1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
//===-- Bit representation of x86 long double numbers -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_LONG_DOUBLE_BITS_X86_H
#define LLVM_LIBC_UTILS_FPUTIL_LONG_DOUBLE_BITS_X86_H
#include "utils/FPUtil/FPBits.h"
#include <stdint.h>
namespace __llvm_libc {
namespace fputil {
template <> struct MantissaWidth<long double> {
static constexpr unsigned value = 63;
};
template <unsigned Width> struct Padding;
// i386 padding.
template <> struct Padding<4> { static constexpr unsigned Value = 16; };
// x86_64 padding.
template <> struct Padding<8> { static constexpr unsigned Value = 48; };
template <> struct __attribute__((packed)) FPBits<long double> {
using UIntType = __uint128_t;
static constexpr int exponentBias = 0x3FFF;
static constexpr int maxExponent = 0x7FFF;
UIntType mantissa : MantissaWidth<long double>::value;
uint8_t implicitBit : 1;
uint16_t exponent : ExponentWidth<long double>::value;
uint8_t sign : 1;
uint64_t padding : Padding<sizeof(uintptr_t)>::Value;
template <typename XType,
cpp::EnableIfType<cpp::IsSame<long double, XType>::Value, int> = 0>
explicit FPBits<long double>(XType x) {
*this = *reinterpret_cast<FPBits<long double> *>(&x);
}
operator long double() { return *reinterpret_cast<long double *>(this); }
int getExponent() const {
if (exponent == 0)
return int(1) - exponentBias;
return int(exponent) - exponentBias;
}
bool isZero() const {
return exponent == 0 && mantissa == 0 && implicitBit == 0;
}
bool isInf() const {
return exponent == maxExponent && mantissa == 0 && implicitBit == 1;
}
bool isNaN() const {
if (exponent == maxExponent) {
return (implicitBit == 0) || mantissa != 0;
} else if (exponent != 0) {
return implicitBit == 0;
}
return false;
}
bool isInfOrNaN() const {
return (exponent == maxExponent) || (exponent != 0 && implicitBit == 0);
}
// Methods below this are used by tests.
template <typename XType,
cpp::EnableIfType<cpp::IsSame<UIntType, XType>::Value, int> = 0>
explicit FPBits<long double>(XType x) {
// The last 4 bytes of v are ignored in case of i386.
*this = *reinterpret_cast<FPBits<long double> *>(&x);
}
UIntType bitsAsUInt() const {
// We cannot just return the bits as is as it will lead to reading
// out of bounds in case of i386. So, we first copy the wider value
// before returning the value. This makes the last 4 bytes are always
// zero in case i386.
UIntType result = UIntType(0);
*reinterpret_cast<FPBits<long double> *>(&result) = *this;
return result;
}
static FPBits<long double> zero() { return FPBits<long double>(0.0l); }
static FPBits<long double> negZero() {
FPBits<long double> bits(0.0l);
bits.sign = 1;
return bits;
}
static FPBits<long double> inf() {
FPBits<long double> bits(0.0l);
bits.exponent = maxExponent;
bits.implicitBit = 1;
return bits;
}
static FPBits<long double> negInf() {
FPBits<long double> bits(0.0l);
bits.exponent = maxExponent;
bits.implicitBit = 1;
bits.sign = 1;
return bits;
}
static long double buildNaN(UIntType v) {
FPBits<long double> bits(0.0l);
bits.exponent = maxExponent;
bits.implicitBit = 1;
bits.mantissa = v;
return bits;
}
};
static_assert(
sizeof(FPBits<long double>) == sizeof(long double),
"Internal long double representation does not match the machine format.");
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_LONG_DOUBLE_BITS_X86_H
|