1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
//===-- lib/Evaluate/intrinsics-library-templates.h -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_INTRINSICS_LIBRARY_TEMPLATES_H_
#define FORTRAN_EVALUATE_INTRINSICS_LIBRARY_TEMPLATES_H_
// This header defines the actual implementation of the templatized member
// function of the structures defined in intrinsics-library.h. It should only be
// included if these member functions are used, else intrinsics-library.h is
// sufficient. This is to avoid circular dependencies. The below implementation
// cannot be defined in .cpp file because it would be too cumbersome to decide
// which version should be instantiated in a generic way.
#include "host.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/intrinsics-library.h"
#include "flang/Evaluate/type.h"
#include <tuple>
#include <type_traits>
namespace Fortran::evaluate {
// Define meaningful types for the runtime
using RuntimeTypes = evaluate::AllIntrinsicTypes;
template <typename T, typename... TT> struct IndexInTupleHelper {};
template <typename T, typename... TT>
struct IndexInTupleHelper<T, std::tuple<TT...>> {
static constexpr TypeCode value{common::TypeIndex<T, TT...>};
};
static_assert(
std::tuple_size_v<RuntimeTypes> < std::numeric_limits<TypeCode>::max(),
"TypeCode is too small");
template <typename T>
inline constexpr TypeCode typeCodeOf{
IndexInTupleHelper<T, RuntimeTypes>::value};
template <TypeCode n>
using RuntimeTypeOf = typename std::tuple_element_t<n, RuntimeTypes>;
template <typename TA, PassBy Pass>
using HostArgType = std::conditional_t<Pass == PassBy::Ref,
std::add_lvalue_reference_t<std::add_const_t<host::HostType<TA>>>,
host::HostType<TA>>;
template <typename TR, typename... ArgInfo>
using HostFuncPointer = FuncPointer<host::HostType<TR>,
HostArgType<typename ArgInfo::Type, ArgInfo::pass>...>;
// Software Subnormal Flushing helper.
template <typename T> struct Flusher {
// Only flush floating-points. Forward other scalars untouched.
static constexpr inline const Scalar<T> &FlushSubnormals(const Scalar<T> &x) {
return x;
}
};
template <int Kind> struct Flusher<Type<TypeCategory::Real, Kind>> {
using T = Type<TypeCategory::Real, Kind>;
static constexpr inline Scalar<T> FlushSubnormals(const Scalar<T> &x) {
return x.FlushSubnormalToZero();
}
};
template <int Kind> struct Flusher<Type<TypeCategory::Complex, Kind>> {
using T = Type<TypeCategory::Complex, Kind>;
static constexpr inline Scalar<T> FlushSubnormals(const Scalar<T> &x) {
return x.FlushSubnormalToZero();
}
};
// Callable factory
template <typename TR, typename... ArgInfo> struct CallableHostWrapper {
static Scalar<TR> scalarCallable(FoldingContext &context,
HostFuncPointer<TR, ArgInfo...> func,
const Scalar<typename ArgInfo::Type> &... x) {
if constexpr (host::HostTypeExists<TR, typename ArgInfo::Type...>()) {
host::HostFloatingPointEnvironment hostFPE;
hostFPE.SetUpHostFloatingPointEnvironment(context);
host::HostType<TR> hostResult{};
Scalar<TR> result{};
if (context.flushSubnormalsToZero() &&
!hostFPE.hasSubnormalFlushingHardwareControl()) {
hostResult = func(host::CastFortranToHost<typename ArgInfo::Type>(
Flusher<typename ArgInfo::Type>::FlushSubnormals(x))...);
result = Flusher<TR>::FlushSubnormals(
host::CastHostToFortran<TR>(hostResult));
} else {
hostResult =
func(host::CastFortranToHost<typename ArgInfo::Type>(x)...);
result = host::CastHostToFortran<TR>(hostResult);
}
if (!hostFPE.hardwareFlagsAreReliable()) {
CheckFloatingPointIssues(hostFPE, result);
}
hostFPE.CheckAndRestoreFloatingPointEnvironment(context);
return result;
} else {
common::die("Internal error: Host does not supports this function type."
"This should not have been called for folding");
}
}
static constexpr inline auto MakeScalarCallable() { return &scalarCallable; }
static void CheckFloatingPointIssues(
host::HostFloatingPointEnvironment &hostFPE, const Scalar<TR> &x) {
if constexpr (TR::category == TypeCategory::Complex ||
TR::category == TypeCategory::Real) {
if (x.IsNotANumber()) {
hostFPE.SetFlag(RealFlag::InvalidArgument);
} else if (x.IsInfinite()) {
hostFPE.SetFlag(RealFlag::Overflow);
}
}
}
};
template <typename TR, typename... TA>
inline GenericFunctionPointer ToGenericFunctionPointer(
FuncPointer<TR, TA...> f) {
return reinterpret_cast<GenericFunctionPointer>(f);
}
template <typename TR, typename... TA>
inline FuncPointer<TR, TA...> FromGenericFunctionPointer(
GenericFunctionPointer g) {
return reinterpret_cast<FuncPointer<TR, TA...>>(g);
}
template <typename TR, typename... ArgInfo>
IntrinsicProcedureRuntimeDescription::IntrinsicProcedureRuntimeDescription(
const Signature<TR, ArgInfo...> &signature, bool isElemental)
: name{signature.name}, returnType{typeCodeOf<TR>},
argumentsType{typeCodeOf<typename ArgInfo::Type>...},
argumentsPassedBy{ArgInfo::pass...}, isElemental{isElemental},
callable{ToGenericFunctionPointer(
CallableHostWrapper<TR, ArgInfo...>::MakeScalarCallable())} {}
template <typename HostTA> static constexpr inline PassBy PassByMethod() {
if constexpr (std::is_pointer_v<std::decay_t<HostTA>> ||
std::is_lvalue_reference_v<HostTA>) {
return PassBy::Ref;
}
return PassBy::Val;
}
template <typename HostTA>
using ArgInfoFromHostType =
ArgumentInfo<host::FortranType<std::remove_pointer_t<std::decay_t<HostTA>>>,
PassByMethod<HostTA>()>;
template <typename HostTR, typename... HostTA>
using SignatureFromHostFuncPointer =
Signature<host::FortranType<HostTR>, ArgInfoFromHostType<HostTA>...>;
template <typename HostTR, typename... HostTA>
HostRuntimeIntrinsicProcedure::HostRuntimeIntrinsicProcedure(
const std::string &name, FuncPointer<HostTR, HostTA...> func,
bool isElemental)
: IntrinsicProcedureRuntimeDescription(
SignatureFromHostFuncPointer<HostTR, HostTA...>{name}, isElemental),
handle{ToGenericFunctionPointer(func)} {}
template <template <typename> typename ConstantContainer, typename TR,
typename... TA>
std::optional<HostProcedureWrapper<ConstantContainer, TR, TA...>>
HostIntrinsicProceduresLibrary::GetHostProcedureWrapper(
const std::string &name) const {
if constexpr (host::HostTypeExists<TR, TA...>()) {
auto rteProcRange{procedures_.equal_range(name)};
const TypeCode resTypeCode{typeCodeOf<TR>};
const std::vector<TypeCode> argTypes{typeCodeOf<TA>...};
const size_t nargs{argTypes.size()};
for (auto iter{rteProcRange.first}; iter != rteProcRange.second; ++iter) {
if (nargs == iter->second.argumentsType.size() &&
resTypeCode == iter->second.returnType &&
(!std::is_same_v<ConstantContainer<TR>, Scalar<TR>> ||
iter->second.isElemental)) {
bool match{true};
int pos{0};
for (auto const &type : argTypes) {
if (type != iter->second.argumentsType[pos++]) {
match = false;
break;
}
}
if (match) {
return {HostProcedureWrapper<ConstantContainer, TR, TA...>{
[=](FoldingContext &context,
const ConstantContainer<TA> &... args) {
auto callable{FromGenericFunctionPointer<ConstantContainer<TR>,
FoldingContext &, GenericFunctionPointer,
const ConstantContainer<TA> &...>(iter->second.callable)};
return callable(context, iter->second.handle, args...);
}}};
}
}
}
}
return std::nullopt;
}
} // namespace Fortran::evaluate
#endif // FORTRAN_EVALUATE_INTRINSICS_LIBRARY_TEMPLATES_H_
|