(self, operator, left, right):
self.operator = operator
self.left = left
self.right = right
# Expression class for function calls.
class CallExpressionNode(ExpressionNode):
def __init__(self, callee, args):
self.callee = callee
self.args = args
# This class represents the "prototype" for a function, which captures its name,
# and its argument names (thus implicitly the number of arguments the function
# takes).
class PrototypeNode(object):
def __init__(self, name, args):
self.name = name
self.args = args
# This class represents a function definition itself.
class FunctionNode(object):
def __init__(self, prototype, body):
self.prototype = prototype
self.body = body
################################################################################
## Parser
################################################################################
class Parser(object):
def __init__(self, tokens, binop_precedence):
self.tokens = tokens
self.binop_precedence = binop_precedence
self.Next()
# Provide a simple token buffer. Parser.current is the current token the
# parser is looking at. Parser.Next() reads another token from the lexer and
# updates Parser.current with its results.
def Next(self):
self.current = self.tokens.next()
# Gets the precedence of the current token, or -1 if the token is not a binary
# operator.
def GetCurrentTokenPrecedence(self):
if isinstance(self.current, CharacterToken):
return self.binop_precedence.get(self.current.char, -1)
else:
return -1
# identifierexpr ::= identifier | identifier '(' expression* ')'
def ParseIdentifierExpr(self):
identifier_name = self.current.name
self.Next() # eat identifier.
if self.current != CharacterToken('('): # Simple variable reference.
return VariableExpressionNode(identifier_name)
# Call.
self.Next() # eat '('.
args = []
if self.current != CharacterToken(')'):
while True:
args.append(self.ParseExpression())
if self.current == CharacterToken(')'):
break
elif self.current != CharacterToken(','):
raise RuntimeError('Expected ")" or "," in argument list.')
self.Next()
self.Next() # eat ')'.
return CallExpressionNode(identifier_name, args)
# numberexpr ::= number
def ParseNumberExpr(self):
result = NumberExpressionNode(self.current.value)
self.Next() # consume the number.
return result
# parenexpr ::= '(' expression ')'
def ParseParenExpr(self):
self.Next() # eat '('.
contents = self.ParseExpression()
if self.current != CharacterToken(')'):
raise RuntimeError('Expected ")".')
self.Next() # eat ')'.
return contents
# primary ::= identifierexpr | numberexpr | parenexpr
def ParsePrimary(self):
if isinstance(self.current, IdentifierToken):
return self.ParseIdentifierExpr()
elif isinstance(self.current, NumberToken):
return self.ParseNumberExpr()
elif self.current == CharacterToken('('):
return self.ParseParenExpr()
else:
raise RuntimeError('Unknown token when expecting an expression.')
# binoprhs ::= (operator primary)*
def ParseBinOpRHS(self, left, left_precedence):
# If this is a binary operator, find its precedence.
while True:
precedence = self.GetCurrentTokenPrecedence()
# If this is a binary operator that binds at least as tightly as the
# current one, consume it; otherwise we are done.
if precedence < left_precedence:
return left
binary_operator = self.current.char
self.Next() # eat the operator.
# Parse the primary expression after the binary operator.
right = self.ParsePrimary()
# If binary_operator binds less tightly with right than the operator after
# right, let the pending operator take right as its left.
next_precedence = self.GetCurrentTokenPrecedence()
if precedence < next_precedence:
right = self.ParseBinOpRHS(right, precedence + 1)
# Merge left/right.
left = BinaryOperatorExpressionNode(binary_operator, left, right)
# expression ::= primary binoprhs
def ParseExpression(self):
left = self.ParsePrimary()
return self.ParseBinOpRHS(left, 0)
# prototype ::= id '(' id* ')'
def ParsePrototype(self):
if not isinstance(self.current, IdentifierToken):
raise RuntimeError('Expected function name in prototype.')
function_name = self.current.name
self.Next() # eat function name.
if self.current != CharacterToken('('):
raise RuntimeError('Expected "(" in prototype.')
self.Next() # eat '('.
arg_names = []
while isinstance(self.current, IdentifierToken):
arg_names.append(self.current.name)
self.Next()
if self.current != CharacterToken(')'):
raise RuntimeError('Expected ")" in prototype.')
# Success.
self.Next() # eat ')'.
return PrototypeNode(function_name, arg_names)
# definition ::= 'def' prototype expression
def ParseDefinition(self):
self.Next() # eat def.
proto = self.ParsePrototype()
body = self.ParseExpression()
return FunctionNode(proto, body)
# toplevelexpr ::= expression
def ParseTopLevelExpr(self):
proto = PrototypeNode('', [])
return FunctionNode(proto, self.ParseExpression())
# external ::= 'extern' prototype
def ParseExtern(self):
self.Next() # eat extern.
return self.ParsePrototype()
# Top-Level parsing
def HandleDefinition(self):
self.Handle(self.ParseDefinition, 'Parsed a function definition.')
def HandleExtern(self):
self.Handle(self.ParseExtern, 'Parsed an extern.')
def HandleTopLevelExpression(self):
self.Handle(self.ParseTopLevelExpr, 'Parsed a top-level expression.')
def Handle(self, function, message):
try:
function()
print message
except Exception, e:
print 'Error:', e
try:
self.Next() # Skip for error recovery.
except:
pass
################################################################################
## Main driver code.
################################################################################
def main():
# Install standard binary operators.
# 1 is lowest possible precedence. 40 is the highest.
operator_precedence = {
'<': 10,
'+': 20,
'-': 20,
'*': 40
}
# Run the main "interpreter loop".
while True:
print 'ready>',
try:
raw = raw_input()
except KeyboardInterrupt:
return
parser = Parser(Tokenize(raw), operator_precedence)
while True:
# top ::= definition | external | expression | EOF
if isinstance(parser.current, EOFToken):
break
if isinstance(parser.current, DefToken):
parser.HandleDefinition()
elif isinstance(parser.current, ExternToken):
parser.HandleExtern()
else:
parser.HandleTopLevelExpression()
if __name__ == '__main__':
main()
</pre>
</div>
<a href="PythonLangImpl3.html">Next: Implementing Code Generation to LLVM IR</a>
</div>
<!-- *********************************************************************** -->
<hr>
<address>
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
<a href="http://validator.w3.org/check/referer"><img
src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://max99x.com">Max Shawabkeh</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date$
</address>
</body>
</html>
|