1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
//===-- tsd_shared.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_TSD_SHARED_H_
#define SCUDO_TSD_SHARED_H_
#include "linux.h" // for getAndroidTlsPtr()
#include "tsd.h"
namespace scudo {
template <class Allocator, u32 MaxTSDCount> struct TSDRegistrySharedT {
void initLinkerInitialized(Allocator *Instance) {
Instance->initLinkerInitialized();
CHECK_EQ(pthread_key_create(&PThreadKey, nullptr), 0); // For non-TLS
const u32 NumberOfCPUs = getNumberOfCPUs();
NumberOfTSDs = (SCUDO_ANDROID || NumberOfCPUs == 0)
? MaxTSDCount
: Min(NumberOfCPUs, MaxTSDCount);
for (u32 I = 0; I < NumberOfTSDs; I++)
TSDs[I].initLinkerInitialized(Instance);
// Compute all the coprimes of NumberOfTSDs. This will be used to walk the
// array of TSDs in a random order. For details, see:
// https://lemire.me/blog/2017/09/18/visiting-all-values-in-an-array-exactly-once-in-random-order/
for (u32 I = 0; I < NumberOfTSDs; I++) {
u32 A = I + 1;
u32 B = NumberOfTSDs;
// Find the GCD between I + 1 and NumberOfTSDs. If 1, they are coprimes.
while (B != 0) {
const u32 T = A;
A = B;
B = T % B;
}
if (A == 1)
CoPrimes[NumberOfCoPrimes++] = I + 1;
}
Initialized = true;
}
void init(Allocator *Instance) {
memset(this, 0, sizeof(*this));
initLinkerInitialized(Instance);
}
void unmapTestOnly() {
setCurrentTSD(nullptr);
pthread_key_delete(PThreadKey);
}
ALWAYS_INLINE void initThreadMaybe(Allocator *Instance,
UNUSED bool MinimalInit) {
if (LIKELY(getCurrentTSD()))
return;
initThread(Instance);
}
ALWAYS_INLINE TSD<Allocator> *getTSDAndLock(bool *UnlockRequired) {
TSD<Allocator> *TSD = getCurrentTSD();
DCHECK(TSD);
*UnlockRequired = true;
// Try to lock the currently associated context.
if (TSD->tryLock())
return TSD;
// If that fails, go down the slow path.
return getTSDAndLockSlow(TSD);
}
void disable() {
Mutex.lock();
for (u32 I = 0; I < NumberOfTSDs; I++)
TSDs[I].lock();
}
void enable() {
for (s32 I = static_cast<s32>(NumberOfTSDs - 1); I >= 0; I--)
TSDs[I].unlock();
Mutex.unlock();
}
private:
ALWAYS_INLINE void setCurrentTSD(TSD<Allocator> *CurrentTSD) {
#if _BIONIC
*getAndroidTlsPtr() = reinterpret_cast<uptr>(CurrentTSD);
#elif SCUDO_LINUX
ThreadTSD = CurrentTSD;
#else
CHECK_EQ(
pthread_setspecific(PThreadKey, reinterpret_cast<void *>(CurrentTSD)),
0);
#endif
}
ALWAYS_INLINE TSD<Allocator> *getCurrentTSD() {
#if _BIONIC
return reinterpret_cast<TSD<Allocator> *>(*getAndroidTlsPtr());
#elif SCUDO_LINUX
return ThreadTSD;
#else
return reinterpret_cast<TSD<Allocator> *>(pthread_getspecific(PThreadKey));
#endif
}
void initOnceMaybe(Allocator *Instance) {
ScopedLock L(Mutex);
if (LIKELY(Initialized))
return;
initLinkerInitialized(Instance); // Sets Initialized.
}
NOINLINE void initThread(Allocator *Instance) {
initOnceMaybe(Instance);
// Initial context assignment is done in a plain round-robin fashion.
const u32 Index = atomic_fetch_add(&CurrentIndex, 1U, memory_order_relaxed);
setCurrentTSD(&TSDs[Index % NumberOfTSDs]);
Instance->callPostInitCallback();
}
NOINLINE TSD<Allocator> *getTSDAndLockSlow(TSD<Allocator> *CurrentTSD) {
if (MaxTSDCount > 1U && NumberOfTSDs > 1U) {
// Use the Precedence of the current TSD as our random seed. Since we are
// in the slow path, it means that tryLock failed, and as a result it's
// very likely that said Precedence is non-zero.
const u32 R = static_cast<u32>(CurrentTSD->getPrecedence());
const u32 Inc = CoPrimes[R % NumberOfCoPrimes];
u32 Index = R % NumberOfTSDs;
uptr LowestPrecedence = UINTPTR_MAX;
TSD<Allocator> *CandidateTSD = nullptr;
// Go randomly through at most 4 contexts and find a candidate.
for (u32 I = 0; I < Min(4U, NumberOfTSDs); I++) {
if (TSDs[Index].tryLock()) {
setCurrentTSD(&TSDs[Index]);
return &TSDs[Index];
}
const uptr Precedence = TSDs[Index].getPrecedence();
// A 0 precedence here means another thread just locked this TSD.
if (Precedence && Precedence < LowestPrecedence) {
CandidateTSD = &TSDs[Index];
LowestPrecedence = Precedence;
}
Index += Inc;
if (Index >= NumberOfTSDs)
Index -= NumberOfTSDs;
}
if (CandidateTSD) {
CandidateTSD->lock();
setCurrentTSD(CandidateTSD);
return CandidateTSD;
}
}
// Last resort, stick with the current one.
CurrentTSD->lock();
return CurrentTSD;
}
pthread_key_t PThreadKey;
atomic_u32 CurrentIndex;
u32 NumberOfTSDs;
u32 NumberOfCoPrimes;
u32 CoPrimes[MaxTSDCount];
bool Initialized;
HybridMutex Mutex;
TSD<Allocator> TSDs[MaxTSDCount];
#if SCUDO_LINUX && !_BIONIC
static THREADLOCAL TSD<Allocator> *ThreadTSD;
#endif
};
#if SCUDO_LINUX && !_BIONIC
template <class Allocator, u32 MaxTSDCount>
THREADLOCAL TSD<Allocator>
*TSDRegistrySharedT<Allocator, MaxTSDCount>::ThreadTSD;
#endif
} // namespace scudo
#endif // SCUDO_TSD_SHARED_H_
|