1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
//===-- BackgroundQueue.cpp - Task queue for background index -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "index/Background.h"
#include "support/Logger.h"
namespace clang {
namespace clangd {
static std::atomic<bool> PreventStarvation = {false};
void BackgroundQueue::preventThreadStarvationInTests() {
PreventStarvation.store(true);
}
void BackgroundQueue::work(std::function<void()> OnIdle) {
while (true) {
llvm::Optional<Task> Task;
{
std::unique_lock<std::mutex> Lock(Mu);
CV.wait(Lock, [&] { return ShouldStop || !Queue.empty(); });
if (ShouldStop) {
Queue.clear();
CV.notify_all();
return;
}
++Stat.Active;
std::pop_heap(Queue.begin(), Queue.end());
Task = std::move(Queue.back());
Queue.pop_back();
notifyProgress();
}
if (Task->ThreadPri != llvm::ThreadPriority::Default &&
!PreventStarvation.load())
llvm::set_thread_priority(Task->ThreadPri);
Task->Run();
if (Task->ThreadPri != llvm::ThreadPriority::Default)
llvm::set_thread_priority(llvm::ThreadPriority::Default);
{
std::unique_lock<std::mutex> Lock(Mu);
++Stat.Completed;
if (Stat.Active == 1 && Queue.empty()) {
// We just finished the last item, the queue is going idle.
assert(ShouldStop || Stat.Completed == Stat.Enqueued);
Stat.LastIdle = Stat.Completed;
if (OnIdle) {
Lock.unlock();
OnIdle();
Lock.lock();
}
}
assert(Stat.Active > 0 && "before decrementing");
--Stat.Active;
notifyProgress();
}
CV.notify_all();
}
}
void BackgroundQueue::stop() {
{
std::lock_guard<std::mutex> QueueLock(Mu);
ShouldStop = true;
}
CV.notify_all();
}
void BackgroundQueue::push(Task T) {
{
std::lock_guard<std::mutex> Lock(Mu);
T.QueuePri = std::max(T.QueuePri, Boosts.lookup(T.Tag));
Queue.push_back(std::move(T));
std::push_heap(Queue.begin(), Queue.end());
++Stat.Enqueued;
notifyProgress();
}
CV.notify_all();
}
void BackgroundQueue::append(std::vector<Task> Tasks) {
{
std::lock_guard<std::mutex> Lock(Mu);
for (Task &T : Tasks)
T.QueuePri = std::max(T.QueuePri, Boosts.lookup(T.Tag));
std::move(Tasks.begin(), Tasks.end(), std::back_inserter(Queue));
std::make_heap(Queue.begin(), Queue.end());
Stat.Enqueued += Tasks.size();
notifyProgress();
}
CV.notify_all();
}
void BackgroundQueue::boost(llvm::StringRef Tag, unsigned NewPriority) {
std::lock_guard<std::mutex> Lock(Mu);
unsigned &Boost = Boosts[Tag];
bool Increase = NewPriority > Boost;
Boost = NewPriority;
if (!Increase)
return; // existing tasks unaffected
unsigned Changes = 0;
for (Task &T : Queue)
if (Tag == T.Tag && NewPriority > T.QueuePri) {
T.QueuePri = NewPriority;
++Changes;
}
if (Changes)
std::make_heap(Queue.begin(), Queue.end());
// No need to signal, only rearranged items in the queue.
}
bool BackgroundQueue::blockUntilIdleForTest(
llvm::Optional<double> TimeoutSeconds) {
std::unique_lock<std::mutex> Lock(Mu);
return wait(Lock, CV, timeoutSeconds(TimeoutSeconds),
[&] { return Queue.empty() && Stat.Active == 0; });
}
void BackgroundQueue::notifyProgress() const {
dlog("Queue: {0}/{1} ({2} active). Last idle at {3}", Stat.Completed,
Stat.Enqueued, Stat.Active, Stat.LastIdle);
if (OnProgress)
OnProgress(Stat);
}
} // namespace clangd
} // namespace clang
|