1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++17 %s
// Attempt to test each rule for forming associated namespaces
// and classes as described in [basic.lookup.argdep]p2.
// fundamental type: no associated namespace and no associated class
namespace adl_fundamental_type {
constexpr int g(char) { return 1; } // #1
template <typename T> constexpr int foo(T t) { return g(t); }
constexpr int g(int) { return 2; } // #2 not found
void test() {
static_assert(foo(0) == 1); // ok, #1
}
}
// class type:
// associated classes: itself, the class of which it is a member (if any),
// direct and indirect base classes
// associated namespaces: innermost enclosing namespaces of associated classes
namespace adl_class_type {
// associated class: itself, simple case
namespace X1 {
namespace N {
struct S {};
void f(S); // found
}
void g(N::S); // not found
};
void test1() {
f(X1::N::S{}); // ok
g(X1::N::S{}); // expected-error {{use of undeclared identifier}}
}
// associated class: itself, local type
namespace X2 {
auto foo() {
struct S {} s;
return s;
}
using S = decltype(foo());
void f(S); // #1
}
void test2() {
f(X2::S{}); // This is well-formed; X2 is the innermost enclosing namespace
// of the local struct S. Calls #1.
}
// associated class: the parent class
namespace X3 {
struct S {
struct T {};
friend void f(T);
};
}
void test3() {
f(X3::S::T{}); // ok
}
// associated class: direct and indirect base classes
namespace X4 {
namespace IndirectBaseNamespace {
struct IndirectBase {};
void f(IndirectBase); // #1
}
namespace DirectBaseNamespace {
struct DirectBase : IndirectBaseNamespace::IndirectBase {};
void g(DirectBase); // #2
}
struct S : DirectBaseNamespace::DirectBase {};
}
void test4() {
f(X4::S{}); // ok, #1
g(X4::S{}); // ok, #2
}
// associated class: itself, lambda
namespace X5 {
namespace N {
auto get_lambda() { return [](){}; }
void f(decltype(get_lambda()));
}
void test5() {
auto lambda = N::get_lambda();
f(lambda); // ok
}
}
// The parameter types and return type of a lambda's operator() do not
// contribute to the associated namespaces and classes of the lambda itself.
namespace X6 {
namespace N {
struct A {};
template<class T> constexpr int f(T) { return 1; }
}
constexpr int f(N::A (*)()) { return 2; }
constexpr int f(void (*)(N::A)) { return 3; }
void test() {
constexpr auto lambda = []() -> N::A { return {}; };
static_assert(f(lambda) == 2);
constexpr auto lambda2 = [](N::A) {};
static_assert(f(lambda2) == 3);
}
}
} // namespace adl_class_type
// class template specialization: as for class type plus
// for non-type template arguments:
// - nothing
// for type template arguments:
// - associated namespaces and classes of the type template arguments
// for template template arguments:
// - namespaces of which template template arguments are member of
// - classes of which member template used as template template arguments
// are member of
namespace adl_class_template_specialization_type {
// non-type template argument
namespace X1 {
namespace BaseNamespace { struct Base {}; }
namespace N { struct S : BaseNamespace::Base {}; }
template <N::S *> struct C {};
namespace N {
template <S *p> void X1_f(C<p>); // #1
}
namespace BaseNamespace {
template <N::S *p> void X1_g(C<p>); // #2
}
template <N::S *p> void X1_h(C<p>); // #3
}
void test1() {
constexpr X1::N::S *p = nullptr;
X1::C<p> c;
X1_f(c); // N is not added to the set of associated namespaces
// and #1 is not found...
// expected-error@-2 {{use of undeclared identifier}}
X1_g(c); // ... nor is #2 ...
// expected-error@-1 {{use of undeclared identifier}}
X1_h(c); // ... but the namespace X1 is added and #3 is found.
}
// type template argument
namespace X2 {
template <typename T> struct C {};
namespace BaseNamespace { struct Base {}; }
namespace N { struct S : BaseNamespace::Base {}; }
namespace N {
template <typename T> void X2_f(C<T>); // #1
}
namespace BaseNamespace {
template <typename T> void X2_g(C<T>); // #2
}
template <typename T> void X2_h(C<T>); // #2
}
void test2() {
X2::C<X2::N::S> c;
X2_f(c); // N is added to the set of associated namespaces and #1 is found.
X2_g(c); // Similarly BaseNamespace is added and #2 is found.
X2_h(c); // As before, X2 is also added and #3 is found.
}
// template template argument
namespace X3 {
template <template <typename> class TT> struct C {};
namespace N {
template <typename T> struct Z {};
void X3_f(C<Z>); // #1
}
struct M {
template <typename T> struct Z {};
friend void X3_g(C<Z>); // #2
};
}
void test3() {
X3::C<X3::N::Z> c1;
X3::C<X3::M::Z> c2;
X3_f(c1); // ok, namespace N is added, #1
X3_g(c2); // ok, struct M is added, #2
}
}
// enumeration type:
// associated namespace: innermost enclosing namespace of its declaration.
// associated class: if the enumeration is a class member, the member's class.
namespace adl_enumeration_type {
namespace N {
enum E : int;
void f(E);
struct S {
enum F : int;
friend void g(F);
};
auto foo() {
enum G {} g;
return g;
}
using G = decltype(foo());
void h(G);
}
void test() {
N::E e;
f(e); // ok
N::S::F f;
g(f); // ok
N::G g;
h(g); // ok
}
}
// pointer and reference type:
// associated namespaces and classes of the pointee type
// array type:
// associated namespaces and classes of the base type
namespace adl_point_array_reference_type {
namespace N {
struct S {};
void f(S *);
void f(S &);
}
void test() {
N::S *p;
f(p); // ok
extern N::S &r;
f(r); // ok
N::S a[2];
f(a); // ok
}
}
// function type:
// associated namespaces and classes of the function parameter types
// and the return type.
namespace adl_function_type {
namespace M { struct T; }
namespace N {
struct S {};
void f(S (*)(M::T));
};
namespace M {
struct T {};
void g(N::S (*)(T));
}
void test() {
extern N::S x(M::T);
f(x); // ok
g(x); // ok
}
}
// pointer to member function:
// associated namespaces and classes of the class, parameter types
// and return type.
namespace adl_pointer_to_member_function {
namespace M { struct C; }
namespace L { struct T; }
namespace N {
struct S {};
void f(N::S (M::C::*)(L::T));
}
namespace L {
struct T {};
void g(N::S (M::C::*)(L::T));
}
namespace M {
struct C {};
void h(N::S (M::C::*)(L::T));
}
void test() {
N::S (M::C::*p)(L::T);
f(p); // ok
g(p); // ok
h(p); // ok
}
}
// pointer to member:
// associated namespaces and classes of the class and of the member type.
namespace adl_pointer_to_member {
namespace M { struct C; }
namespace N {
struct S {};
void f(N::S (M::C::*));
}
namespace M {
struct C {};
void g(N::S (M::C::*));
}
void test() {
N::S (M::C::*p);
f(p); // ok
g(p); // ok
}
}
// [...] if the argument is the name or address of a set of overloaded
// functions and/or function templates, its associated classes and namespaces
// are the union of those associated with each of the members of the set,
// i.e., the classes and namespaces associated with its parameter types and
// return type.
//
// Additionally, if the aforementioned set of overloaded functions is named
// with a template-id, its associated classes and namespaces also include
// those of its type template-arguments and its template template-arguments.
//
// CWG 33 for the union rule. CWG 997 for the template-id rule.
namespace adl_overload_set {
namespace N {
struct S {};
constexpr int f(int (*g)()) { return g(); }
// expected-note@-1 2{{'N::f' declared here}}
template <typename T> struct Q;
}
constexpr int g1() { return 1; }
constexpr int g1(N::S) { return 2; }
template <typename T> constexpr int g2() { return 3; }
// Inspired from CWG 997.
constexpr int g3() { return 4; }
template <typename T> constexpr int g3(T, N::Q<T>) { return 5; }
void test() {
static_assert(f(g1) == 1, ""); // Well-formed from the union rule above
static_assert(f(g2<N::S>) == 3, ""); // FIXME: Well-formed from the template-id rule above.
// expected-error@-1 {{use of undeclared}}
// A objection was raised during review against implementing the
// template-id rule. Currently only GCC implements it. Implementing
// it would weaken the argument to remove it in the future since
// actual real code might start to depend on it.
static_assert(f(g3) == 4, ""); // FIXME: Also well-formed from the union rule.
// expected-error@-1 {{use of undeclared}}
}
}
|