1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
//===-- secondary_test.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tests/scudo_unit_test.h"
#include "secondary.h"
#include <stdio.h>
#include <condition_variable>
#include <mutex>
#include <random>
#include <thread>
#include <vector>
template <class SecondaryT> static void testSecondaryBasic(void) {
scudo::GlobalStats S;
S.init();
SecondaryT *L = new SecondaryT;
L->init(&S);
const scudo::uptr Size = 1U << 16;
void *P = L->allocate(Size);
EXPECT_NE(P, nullptr);
memset(P, 'A', Size);
EXPECT_GE(SecondaryT::getBlockSize(P), Size);
L->deallocate(P);
// If the Secondary can't cache that pointer, it will be unmapped.
if (!SecondaryT::canCache(Size))
EXPECT_DEATH(memset(P, 'A', Size), "");
const scudo::uptr Align = 1U << 16;
P = L->allocate(Size + Align, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 'A', Size);
L->deallocate(P);
std::vector<void *> V;
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate(Size));
std::shuffle(V.begin(), V.end(), std::mt19937(std::random_device()()));
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}
TEST(ScudoSecondaryTest, SecondaryBasic) {
testSecondaryBasic<scudo::MapAllocator<scudo::MapAllocatorNoCache>>();
#if !SCUDO_FUCHSIA
testSecondaryBasic<scudo::MapAllocator<scudo::MapAllocatorCache<>>>();
testSecondaryBasic<
scudo::MapAllocator<scudo::MapAllocatorCache<64U, 1UL << 20>>>();
#endif
}
#if SCUDO_FUCHSIA
using LargeAllocator = scudo::MapAllocator<scudo::MapAllocatorNoCache>;
#else
using LargeAllocator = scudo::MapAllocator<scudo::MapAllocatorCache<>>;
#endif
// This exercises a variety of combinations of size and alignment for the
// MapAllocator. The size computation done here mimic the ones done by the
// combined allocator.
TEST(ScudoSecondaryTest, SecondaryCombinations) {
constexpr scudo::uptr MinAlign = FIRST_32_SECOND_64(8, 16);
constexpr scudo::uptr HeaderSize = scudo::roundUpTo(8, MinAlign);
LargeAllocator *L = new LargeAllocator;
L->init(nullptr);
for (scudo::uptr SizeLog = 0; SizeLog <= 20; SizeLog++) {
for (scudo::uptr AlignLog = FIRST_32_SECOND_64(3, 4); AlignLog <= 16;
AlignLog++) {
const scudo::uptr Align = 1U << AlignLog;
for (scudo::sptr Delta = -128; Delta <= 128; Delta += 8) {
if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
continue;
const scudo::uptr UserSize =
scudo::roundUpTo((1U << SizeLog) + Delta, MinAlign);
const scudo::uptr Size =
HeaderSize + UserSize + (Align > MinAlign ? Align - HeaderSize : 0);
void *P = L->allocate(Size, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 0xff, UserSize);
L->deallocate(P);
}
}
}
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}
TEST(ScudoSecondaryTest, SecondaryIterate) {
LargeAllocator *L = new LargeAllocator;
L->init(nullptr);
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate((std::rand() % 16) * PageSize));
auto Lambda = [V](scudo::uptr Block) {
EXPECT_NE(std::find(V.begin(), V.end(), reinterpret_cast<void *>(Block)),
V.end());
};
L->disable();
L->iterateOverBlocks(Lambda);
L->enable();
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}
static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready = false;
static void performAllocations(LargeAllocator *L) {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 128U; I++) {
// Deallocate 75% of the blocks.
const bool Deallocate = (rand() & 3) != 0;
void *P = L->allocate((std::rand() % 16) * PageSize);
if (Deallocate)
L->deallocate(P);
else
V.push_back(P);
}
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
}
TEST(ScudoSecondaryTest, SecondaryThreadsRace) {
LargeAllocator *L = new LargeAllocator;
L->init(nullptr, /*ReleaseToOsInterval=*/0);
std::thread Threads[16];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread(performAllocations, L);
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}
|