1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
//===-- memtag.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_MEMTAG_H_
#define SCUDO_MEMTAG_H_
#include "internal_defs.h"
#if SCUDO_LINUX
#include <sys/auxv.h>
#include <sys/prctl.h>
#if defined(ANDROID_EXPERIMENTAL_MTE)
#include <bionic/mte_kernel.h>
#endif
#endif
namespace scudo {
#if defined(__aarch64__) || defined(SCUDO_FUZZ)
inline constexpr bool archSupportsMemoryTagging() { return true; }
inline constexpr uptr archMemoryTagGranuleSize() { return 16; }
inline uptr untagPointer(uptr Ptr) { return Ptr & ((1ULL << 56) - 1); }
inline uint8_t extractTag(uptr Ptr) {
return (Ptr >> 56) & 0xf;
}
#else
inline constexpr bool archSupportsMemoryTagging() { return false; }
inline uptr archMemoryTagGranuleSize() {
UNREACHABLE("memory tagging not supported");
}
inline uptr untagPointer(uptr Ptr) {
(void)Ptr;
UNREACHABLE("memory tagging not supported");
}
inline uint8_t extractTag(uptr Ptr) {
(void)Ptr;
UNREACHABLE("memory tagging not supported");
}
#endif
#if defined(__aarch64__)
inline bool systemSupportsMemoryTagging() {
#if defined(ANDROID_EXPERIMENTAL_MTE)
return getauxval(AT_HWCAP2) & HWCAP2_MTE;
#else
return false;
#endif
}
inline bool systemDetectsMemoryTagFaultsTestOnly() {
#if defined(ANDROID_EXPERIMENTAL_MTE)
return (prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) & PR_MTE_TCF_MASK) !=
PR_MTE_TCF_NONE;
#else
return false;
#endif
}
inline void disableMemoryTagChecksTestOnly() {
__asm__ __volatile__(".arch_extension mte; msr tco, #1");
}
inline void enableMemoryTagChecksTestOnly() {
__asm__ __volatile__(".arch_extension mte; msr tco, #0");
}
class ScopedDisableMemoryTagChecks {
size_t PrevTCO;
public:
ScopedDisableMemoryTagChecks() {
__asm__ __volatile__(".arch_extension mte; mrs %0, tco; msr tco, #1"
: "=r"(PrevTCO));
}
~ScopedDisableMemoryTagChecks() {
__asm__ __volatile__(".arch_extension mte; msr tco, %0" : : "r"(PrevTCO));
}
};
inline void setRandomTag(void *Ptr, uptr Size, uptr ExcludeMask,
uptr *TaggedBegin, uptr *TaggedEnd) {
void *End;
__asm__ __volatile__(
R"(
.arch_extension mte
// Set a random tag for Ptr in TaggedPtr. This needs to happen even if
// Size = 0 so that TaggedPtr ends up pointing at a valid address.
irg %[TaggedPtr], %[Ptr], %[ExcludeMask]
mov %[Cur], %[TaggedPtr]
// Skip the loop if Size = 0. We don't want to do any tagging in this case.
cbz %[Size], 2f
// Set the memory tag of the region
// [TaggedPtr, TaggedPtr + roundUpTo(Size, 16))
// to the pointer tag stored in TaggedPtr.
add %[End], %[TaggedPtr], %[Size]
1:
stzg %[Cur], [%[Cur]], #16
cmp %[Cur], %[End]
b.lt 1b
2:
)"
:
[TaggedPtr] "=&r"(*TaggedBegin), [Cur] "=&r"(*TaggedEnd), [End] "=&r"(End)
: [Ptr] "r"(Ptr), [Size] "r"(Size), [ExcludeMask] "r"(ExcludeMask)
: "memory");
}
inline void *prepareTaggedChunk(void *Ptr, uptr Size, uptr BlockEnd) {
// Prepare the granule before the chunk to store the chunk header by setting
// its tag to 0. Normally its tag will already be 0, but in the case where a
// chunk holding a low alignment allocation is reused for a higher alignment
// allocation, the chunk may already have a non-zero tag from the previous
// allocation.
__asm__ __volatile__(".arch_extension mte; stg %0, [%0, #-16]"
:
: "r"(Ptr)
: "memory");
uptr TaggedBegin, TaggedEnd;
setRandomTag(Ptr, Size, 0, &TaggedBegin, &TaggedEnd);
// Finally, set the tag of the granule past the end of the allocation to 0,
// to catch linear overflows even if a previous larger allocation used the
// same block and tag. Only do this if the granule past the end is in our
// block, because this would otherwise lead to a SEGV if the allocation
// covers the entire block and our block is at the end of a mapping. The tag
// of the next block's header granule will be set to 0, so it will serve the
// purpose of catching linear overflows in this case.
uptr UntaggedEnd = untagPointer(TaggedEnd);
if (UntaggedEnd != BlockEnd)
__asm__ __volatile__(".arch_extension mte; stg %0, [%0]"
:
: "r"(UntaggedEnd)
: "memory");
return reinterpret_cast<void *>(TaggedBegin);
}
inline void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr BlockEnd) {
uptr RoundOldPtr = roundUpTo(OldPtr, 16);
if (RoundOldPtr >= NewPtr) {
// If the allocation is shrinking we just need to set the tag past the end
// of the allocation to 0. See explanation in prepareTaggedChunk above.
uptr RoundNewPtr = untagPointer(roundUpTo(NewPtr, 16));
if (RoundNewPtr != BlockEnd)
__asm__ __volatile__(".arch_extension mte; stg %0, [%0]"
:
: "r"(RoundNewPtr)
: "memory");
return;
}
__asm__ __volatile__(R"(
.arch_extension mte
// Set the memory tag of the region
// [roundUpTo(OldPtr, 16), roundUpTo(NewPtr, 16))
// to the pointer tag stored in OldPtr.
1:
stzg %[Cur], [%[Cur]], #16
cmp %[Cur], %[End]
b.lt 1b
// Finally, set the tag of the granule past the end of the allocation to 0.
and %[Cur], %[Cur], #(1 << 56) - 1
cmp %[Cur], %[BlockEnd]
b.eq 2f
stg %[Cur], [%[Cur]]
2:
)"
: [ Cur ] "+&r"(RoundOldPtr), [ End ] "+&r"(NewPtr)
: [ BlockEnd ] "r"(BlockEnd)
: "memory");
}
inline uptr loadTag(uptr Ptr) {
uptr TaggedPtr = Ptr;
__asm__ __volatile__(".arch_extension mte; ldg %0, [%0]"
: "+r"(TaggedPtr)
:
: "memory");
return TaggedPtr;
}
#else
inline bool systemSupportsMemoryTagging() {
UNREACHABLE("memory tagging not supported");
}
inline bool systemDetectsMemoryTagFaultsTestOnly() {
UNREACHABLE("memory tagging not supported");
}
inline void disableMemoryTagChecksTestOnly() {
UNREACHABLE("memory tagging not supported");
}
inline void enableMemoryTagChecksTestOnly() {
UNREACHABLE("memory tagging not supported");
}
struct ScopedDisableMemoryTagChecks {
ScopedDisableMemoryTagChecks() {}
};
inline void setRandomTag(void *Ptr, uptr Size, uptr ExcludeMask,
uptr *TaggedBegin, uptr *TaggedEnd) {
(void)Ptr;
(void)Size;
(void)ExcludeMask;
(void)TaggedBegin;
(void)TaggedEnd;
UNREACHABLE("memory tagging not supported");
}
inline void *prepareTaggedChunk(void *Ptr, uptr Size, uptr BlockEnd) {
(void)Ptr;
(void)Size;
(void)BlockEnd;
UNREACHABLE("memory tagging not supported");
}
inline void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr BlockEnd) {
(void)OldPtr;
(void)NewPtr;
(void)BlockEnd;
UNREACHABLE("memory tagging not supported");
}
inline uptr loadTag(uptr Ptr) {
(void)Ptr;
UNREACHABLE("memory tagging not supported");
}
#endif
} // namespace scudo
#endif
|