1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
//===-- Floating-point manipulation functions -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "FPBits.h"
#include "NearestIntegerOperations.h"
#include "utils/CPP/TypeTraits.h"
#ifndef LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
#define LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
namespace __llvm_libc {
namespace fputil {
#if defined(__x86_64__) || defined(__i386__)
template <typename T> struct Standard754Type {
static constexpr bool Value =
cpp::IsSame<float, cpp::RemoveCVType<T>>::Value ||
cpp::IsSame<double, cpp::RemoveCVType<T>>::Value;
};
#else
template <typename T> struct Standard754Type {
static constexpr bool Value = cpp::IsFloatingPointType<T>::Value;
};
#endif
template <typename T> static inline T frexp_impl(FPBits<T> &bits, int &exp) {
exp = bits.getExponent() + 1;
static constexpr uint16_t resultExponent = FPBits<T>::exponentBias - 1;
bits.exponent = resultExponent;
return bits;
}
template <typename T, cpp::EnableIfType<Standard754Type<T>::Value, int> = 0>
static inline T frexp(T x, int &exp) {
FPBits<T> bits(x);
if (bits.isInfOrNaN())
return x;
if (bits.isZero()) {
exp = 0;
return x;
}
return frexp_impl(bits, exp);
}
#if defined(__x86_64__) || defined(__i386__)
static inline long double frexp(long double x, int &exp) {
FPBits<long double> bits(x);
if (bits.isInfOrNaN())
return x;
if (bits.isZero()) {
exp = 0;
return x;
}
if (bits.exponent != 0 || bits.implicitBit == 1)
return frexp_impl(bits, exp);
exp = bits.getExponent();
int shiftCount = 0;
uint64_t fullMantissa = *reinterpret_cast<uint64_t *>(&bits);
static constexpr uint64_t msBitMask = uint64_t(1) << 63;
for (; (fullMantissa & msBitMask) == uint64_t(0);
fullMantissa <<= 1, ++shiftCount) {
// This for loop will terminate as fullMantissa is != 0. If it were 0,
// then x will be NaN and handled before control reaches here.
// When the loop terminates, fullMantissa will represent the full mantissa
// of a normal long double value. That is, the implicit bit has the value
// of 1.
}
exp = exp - shiftCount + 1;
*reinterpret_cast<uint64_t *>(&bits) = fullMantissa;
bits.exponent = FPBits<long double>::exponentBias - 1;
return bits;
}
#endif
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T modf(T x, T &iptr) {
FPBits<T> bits(x);
if (bits.isZero() || bits.isNaN()) {
iptr = x;
return x;
} else if (bits.isInf()) {
iptr = x;
return bits.sign ? FPBits<T>::negZero() : FPBits<T>::zero();
} else {
iptr = trunc(x);
if (x == iptr) {
// If x is already an integer value, then return zero with the right
// sign.
return bits.sign ? FPBits<T>::negZero() : FPBits<T>::zero();
} else {
return x - iptr;
}
}
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T copysign(T x, T y) {
FPBits<T> xbits(x);
xbits.sign = FPBits<T>(y).sign;
return xbits;
}
template <typename T> static inline T logb_impl(const FPBits<T> &bits) {
return bits.getExponent();
}
template <typename T, cpp::EnableIfType<Standard754Type<T>::Value, int> = 0>
static inline T logb(T x) {
FPBits<T> bits(x);
if (bits.isZero()) {
// TODO(Floating point exception): Raise div-by-zero exception.
// TODO(errno): POSIX requires setting errno to ERANGE.
return FPBits<T>::negInf();
} else if (bits.isNaN()) {
return x;
} else if (bits.isInf()) {
// Return positive infinity.
return FPBits<T>::inf();
}
return logb_impl(bits);
}
#if defined(__x86_64__) || defined(__i386__)
static inline long double logb(long double x) {
FPBits<long double> bits(x);
if (bits.isZero()) {
// TODO(Floating point exception): Raise div-by-zero exception.
// TODO(errno): POSIX requires setting errno to ERANGE.
return FPBits<long double>::negInf();
} else if (bits.isNaN()) {
return x;
} else if (bits.isInf()) {
// Return positive infinity.
return FPBits<long double>::inf();
}
if (bits.exponent != 0 || bits.implicitBit == 1)
return logb_impl(bits);
int exp = bits.getExponent();
int shiftCount = 0;
uint64_t fullMantissa = *reinterpret_cast<uint64_t *>(&bits);
static constexpr uint64_t msBitMask = uint64_t(1) << 63;
for (; (fullMantissa & msBitMask) == uint64_t(0);
fullMantissa <<= 1, ++shiftCount) {
// This for loop will terminate as fullMantissa is != 0. If it were 0,
// then x will be NaN and handled before control reaches here.
// When the loop terminates, fullMantissa will represent the full mantissa
// of a normal long double value. That is, the implicit bit has the value
// of 1.
}
return exp - shiftCount;
}
#endif
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
|