File: log2_abs.sollya

package info (click to toggle)
llvm-toolchain-11 1%3A11.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 995,808 kB
  • sloc: cpp: 4,767,656; ansic: 760,916; asm: 477,436; python: 170,940; objc: 69,804; lisp: 29,914; sh: 23,855; f90: 18,173; pascal: 7,551; perl: 7,471; ml: 5,603; awk: 3,489; makefile: 2,573; xml: 915; cs: 573; fortran: 503; javascript: 452
file content (42 lines) | stat: -rw-r--r-- 1,383 bytes parent folder | download | duplicates (21)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// polynomial for approximating log2(1+x)
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

deg = 7; // poly degree
// interval ~= 1/(2*N), where N is the table entries
a= -0x1.f45p-8;
b=  0x1.f45p-8;

ln2 = evaluate(log(2),0);
invln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits
invln2lo = double(1/ln2 - invln2hi);

// find log2(1+x) polynomial with minimal absolute error
f = log(1+x)/ln2;

// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
approx = proc(poly,d) {
  return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
};

// first coeff is fixed, iteratively find optimal double prec coeffs
poly = x*(invln2lo + invln2hi);
for i from 2 to deg do {
  p = roundcoefficients(approx(poly,i), [|D ...|]);
  poly = poly + x^i*coeff(p,0);
};

display = hexadecimal;
print("invln2hi:", invln2hi);
print("invln2lo:", invln2lo);
print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
//// relative error computation fails if f(0)==0
//// g = f(x)/x = log2(1+x)/x; using taylor series
//g = 0;
//for i from 0 to 60 do { g = g + (-x)^i/(i+1)/ln2; };
//print("rel error:", accurateinfnorm(1-(poly(x)/x)/g(x), [a;b], 30));
print("in [",a,b,"]");
print("coeffs:");
for i from 0 to deg do coeff(poly,i);