1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
"""Reads JSON files produced by the benchmarking framework and renders them.
Installation:
> apt-get install python3-pip
> pip3 install matplotlib scipy numpy
Run:
> python3 render.py3 <files>
Rendering can occur on disk by specifying the --output option or on screen if
the --headless flag is not set.
"""
import argparse
import collections
import json
import math
import pprint
import sys
import matplotlib.pyplot as plt
from matplotlib.ticker import EngFormatter
import numpy as np
import scipy.stats
def format_freq(number):
"""Returns a human readable frequency."""
magnitude = 0
while math.fabs(number) >= 1000:
number /= 1000.0
magnitude += 1
return "%g%sHz" % (number, ["", "k", "M", "G"][magnitude])
def format_size(number):
"""Returns number in human readable form."""
magnitude = 0
while number >= 1000 and number % 1000 == 0:
number /= 1000
magnitude += 1
return "%g%s" % (number, ["", "K", "M", "G"][magnitude])
def mean_confidence_interval(dataset, confidence=0.95):
"""Returns the mean and half confidence interval for the dataset."""
a = 1.0 * np.array(dataset)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1)
return m, h
def add_plot(function_name, points):
"""Plots measurements for a function."""
n = len(points.keys())
x = np.zeros(n)
y = np.zeros(n)
yerr = np.zeros(n)
for i, key in enumerate(sorted(points.keys())):
values = points[key]
m, e = mean_confidence_interval(values)
x[i] = key
y[i] = m
yerr[i] = e
plt.plot(x, y, linewidth=1, label=function_name)
plt.fill_between(x, y - yerr, y + yerr, alpha=0.5)
def get_title(host):
"""Formats the Host object into a title for the plot."""
cpu_name = host["CpuName"]
cpu_freq = format_freq(host["CpuFrequency"])
cache_strings = []
for cache in host["Caches"]:
prefix = {
"Instruction": "i",
"Data": "d",
"Unified": "u",
}.get(cache["Type"])
cache_strings.append(r"%sL_%d %s_{/%d}" %
(prefix, cache["Level"], format_size(
cache["Size"]), cache["NumSharing"]))
title = "%s (%s)" % (cpu_name, cpu_freq)
subtitle = r"$" + ", ".join(sorted(cache_strings)) + r"$"
return title + "\n" + subtitle
def get_host(jsons):
"""Returns the host of the different json objects iff they are all the same.
"""
host = None
for root in jsons:
if host and host != root["Host"]:
sys.exit("The datasets are not coming from the same Host")
if not host:
host = root["Host"]
return host
def get_configuration(jsons):
"""Returns the configuration of the different json objects iff they are all
the same.
"""
config = None
for root in jsons:
if config and config != root["Configuration"]:
return None
if not config:
config = root["Configuration"]
return config
def setup_graphs(files, display):
"""Setups the graphs to render from the json files."""
jsons = []
for file in files:
with open(file) as json_file:
jsons.append(json.load(json_file))
if not jsons:
sys.exit("Nothing to process")
for root in jsons:
frequency = root["Host"]["CpuFrequency"]
for function in root["Functions"]:
function_name = function["Name"]
sizes = function["Sizes"]
runtimes = function["Runtimes"]
assert len(sizes) == len(runtimes)
values = collections.defaultdict(lambda: [])
for i in range(len(sizes)):
value = runtimes[i]
if display == "cycles":
value = value * frequency
if display == "bytespercycle":
value = value * frequency
value = sizes[i] / value
values[sizes[i]].append(value)
add_plot(function_name, values)
config = get_configuration(jsons)
if config:
plt.figtext(
0.95,
0.15,
pprint.pformat(config),
verticalalignment="bottom",
horizontalalignment="right",
multialignment="left",
fontsize="small",
bbox=dict(boxstyle="round", facecolor="wheat"))
axes = plt.gca()
axes.set_title(get_title(get_host(jsons)))
axes.set_ylim(bottom=0)
axes.set_xlabel("Size")
axes.xaxis.set_major_formatter(EngFormatter(unit="B"))
if display == "cycles":
axes.set_ylabel("Cycles")
if display == "time":
axes.set_ylabel("Time")
axes.yaxis.set_major_formatter(EngFormatter(unit="s"))
if display == "bytespercycle":
axes.set_ylabel("bytes/cycle")
plt.legend()
plt.grid()
def main():
parser = argparse.ArgumentParser(
description="Process benchmark json files.")
parser.add_argument("files", nargs="+", help="The json files to read from.")
parser.add_argument("--output", help="The output file to write the graph.")
parser.add_argument(
"--headless",
help="If set do not display the graph.",
action="store_true")
parser.add_argument(
"--display",
choices= ["time", "cycles", "bytespercycle"],
default="time",
help="Use to display either 'time', 'cycles' or 'bytes/cycle'.")
args = parser.parse_args()
setup_graphs(args.files, args.display)
if args.output:
plt.savefig(args.output)
if not args.headless:
plt.show()
if __name__ == "__main__":
main()
|