1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
//===-- runtime/transformational.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "transformational.h"
#include "memory.h"
#include "terminator.h"
#include <algorithm>
#include <cinttypes>
namespace Fortran::runtime {
static inline std::int64_t GetInt64(const char *p, std::size_t bytes) {
switch (bytes) {
case 1:
return *reinterpret_cast<const std::int8_t *>(p);
case 2:
return *reinterpret_cast<const std::int16_t *>(p);
case 4:
return *reinterpret_cast<const std::int32_t *>(p);
case 8:
return *reinterpret_cast<const std::int64_t *>(p);
default:
Terminator terminator{__FILE__, __LINE__};
terminator.Crash("no case for %dz bytes", bytes);
}
}
// F2018 16.9.163
OwningPtr<Descriptor> RESHAPE(const Descriptor &source, const Descriptor &shape,
const Descriptor *pad, const Descriptor *order) {
// Compute and check the rank of the result.
Terminator terminator{__FILE__, __LINE__};
RUNTIME_CHECK(terminator, shape.rank() == 1);
RUNTIME_CHECK(terminator, shape.type().IsInteger());
SubscriptValue resultRank{shape.GetDimension(0).Extent()};
RUNTIME_CHECK(terminator,
resultRank >= 0 && resultRank <= static_cast<SubscriptValue>(maxRank));
// Extract and check the shape of the result; compute its element count.
SubscriptValue lowerBound[maxRank]; // all 1's
SubscriptValue resultExtent[maxRank];
std::size_t shapeElementBytes{shape.ElementBytes()};
std::size_t resultElements{1};
SubscriptValue shapeSubscript{shape.GetDimension(0).LowerBound()};
for (SubscriptValue j{0}; j < resultRank; ++j, ++shapeSubscript) {
lowerBound[j] = 1;
resultExtent[j] =
GetInt64(shape.Element<char>(&shapeSubscript), shapeElementBytes);
RUNTIME_CHECK(terminator, resultExtent[j] >= 0);
resultElements *= resultExtent[j];
}
// Check that there are sufficient elements in the SOURCE=, or that
// the optional PAD= argument is present and nonempty.
std::size_t elementBytes{source.ElementBytes()};
std::size_t sourceElements{source.Elements()};
std::size_t padElements{pad ? pad->Elements() : 0};
if (resultElements < sourceElements) {
RUNTIME_CHECK(terminator, padElements > 0);
RUNTIME_CHECK(terminator, pad->ElementBytes() == elementBytes);
}
// Extract and check the optional ORDER= argument, which must be a
// permutation of [1..resultRank].
int dimOrder[maxRank];
if (order) {
RUNTIME_CHECK(terminator, order->rank() == 1);
RUNTIME_CHECK(terminator, order->type().IsInteger());
RUNTIME_CHECK(terminator, order->GetDimension(0).Extent() == resultRank);
std::uint64_t values{0};
SubscriptValue orderSubscript{order->GetDimension(0).LowerBound()};
for (SubscriptValue j{0}; j < resultRank; ++j, ++orderSubscript) {
auto k{GetInt64(
order->OffsetElement<char>(orderSubscript), shapeElementBytes)};
RUNTIME_CHECK(
terminator, k >= 1 && k <= resultRank && !((values >> k) & 1));
values |= std::uint64_t{1} << k;
dimOrder[k - 1] = j;
}
} else {
for (int j{0}; j < resultRank; ++j) {
dimOrder[j] = j;
}
}
// Create and populate the result's descriptor.
const DescriptorAddendum *sourceAddendum{source.Addendum()};
const DerivedType *sourceDerivedType{
sourceAddendum ? sourceAddendum->derivedType() : nullptr};
OwningPtr<Descriptor> result;
if (sourceDerivedType) {
result = Descriptor::Create(*sourceDerivedType, nullptr, resultRank,
resultExtent, CFI_attribute_allocatable);
} else {
result = Descriptor::Create(source.type(), elementBytes, nullptr,
resultRank, resultExtent,
CFI_attribute_allocatable); // TODO rearrange these arguments
}
DescriptorAddendum *resultAddendum{result->Addendum()};
RUNTIME_CHECK(terminator, resultAddendum);
resultAddendum->flags() |= DescriptorAddendum::DoNotFinalize;
if (sourceDerivedType) {
std::size_t lenParameters{sourceDerivedType->lenParameters()};
for (std::size_t j{0}; j < lenParameters; ++j) {
resultAddendum->SetLenParameterValue(
j, sourceAddendum->LenParameterValue(j));
}
}
// Allocate storage for the result's data.
int status{result->Allocate(lowerBound, resultExtent)};
if (status != CFI_SUCCESS) {
terminator.Crash("RESHAPE: Allocate failed (error %d)", status);
}
// Populate the result's elements.
SubscriptValue resultSubscript[maxRank];
result->GetLowerBounds(resultSubscript);
SubscriptValue sourceSubscript[maxRank];
source.GetLowerBounds(sourceSubscript);
std::size_t resultElement{0};
std::size_t elementsFromSource{std::min(resultElements, sourceElements)};
for (; resultElement < elementsFromSource; ++resultElement) {
std::memcpy(result->Element<void>(resultSubscript),
source.Element<const void>(sourceSubscript), elementBytes);
source.IncrementSubscripts(sourceSubscript);
result->IncrementSubscripts(resultSubscript, dimOrder);
}
if (resultElement < resultElements) {
// Remaining elements come from the optional PAD= argument.
SubscriptValue padSubscript[maxRank];
pad->GetLowerBounds(padSubscript);
for (; resultElement < resultElements; ++resultElement) {
std::memcpy(result->Element<void>(resultSubscript),
pad->Element<const void>(padSubscript), elementBytes);
pad->IncrementSubscripts(padSubscript);
result->IncrementSubscripts(resultSubscript, dimOrder);
}
}
return result;
}
} // namespace Fortran::runtime
|