1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
//===-- local_cache.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_LOCAL_CACHE_H_
#define SCUDO_LOCAL_CACHE_H_
#include "internal_defs.h"
#include "report.h"
#include "stats.h"
namespace scudo {
template <class SizeClassAllocator> struct SizeClassAllocatorLocalCache {
typedef typename SizeClassAllocator::SizeClassMap SizeClassMap;
struct TransferBatch {
static const u32 MaxNumCached = SizeClassMap::MaxNumCachedHint;
void setFromArray(void **Array, u32 N) {
DCHECK_LE(N, MaxNumCached);
Count = N;
memcpy(Batch, Array, sizeof(void *) * Count);
}
void clear() { Count = 0; }
void add(void *P) {
DCHECK_LT(Count, MaxNumCached);
Batch[Count++] = P;
}
void copyToArray(void **Array) const {
memcpy(Array, Batch, sizeof(void *) * Count);
}
u32 getCount() const { return Count; }
void *get(u32 I) const {
DCHECK_LE(I, Count);
return Batch[I];
}
static u32 getMaxCached(uptr Size) {
return Min(MaxNumCached, SizeClassMap::getMaxCachedHint(Size));
}
TransferBatch *Next;
private:
u32 Count;
void *Batch[MaxNumCached];
};
void initLinkerInitialized(GlobalStats *S, SizeClassAllocator *A) {
Stats.initLinkerInitialized();
if (LIKELY(S))
S->link(&Stats);
Allocator = A;
}
void init(GlobalStats *S, SizeClassAllocator *A) {
memset(this, 0, sizeof(*this));
initLinkerInitialized(S, A);
}
void destroy(GlobalStats *S) {
drain();
if (LIKELY(S))
S->unlink(&Stats);
}
void *allocate(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
if (C->Count == 0) {
if (UNLIKELY(!refill(C, ClassId)))
return nullptr;
DCHECK_GT(C->Count, 0);
}
// We read ClassSize first before accessing Chunks because it's adjacent to
// Count, while Chunks might be further off (depending on Count). That keeps
// the memory accesses in close quarters.
const uptr ClassSize = C->ClassSize;
void *P = C->Chunks[--C->Count];
// The jury is still out as to whether any kind of PREFETCH here increases
// performance. It definitely decreases performance on Android though.
// if (!SCUDO_ANDROID) PREFETCH(P);
Stats.add(StatAllocated, ClassSize);
Stats.sub(StatFree, ClassSize);
return P;
}
void deallocate(uptr ClassId, void *P) {
CHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
// We still have to initialize the cache in the event that the first heap
// operation in a thread is a deallocation.
initCacheMaybe(C);
if (C->Count == C->MaxCount)
drain(C, ClassId);
// See comment in allocate() about memory accesses.
const uptr ClassSize = C->ClassSize;
C->Chunks[C->Count++] = P;
Stats.sub(StatAllocated, ClassSize);
Stats.add(StatFree, ClassSize);
}
void drain() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *C = &PerClassArray[I];
while (C->Count > 0)
drain(C, I);
}
}
TransferBatch *createBatch(uptr ClassId, void *B) {
if (ClassId != SizeClassMap::BatchClassId)
B = allocate(SizeClassMap::BatchClassId);
return reinterpret_cast<TransferBatch *>(B);
}
LocalStats &getStats() { return Stats; }
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
struct PerClass {
u32 Count;
u32 MaxCount;
uptr ClassSize;
void *Chunks[2 * TransferBatch::MaxNumCached];
};
PerClass PerClassArray[NumClasses];
LocalStats Stats;
SizeClassAllocator *Allocator;
ALWAYS_INLINE void initCacheMaybe(PerClass *C) {
if (LIKELY(C->MaxCount))
return;
initCache();
DCHECK_NE(C->MaxCount, 0U);
}
NOINLINE void initCache() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *P = &PerClassArray[I];
const uptr Size = SizeClassAllocator::getSizeByClassId(I);
P->MaxCount = 2 * TransferBatch::getMaxCached(Size);
P->ClassSize = Size;
}
}
void destroyBatch(uptr ClassId, void *B) {
if (ClassId != SizeClassMap::BatchClassId)
deallocate(SizeClassMap::BatchClassId, B);
}
NOINLINE bool refill(PerClass *C, uptr ClassId) {
initCacheMaybe(C);
TransferBatch *B = Allocator->popBatch(this, ClassId);
if (UNLIKELY(!B))
return false;
DCHECK_GT(B->getCount(), 0);
C->Count = B->getCount();
B->copyToArray(C->Chunks);
destroyBatch(ClassId, B);
return true;
}
NOINLINE void drain(PerClass *C, uptr ClassId) {
const u32 Count = Min(C->MaxCount / 2, C->Count);
TransferBatch *B = createBatch(ClassId, C->Chunks[0]);
if (UNLIKELY(!B))
reportOutOfMemory(
SizeClassAllocator::getSizeByClassId(SizeClassMap::BatchClassId));
B->setFromArray(&C->Chunks[0], Count);
C->Count -= Count;
for (uptr I = 0; I < C->Count; I++)
C->Chunks[I] = C->Chunks[I + Count];
Allocator->pushBatch(ClassId, B);
}
};
} // namespace scudo
#endif // SCUDO_LOCAL_CACHE_H_
|