1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Kaleidoscope: Adding JIT and Optimizer Support</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="author" content="Chris Lattner">
<meta name="author" content="Max Shawabkeh">
<link rel="stylesheet"
href="http://www.llvm.org/docs/llvm.css"
type="text/css">
</head>
<body>
<div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div>
<ul>
<li>
<a href="http://www.llvm.org/docs/tutorial/index.html">
Up to Tutorial Index
</a>
</li>
<li>Chapter 4
<ol>
<li><a href="#intro">Chapter 4 Introduction</a></li>
<li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
<li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
<li><a href="#jit">Adding a JIT Compiler</a></li>
<li><a href="#code">Full Code Listing</a></li>
</ol>
</li>
<li><a href="PythonLangImpl5.html">Chapter 5</a>: Extending the Language:
Control Flow</li>
</ul>
<div class="doc_author">
<p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
and <a href="http://max99x.com">Max Shawabkeh</a>
</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="intro">Chapter 4 Introduction</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>Welcome to Chapter 4 of the
"<a href="http://www.llvm.org/docs/tutorial/index.html">Implementing a language
with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple
language and added support for generating LLVM IR. This chapter describes
two new techniques: adding optimizer support to your language, and adding JIT
compiler support. These additions will demonstrate how to get nice, efficient
code for the Kaleidoscope language.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="trivialconstfold">Trivial Constant
Folding</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>
Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately,
it does not produce wonderful code. The LLVM Builder, however, does give us
obvious optimizations when compiling simple code:</p>
<div class="doc_code">
<pre>
ready> <b>def test(x) 1+2+x</b>
Read function definition:
define double @test(double %x) {
entry:
%addtmp = fadd double 3.000000e+00, %x
ret double %addtmp
}
</pre>
</div>
<p>This code is not a literal transcription of the AST built by parsing the
input. That would be:
<div class="doc_code">
<pre>
ready> <b>def test(x) 1+2+x</b>
Read function definition:
define double @test(double %x) {
entry:
%addtmp = fadd double 2.000000e+00, 1.000000e+00
%addtmp1 = fadd double %addtmp, %x
ret double %addtmp1
}
</pre>
</div>
<p>Constant folding, as seen above, in particular, is a very common and very
important optimization: so much so that many language implementors implement
constant folding support in their AST representation.</p>
<p>With LLVM, you don't need this support in the AST. Since all calls to build
LLVM IR go through the LLVM IR builder, the builder itself checked to see if
there was a constant folding opportunity when you call it. If so, it just does
the constant fold and return the constant instead of creating an instruction.
<p>Well, that was easy :). In practice, we recommend always using
<tt>llvm.core.Builder</tt> when generating code like this. It has no
"syntactic overhead" for its use (you don't have to uglify your compiler with
constant checks everywhere) and it can dramatically reduce the amount of
LLVM IR that is generated in some cases (particular for languages with a macro
preprocessor or that use a lot of constants).</p>
<p>On the other hand, the <tt>Builder</tt> is limited by the fact that it does
all of its analysis inline with the code as it is built. If you take a slightly
more complex example:</p>
<div class="doc_code">
<pre>
ready> <b>def test(x) (1+2+x)*(x+(1+2))</b>
Read a function definition:
define double @test(double %x) {
entry:
%addtmp = fadd double 3.000000e+00, %x ; <double> [#uses=1]
%addtmp1 = fadd double %x, 3.000000e+00 ; <double> [#uses=1]
%multmp = fmul double %addtmp, %addtmp1 ; <double> [#uses=1]
ret double %multmp
}
</pre>
</div>
<p>In this case, the LHS and RHS of the multiplication are the same value. We'd
really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
of computing "<tt>x+3</tt>" twice.</p>
<p>Unfortunately, no amount of local analysis will be able to detect and correct
this. This requires two transformations: reassociation of expressions (to
make the add's lexically identical) and Common Subexpression Elimination (CSE)
to delete the redundant add instruction. Fortunately, LLVM provides a broad
range of optimizations that you can use, in the form of "passes".</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="optimizerpasses">LLVM Optimization
Passes</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>LLVM provides many optimization passes, which do many different sorts of
things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
to the mistaken notion that one set of optimizations is right for all languages
and for all situations. LLVM allows a compiler implementor to make complete
decisions about what optimizations to use, in which order, and in what
situation.</p>
<p>As a concrete example, LLVM supports both "whole module" passes, which look
across as large of body of code as they can (often a whole file, but if run
at link time, this can be a substantial portion of the whole program). It also
supports and includes "per-function" passes which just operate on a single
function at a time, without looking at other functions. For more information
on passes and how they are run, see the
<a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">How to Write a
Pass</a> document and the <a href="http://www.llvm.org/docs/Passes.html">List of
LLVM Passes</a>.</p>
<p>For Kaleidoscope, we are currently generating functions on the fly, one at
a time, as the user types them in. We aren't shooting for the ultimate
optimization experience in this setting, but we also want to catch the easy and
quick stuff where possible. As such, we will choose to run a few per-function
optimizations as the user types the function in. If we wanted to make a "static
Kaleidoscope compiler", we would use exactly the code we have now, except that
we would defer running the optimizer until the entire file has been parsed.</p>
<p>In order to get per-function optimizations going, we need to set up a
<a href="http://www.llvm.org/docs/WritingAnLLVMPass.html#passmanager">
FunctionPassManager</a> to hold and organize the LLVM optimizations that we want
to run. Once we have that, we can add a set of optimizations to run. The code
looks like this:</p>
<div class="doc_code">
<pre>
# The function optimization passes manager.
g_llvm_pass_manager = FunctionPassManager.new(g_llvm_module)
# The LLVM execution engine.
g_llvm_executor = ExecutionEngine.new(g_llvm_module)
...
def main():
# Set up the optimizer pipeline. Start with registering info about how the
# target lays out data structures.
g_llvm_pass_manager.add(g_llvm_executor.target_data)
# Do simple "peephole" optimizations and bit-twiddling optzns.
g_llvm_pass_manager.add(PASS_INSTRUCTION_COMBINING)
# Reassociate expressions.
g_llvm_pass_manager.add(PASS_REASSOCIATE)
# Eliminate Common SubExpressions.
g_llvm_pass_manager.add(PASS_GVN)
# Simplify the control flow graph (deleting unreachable blocks, etc).
g_llvm_pass_manager.add(PASS_CFG_SIMPLIFICATION)
g_llvm_pass_manager.initialize()
</pre>
</div>
<p>This code defines a <tt>FunctionPassManager</tt>,
<tt>g_llvm_pass_manager</tt>. Once it is set up, we use a series of "add" calls
to add a bunch of LLVM passes. The first pass is basically boilerplate, it adds
a pass so that later optimizations know how the data structures in the program
are laid out. (The "<tt>g_llvm_executor</tt>" variable is related to the JIT,
which we will get to in the next section.) In this case, we choose to add 4
optimization passes. The passes we chose here are a pretty standard set of
"cleanup" optimizations that are useful for a wide variety of code. I won't
delve into what they do but, believe me, they are a good starting place :).</p>
<p>Once the pass manager is set up, we need to make use of it. We do this by
running it after our newly created function is constructed (in
<tt>FunctionNode.CodeGen</tt>), but before it is returned to the client:</p>
<div class="doc_code">
<pre>
return_value = self.body.CodeGen()
g_llvm_builder.ret(return_value)
# Validate the generated code, checking for consistency.
function.verify()
<b># Optimize the function.
g_llvm_pass_manager.run(function)</b>
</pre>
</div>
<p>As you can see, this is pretty straightforward. The
<tt>FunctionPassManager</tt> optimizes and updates the LLVM Function in place,
improving (hopefully) its body. With this in place, we can try our test above
again:</p>
<div class="doc_code">
<pre>
ready> <b>def test(x) (1+2+x)*(x+(1+2))</b>
Read a function definition:
define double @test(double %x) {
entry:
%addtmp = fadd double %x, 3.000000e+00 ; <double> [#uses=2]
%multmp = fmul double %addtmp, %addtmp ; <double> [#uses=1]
ret double %multmp
}
</pre>
</div>
<p>As expected, we now get our nicely optimized code, saving a floating point
add instruction from every execution of this function.</p>
<p>LLVM provides a wide variety of optimizations that can be used in certain
circumstances. Some
<a href="http://www.llvm.org/docs/Passes.html">documentation about the various
passes</a> is available, but it isn't very complete. Another good source of
ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
<tt>llvm-ld</tt> run to get started. The "<tt>opt</tt>" tool allows you to
experiment with passes from the command line, so you can see if they do
anything.</p>
<p>Now that we have reasonable code coming out of our front-end, lets talk about
executing it!</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>Code that is available in LLVM IR can have a wide variety of tools
applied to it. For example, you can run optimizations on it (as we did above),
you can dump it out in textual or binary forms, you can compile the code to an
assembly file (.s) for some target, or you can JIT compile it. The nice thing
about the LLVM IR representation is that it is the "common currency" between
many different parts of the compiler.
</p>
<p>In this section, we'll add JIT compiler support to our interpreter. The
basic idea that we want for Kaleidoscope is to have the user enter function
bodies as they do now, but immediately evaluate the top-level expressions they
type in. For example, if they type in "1 + 2", we should evaluate and print
out 3. If they define a function, they should be able to call it from the
command line.</p>
<p>In order to do this, we first declare and initialize the JIT. This is done
by adding and initializing a global variable:</p>
<div class="doc_code">
<pre>
# The LLVM execution engine.
g_llvm_executor = ExecutionEngine.new(g_llvm_module)
</pre>
</div>
<p>This creates an abstract "Execution Engine" which can be either a JIT
compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
for you if one is available for your platform, otherwise it will fall back to
the interpreter.</p>
<p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
We can use the <tt>run_function</tt> method of the execution engine to execute
a compiled function and get its return value. In our case, this means that we
can change the code that parses a top-level expression to look like this:</p>
<div class="doc_code">
<pre>
def HandleTopLevelExpression(self):
try:
function = self.ParseTopLevelExpr().CodeGen()
result = g_llvm_executor.run_function(function, [])
print 'Evaluated to:', result.as_real(Type.double())
except Exception, e:
print 'Error:', e
try:
self.Next() # Skip for error recovery.
except:
pass
</pre>
</div>
<p>Recall that we compile top-level expressions into a self-contained LLVM
function that takes no arguments and returns the computed double.</p>
<p>With just these two changes, lets see how Kaleidoscope works now!</p>
<div class="doc_code">
<pre>
ready> <b>4+5</b>
Read a top level expression:
define double @0() {
entry:
ret double 9.000000e+00
}
Evaluated to: 9.0
</pre>
</div>
<p>Well this looks like it is basically working. The dump of the function
shows the "no argument function that always returns double" that we synthesize
for each top-level expression that is typed in. This demonstrates very basic
functionality, but can we do more?</p>
<div class="doc_code">
<pre>
ready> <b>def testfunc(x y) x + y*2</b>
Read a function definition:
define double @testfunc(double %x, double %y) {
entry:
%multmp = fmul double %y, 2.000000e+00 ; <double> [#uses=1]
%addtmp = fadd double %multmp, %x ; <double> [#uses=1]
ret double %addtmp
}
ready> <b>testfunc(4, 10)</b>
Read a top level expression:
define double @0() {
entry:
%calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) ; <double> [#uses=1]
ret double %calltmp
}
<em>Evaluated to: 24.0</em>
</pre>
</div>
<p>This illustrates that we can now call user code, but there is something a bit
subtle going on here. Note that we only invoke the JIT on the anonymous
functions that <em>call testfunc</em>, but we never invoked it
on <em>testfunc</em> itself. What actually happened here is that the JIT
scanned for all non-JIT'd functions transitively called from the anonymous
function and compiled all of them before returning from <tt>run_function()</tt>.
</p>
<p>The JIT provides a number of other more advanced interfaces for things like
freeing allocated machine code, rejit'ing functions to update them, etc.
However, even with this simple code, we get some surprisingly powerful
capabilities - check this out (I removed the dump of the anonymous functions,
you should get the idea by now :) :</p>
<div class="doc_code">
<pre>
ready> <b>extern sin(x)</b>
Read an extern:
declare double @sin(double)
ready> <b>extern cos(x)</b>
Read an extern:
declare double @cos(double)
ready> <b>sin(1.0)</b>
<em>Evaluated to: 0.841470984808</em>
ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x)</b>
Read a function definition:
define double @foo(double %x) {
entry:
%calltmp = call double @sin(double %x) ; <double> [#uses=1]
%calltmp1 = call double @sin(double %x) ; <double> [#uses=1]
%multmp = fmul double %calltmp, %calltmp1 ; <double> [#uses=1]
%calltmp2 = call double @cos(double %x) ; <double> [#uses=1]
%calltmp3 = call double @cos(double %x) ; <double> [#uses=1]
%multmp4 = fmul double %calltmp2, %calltmp3 ; <double> [#uses=1]
%addtmp = fadd double %multmp, %multmp4 ; <double> [#uses=1]
ret double %addtmp
}
ready> <b>foo(4.0)</b>
<em>Evaluated to: 1.000000</em>
</pre>
</div>
<p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
simple: in this example, the JIT started execution of a function and got to a
function call. It realized that the function was not yet JIT compiled and
invoked the standard set of routines to resolve the function. In this case,
there is no body defined for the function, so the JIT ended up calling
"<tt>dlsym("sin")</tt>" on the Python process that is hosting our Kaleidoscope
prompt. Since "<tt>sin</tt>" is defined within the JIT's address space, it
simply patches up calls in the module to call the libm version of <tt>sin</tt>
directly.</p>
<p>One interesting application of this is that we can now extend the language
by writing arbitrary C++ code to implement operations. For example, we can
create a C file with the following simple function:
</p>
<div class="doc_code">
<pre>
#include <stdio.h>
double putchard(double x) {
putchar((char)x);
return 0;
}
</pre>
</div>
<p>We can then compile this into a shared library with GCC:</p>
<div class="doc_code">
<pre>
gcc -shared -fPIC -o putchard.so putchard.c
</pre>
</div>
<p>Now we can load this library into the Python process using
<tt>llvm.core.load_library_permanently</tt> and access it from Kaleidoscope to
produce simple output to the console:</p>
<div class="doc_code">
<pre>
>>> <b>import llvm.core</b>
>>> <b>llvm.core.load_library_permanently('/home/max/llvm-py-tutorial/putchard.so')</b>
>>> <b>import kaleidoscope</b>
>>> <b>kaleidoscope.main()</b>
ready> <b>extern putchard(x)</b>
Read an extern:
declare double @putchard(double)
ready> <b>putchard(65) + putchard(66) + putchard(67) + putchard(10)</b>
<em>ABC</em>
Evaluated to: 0.0
</pre>
</div>
<p>Similar code could be used to implement file I/O, console input, and many
other capabilities in Kaleidoscope.</p>
<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
this point, we can compile a non-Turing-complete programming language, optimize
and JIT compile it in a user-driven way. Next up we'll look into <a
href="PythonLangImpl5.html">extending the language with control flow
constructs</a>, tackling some interesting LLVM IR issues along the way.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="code">Full Code Listing</a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>
Here is the complete code listing for our running example, enhanced with the
LLVM JIT and optimizer:
</p>
<div class="doc_code">
<pre>
#!/usr/bin/env python
import re
from llvm.core import Module, Constant, Type, Function, Builder, FCMP_ULT
from llvm.ee import ExecutionEngine, TargetData
from llvm.passes import FunctionPassManager
from llvm.passes import (PASS_INSTRUCTION_COMBINING,
PASS_REASSOCIATE,
PASS_GVN,
PASS_CFG_SIMPLIFICATION)
################################################################################
## Globals
################################################################################
# The LLVM module, which holds all the IR code.
g_llvm_module = Module.new('my cool jit')
# The LLVM instruction builder. Created whenever a new function is entered.
g_llvm_builder = None
# A dictionary that keeps track of which values are defined in the current scope
# and what their LLVM representation is.
g_named_values = {}
# The function optimization passes manager.
g_llvm_pass_manager = FunctionPassManager.new(g_llvm_module)
# The LLVM execution engine.
g_llvm_executor = ExecutionEngine.new(g_llvm_module)
################################################################################
## Lexer
################################################################################
# The lexer yields one of these types for each token.
class EOFToken(object):
pass
class DefToken(object):
pass
class ExternToken(object):
pass
class IdentifierToken(object):
def __init__(self, name): self.name = name
class NumberToken(object):
def __init__(self, value): self.value = value
class CharacterToken(object):
def __init__(self, char): self.char = char
def __eq__(self, other):
return isinstance(other, CharacterToken) and self.char == other.char
def __ne__(self, other): return not self == other
# Regular expressions that tokens and comments of our language.
REGEX_NUMBER = re.compile('[0-9]+(?:\.[0-9]+)?')
REGEX_IDENTIFIER = re.compile('[a-zA-Z][a-zA-Z0-9]*')
REGEX_COMMENT = re.compile('#.*')
def Tokenize(string):
while string:
# Skip whitespace.
if string[0].isspace():
string = string[1:]
continue
# Run regexes.
comment_match = REGEX_COMMENT.match(string)
number_match = REGEX_NUMBER.match(string)
identifier_match = REGEX_IDENTIFIER.match(string)
# Check if any of the regexes matched and yield the appropriate result.
if comment_match:
comment = comment_match.group(0)
string = string[len(comment):]
elif number_match:
number = number_match.group(0)
yield NumberToken(float(number))
string = string[len(number):]
elif identifier_match:
identifier = identifier_match.group(0)
# Check if we matched a keyword.
if identifier == 'def':
yield DefToken()
elif identifier == 'extern':
yield ExternToken()
else:
yield IdentifierToken(identifier)
string = string[len(identifier):]
else:
# Yield the ASCII value of the unknown character.
yield CharacterToken(string[0])
string = string[1:]
yield EOFToken()
################################################################################
## Abstract Syntax Tree (aka Parse Tree)
################################################################################
# Base class for all expression nodes.
class ExpressionNode(object):
pass
# Expression class for numeric literals like "1.0".
class NumberExpressionNode(ExpressionNode):
def __init__(self, value):
self.value = value
def CodeGen(self):
return Constant.real(Type.double(), self.value)
# Expression class for referencing a variable, like "a".
class VariableExpressionNode(ExpressionNode):
def __init__(self, name):
self.name = name
def CodeGen(self):
if self.name in g_named_values:
return g_named_values[self.name]
else:
raise RuntimeError('Unknown variable name: ' + self.name)
# Expression class for a binary operator.
class BinaryOperatorExpressionNode(ExpressionNode):
def __init__(self, operator, left, right):
self.operator = operator
self.left = left
self.right = right
def CodeGen(self):
left = self.left.CodeGen()
right = self.right.CodeGen()
if self.operator == '+':
return g_llvm_builder.fadd(left, right, 'addtmp')
elif self.operator == '-':
return g_llvm_builder.fsub(left, right, 'subtmp')
elif self.operator == '*':
return g_llvm_builder.fmul(left, right, 'multmp')
elif self.operator == '<':
result = g_llvm_builder.fcmp(FCMP_ULT, left, right, 'cmptmp')
# Convert bool 0 or 1 to double 0.0 or 1.0.
return g_llvm_builder.uitofp(result, Type.double(), 'booltmp')
else:
raise RuntimeError('Unknown binary operator.')
# Expression class for function calls.
class CallExpressionNode(ExpressionNode):
def __init__(self, callee, args):
self.callee = callee
self.args = args
def CodeGen(self):
# Look up the name in the global module table.
callee = g_llvm_module.get_function_named(self.callee)
# Check for argument mismatch error.
if len(callee.args) != len(self.args):
raise RuntimeError('Incorrect number of arguments passed.')
arg_values = [i.CodeGen() for i in self.args]
return g_llvm_builder.call(callee, arg_values, 'calltmp')
# This class represents the "prototype" for a function, which captures its name,
# and its argument names (thus implicitly the number of arguments the function
# takes).
class PrototypeNode(object):
def __init__(self, name, args):
self.name = name
self.args = args
def CodeGen(self):
# Make the function type, eg. double(double,double).
funct_type = Type.function(
Type.double(), [Type.double()] * len(self.args), False)
function = Function.new(g_llvm_module, funct_type, self.name)
# If the name conflicted, there was already something with the same name.
# If it has a body, don't allow redefinition or reextern.
if function.name != self.name:
function.delete()
function = g_llvm_module.get_function_named(self.name)
# If the function already has a body, reject this.
if not function.is_declaration:
raise RuntimeError('Redefinition of function.')
# If F took a different number of args, reject.
if len(callee.args) != len(self.args):
raise RuntimeError('Redeclaration of a function with different number '
'of args.')
# Set names for all arguments and add them to the variables symbol table.
for arg, arg_name in zip(function.args, self.args):
arg.name = arg_name
# Add arguments to variable symbol table.
g_named_values[arg_name] = arg
return function
# This class represents a function definition itself.
class FunctionNode(object):
def __init__(self, prototype, body):
self.prototype = prototype
self.body = body
def CodeGen(self):
# Clear scope.
g_named_values.clear()
# Create a function object.
function = self.prototype.CodeGen()
# Create a new basic block to start insertion into.
block = function.append_basic_block('entry')
global g_llvm_builder
g_llvm_builder = Builder.new(block)
# Finish off the function.
try:
return_value = self.body.CodeGen()
g_llvm_builder.ret(return_value)
# Validate the generated code, checking for consistency.
function.verify()
# Optimize the function.
g_llvm_pass_manager.run(function)
except:
function.delete()
raise
return function
################################################################################
## Parser
################################################################################
class Parser(object):
def __init__(self, tokens, binop_precedence):
self.tokens = tokens
self.binop_precedence = binop_precedence
self.Next()
# Provide a simple token buffer. Parser.current is the current token the
# parser is looking at. Parser.Next() reads another token from the lexer and
# updates Parser.current with its results.
def Next(self):
self.current = self.tokens.next()
# Gets the precedence of the current token, or -1 if the token is not a binary
# operator.
def GetCurrentTokenPrecedence(self):
if isinstance(self.current, CharacterToken):
return self.binop_precedence.get(self.current.char, -1)
else:
return -1
# identifierexpr ::= identifier | identifier '(' expression* ')'
def ParseIdentifierExpr(self):
identifier_name = self.current.name
self.Next() # eat identifier.
if self.current != CharacterToken('('): # Simple variable reference.
return VariableExpressionNode(identifier_name)
# Call.
self.Next() # eat '('.
args = []
if self.current != CharacterToken(')'):
while True:
args.append(self.ParseExpression())
if self.current == CharacterToken(')'):
break
elif self.current != CharacterToken(','):
raise RuntimeError('Expected ")" or "," in argument list.')
self.Next()
self.Next() # eat ')'.
return CallExpressionNode(identifier_name, args)
# numberexpr ::= number
def ParseNumberExpr(self):
result = NumberExpressionNode(self.current.value)
self.Next() # consume the number.
return result
# parenexpr ::= '(' expression ')'
def ParseParenExpr(self):
self.Next() # eat '('.
contents = self.ParseExpression()
if self.current != CharacterToken(')'):
raise RuntimeError('Expected ")".')
self.Next() # eat ')'.
return contents
# primary ::= identifierexpr | numberexpr | parenexpr
def ParsePrimary(self):
if isinstance(self.current, IdentifierToken):
return self.ParseIdentifierExpr()
elif isinstance(self.current, NumberToken):
return self.ParseNumberExpr()
elif self.current == CharacterToken('('):
return self.ParseParenExpr()
else:
raise RuntimeError('Unknown token when expecting an expression.')
# binoprhs ::= (operator primary)*
def ParseBinOpRHS(self, left, left_precedence):
# If this is a binary operator, find its precedence.
while True:
precedence = self.GetCurrentTokenPrecedence()
# If this is a binary operator that binds at least as tightly as the
# current one, consume it; otherwise we are done.
if precedence < left_precedence:
return left
binary_operator = self.current.char
self.Next() # eat the operator.
# Parse the primary expression after the binary operator.
right = self.ParsePrimary()
# If binary_operator binds less tightly with right than the operator after
# right, let the pending operator take right as its left.
next_precedence = self.GetCurrentTokenPrecedence()
if precedence < next_precedence:
right = self.ParseBinOpRHS(right, precedence + 1)
# Merge left/right.
left = BinaryOperatorExpressionNode(binary_operator, left, right)
# expression ::= primary binoprhs
def ParseExpression(self):
left = self.ParsePrimary()
return self.ParseBinOpRHS(left, 0)
# prototype ::= id '(' id* ')'
def ParsePrototype(self):
if not isinstance(self.current, IdentifierToken):
raise RuntimeError('Expected function name in prototype.')
function_name = self.current.name
self.Next() # eat function name.
if self.current != CharacterToken('('):
raise RuntimeError('Expected "(" in prototype.')
self.Next() # eat '('.
arg_names = []
while isinstance(self.current, IdentifierToken):
arg_names.append(self.current.name)
self.Next()
if self.current != CharacterToken(')'):
raise RuntimeError('Expected ")" in prototype.')
# Success.
self.Next() # eat ')'.
return PrototypeNode(function_name, arg_names)
# definition ::= 'def' prototype expression
def ParseDefinition(self):
self.Next() # eat def.
proto = self.ParsePrototype()
body = self.ParseExpression()
return FunctionNode(proto, body)
# toplevelexpr ::= expression
def ParseTopLevelExpr(self):
proto = PrototypeNode('', [])
return FunctionNode(proto, self.ParseExpression())
# external ::= 'extern' prototype
def ParseExtern(self):
self.Next() # eat extern.
return self.ParsePrototype()
# Top-Level parsing
def HandleDefinition(self):
self.Handle(self.ParseDefinition, 'Read a function definition:')
def HandleExtern(self):
self.Handle(self.ParseExtern, 'Read an extern:')
def HandleTopLevelExpression(self):
try:
function = self.ParseTopLevelExpr().CodeGen()
result = g_llvm_executor.run_function(function, [])
print 'Evaluated to:', result.as_real(Type.double())
except Exception, e:
print 'Error:', e
try:
self.Next() # Skip for error recovery.
except:
pass
def Handle(self, function, message):
try:
print message, function().CodeGen()
except Exception, e:
print 'Error:', e
try:
self.Next() # Skip for error recovery.
except:
pass
################################################################################
## Main driver code.
################################################################################
def main():
# Set up the optimizer pipeline. Start with registering info about how the
# target lays out data structures.
g_llvm_pass_manager.add(g_llvm_executor.target_data)
# Do simple "peephole" optimizations and bit-twiddling optzns.
g_llvm_pass_manager.add(PASS_INSTRUCTION_COMBINING)
# Reassociate expressions.
g_llvm_pass_manager.add(PASS_REASSOCIATE)
# Eliminate Common SubExpressions.
g_llvm_pass_manager.add(PASS_GVN)
# Simplify the control flow graph (deleting unreachable blocks, etc).
g_llvm_pass_manager.add(PASS_CFG_SIMPLIFICATION)
g_llvm_pass_manager.initialize()
# Install standard binary operators.
# 1 is lowest possible precedence. 40 is the highest.
operator_precedence = {
'<': 10,
'+': 20,
'-': 20,
'*': 40
}
# Run the main "interpreter loop".
while True:
print 'ready>',
try:
raw = raw_input()
except KeyboardInterrupt:
break
parser = Parser(Tokenize(raw), operator_precedence)
while True:
# top ::= definition | external | expression | EOF
if isinstance(parser.current, EOFToken):
break
if isinstance(parser.current, DefToken):
parser.HandleDefinition()
elif isinstance(parser.current, ExternToken):
parser.HandleExtern()
else:
parser.HandleTopLevelExpression()
# Print out all of the generated code.
print '\n', g_llvm_module
if __name__ == '__main__':
main()
</pre>
</div>
<a href="PythonLangImpl5.html">Next: Extending the language: control flow</a>
</div>
<!-- *********************************************************************** -->
<hr>
<address>
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
<a href="http://validator.w3.org/check/referer"><img
src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://max99x.com">Max Shawabkeh</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date$
</address>
</body>
</html>
|