1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
//===-- Hexagon.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class Hexagon final : public TargetInfo {
public:
Hexagon();
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
RelType getDynRel(RelType type) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
};
} // namespace
Hexagon::Hexagon() {
pltRel = R_HEX_JMP_SLOT;
relativeRel = R_HEX_RELATIVE;
gotRel = R_HEX_GLOB_DAT;
symbolicRel = R_HEX_32;
// The zero'th GOT entry is reserved for the address of _DYNAMIC. The
// next 3 are reserved for the dynamic loader.
gotPltHeaderEntriesNum = 4;
pltEntrySize = 16;
pltHeaderSize = 32;
// Hexagon Linux uses 64K pages by default.
defaultMaxPageSize = 0x10000;
noneRel = R_HEX_NONE;
tlsGotRel = R_HEX_TPREL_32;
tlsModuleIndexRel = R_HEX_DTPMOD_32;
tlsOffsetRel = R_HEX_DTPREL_32;
}
uint32_t Hexagon::calcEFlags() const {
assert(!objectFiles.empty());
// The architecture revision must always be equal to or greater than
// greatest revision in the list of inputs.
uint32_t ret = 0;
for (InputFile *f : objectFiles) {
uint32_t eflags = cast<ObjFile<ELF32LE>>(f)->getObj().getHeader()->e_flags;
if (eflags > ret)
ret = eflags;
}
return ret;
}
static uint32_t applyMask(uint32_t mask, uint32_t data) {
uint32_t result = 0;
size_t off = 0;
for (size_t bit = 0; bit != 32; ++bit) {
uint32_t valBit = (data >> off) & 1;
uint32_t maskBit = (mask >> bit) & 1;
if (maskBit) {
result |= (valBit << bit);
++off;
}
}
return result;
}
RelExpr Hexagon::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
switch (type) {
case R_HEX_NONE:
return R_NONE;
case R_HEX_6_X:
case R_HEX_8_X:
case R_HEX_9_X:
case R_HEX_10_X:
case R_HEX_11_X:
case R_HEX_12_X:
case R_HEX_16_X:
case R_HEX_32:
case R_HEX_32_6_X:
case R_HEX_HI16:
case R_HEX_LO16:
case R_HEX_DTPREL_32:
return R_ABS;
case R_HEX_B9_PCREL:
case R_HEX_B13_PCREL:
case R_HEX_B15_PCREL:
case R_HEX_6_PCREL_X:
case R_HEX_32_PCREL:
return R_PC;
case R_HEX_B9_PCREL_X:
case R_HEX_B15_PCREL_X:
case R_HEX_B22_PCREL:
case R_HEX_PLT_B22_PCREL:
case R_HEX_B22_PCREL_X:
case R_HEX_B32_PCREL_X:
case R_HEX_GD_PLT_B22_PCREL:
case R_HEX_GD_PLT_B22_PCREL_X:
case R_HEX_GD_PLT_B32_PCREL_X:
return R_PLT_PC;
case R_HEX_IE_32_6_X:
case R_HEX_IE_16_X:
case R_HEX_IE_HI16:
case R_HEX_IE_LO16:
return R_GOT;
case R_HEX_GD_GOT_11_X:
case R_HEX_GD_GOT_16_X:
case R_HEX_GD_GOT_32_6_X:
return R_TLSGD_GOTPLT;
case R_HEX_GOTREL_11_X:
case R_HEX_GOTREL_16_X:
case R_HEX_GOTREL_32_6_X:
case R_HEX_GOTREL_HI16:
case R_HEX_GOTREL_LO16:
return R_GOTPLTREL;
case R_HEX_GOT_11_X:
case R_HEX_GOT_16_X:
case R_HEX_GOT_32_6_X:
return R_GOTPLT;
case R_HEX_IE_GOT_11_X:
case R_HEX_IE_GOT_16_X:
case R_HEX_IE_GOT_32_6_X:
case R_HEX_IE_GOT_HI16:
case R_HEX_IE_GOT_LO16:
config->hasStaticTlsModel = true;
return R_GOTPLT;
case R_HEX_TPREL_11_X:
case R_HEX_TPREL_16:
case R_HEX_TPREL_16_X:
case R_HEX_TPREL_32_6_X:
case R_HEX_TPREL_HI16:
case R_HEX_TPREL_LO16:
return R_TLS;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
static bool isDuplex(uint32_t insn) {
// Duplex forms have a fixed mask and parse bits 15:14 are always
// zero. Non-duplex insns will always have at least one bit set in the
// parse field.
return (0xC000 & insn) == 0;
}
static uint32_t findMaskR6(uint32_t insn) {
// There are (arguably too) many relocation masks for the DSP's
// R_HEX_6_X type. The table below is used to select the correct mask
// for the given instruction.
struct InstructionMask {
uint32_t cmpMask;
uint32_t relocMask;
};
static const InstructionMask r6[] = {
{0x38000000, 0x0000201f}, {0x39000000, 0x0000201f},
{0x3e000000, 0x00001f80}, {0x3f000000, 0x00001f80},
{0x40000000, 0x000020f8}, {0x41000000, 0x000007e0},
{0x42000000, 0x000020f8}, {0x43000000, 0x000007e0},
{0x44000000, 0x000020f8}, {0x45000000, 0x000007e0},
{0x46000000, 0x000020f8}, {0x47000000, 0x000007e0},
{0x6a000000, 0x00001f80}, {0x7c000000, 0x001f2000},
{0x9a000000, 0x00000f60}, {0x9b000000, 0x00000f60},
{0x9c000000, 0x00000f60}, {0x9d000000, 0x00000f60},
{0x9f000000, 0x001f0100}, {0xab000000, 0x0000003f},
{0xad000000, 0x0000003f}, {0xaf000000, 0x00030078},
{0xd7000000, 0x006020e0}, {0xd8000000, 0x006020e0},
{0xdb000000, 0x006020e0}, {0xdf000000, 0x006020e0}};
if (isDuplex(insn))
return 0x03f00000;
for (InstructionMask i : r6)
if ((0xff000000 & insn) == i.cmpMask)
return i.relocMask;
error("unrecognized instruction for R_HEX_6 relocation: 0x" +
utohexstr(insn));
return 0;
}
static uint32_t findMaskR8(uint32_t insn) {
if ((0xff000000 & insn) == 0xde000000)
return 0x00e020e8;
if ((0xff000000 & insn) == 0x3c000000)
return 0x0000207f;
return 0x00001fe0;
}
static uint32_t findMaskR11(uint32_t insn) {
if ((0xff000000 & insn) == 0xa1000000)
return 0x060020ff;
return 0x06003fe0;
}
static uint32_t findMaskR16(uint32_t insn) {
if ((0xff000000 & insn) == 0x48000000)
return 0x061f20ff;
if ((0xff000000 & insn) == 0x49000000)
return 0x061f3fe0;
if ((0xff000000 & insn) == 0x78000000)
return 0x00df3fe0;
if ((0xff000000 & insn) == 0xb0000000)
return 0x0fe03fe0;
if (isDuplex(insn))
return 0x03f00000;
error("unrecognized instruction for R_HEX_16_X relocation: 0x" +
utohexstr(insn));
return 0;
}
static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
void Hexagon::relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
switch (rel.type) {
case R_HEX_NONE:
break;
case R_HEX_6_PCREL_X:
case R_HEX_6_X:
or32le(loc, applyMask(findMaskR6(read32le(loc)), val));
break;
case R_HEX_8_X:
or32le(loc, applyMask(findMaskR8(read32le(loc)), val));
break;
case R_HEX_9_X:
or32le(loc, applyMask(0x00003fe0, val & 0x3f));
break;
case R_HEX_10_X:
or32le(loc, applyMask(0x00203fe0, val & 0x3f));
break;
case R_HEX_11_X:
case R_HEX_GD_GOT_11_X:
case R_HEX_IE_GOT_11_X:
case R_HEX_GOT_11_X:
case R_HEX_GOTREL_11_X:
case R_HEX_TPREL_11_X:
or32le(loc, applyMask(findMaskR11(read32le(loc)), val & 0x3f));
break;
case R_HEX_12_X:
or32le(loc, applyMask(0x000007e0, val));
break;
case R_HEX_16_X: // These relocs only have 6 effective bits.
case R_HEX_IE_16_X:
case R_HEX_IE_GOT_16_X:
case R_HEX_GD_GOT_16_X:
case R_HEX_GOT_16_X:
case R_HEX_GOTREL_16_X:
case R_HEX_TPREL_16_X:
or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0x3f));
break;
case R_HEX_TPREL_16:
or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0xffff));
break;
case R_HEX_32:
case R_HEX_32_PCREL:
case R_HEX_DTPREL_32:
or32le(loc, val);
break;
case R_HEX_32_6_X:
case R_HEX_GD_GOT_32_6_X:
case R_HEX_GOT_32_6_X:
case R_HEX_GOTREL_32_6_X:
case R_HEX_IE_GOT_32_6_X:
case R_HEX_IE_32_6_X:
case R_HEX_TPREL_32_6_X:
or32le(loc, applyMask(0x0fff3fff, val >> 6));
break;
case R_HEX_B9_PCREL:
checkInt(loc, val, 11, rel);
or32le(loc, applyMask(0x003000fe, val >> 2));
break;
case R_HEX_B9_PCREL_X:
or32le(loc, applyMask(0x003000fe, val & 0x3f));
break;
case R_HEX_B13_PCREL:
checkInt(loc, val, 15, rel);
or32le(loc, applyMask(0x00202ffe, val >> 2));
break;
case R_HEX_B15_PCREL:
checkInt(loc, val, 17, rel);
or32le(loc, applyMask(0x00df20fe, val >> 2));
break;
case R_HEX_B15_PCREL_X:
or32le(loc, applyMask(0x00df20fe, val & 0x3f));
break;
case R_HEX_B22_PCREL:
case R_HEX_GD_PLT_B22_PCREL:
case R_HEX_PLT_B22_PCREL:
checkInt(loc, val, 22, rel);
or32le(loc, applyMask(0x1ff3ffe, val >> 2));
break;
case R_HEX_B22_PCREL_X:
case R_HEX_GD_PLT_B22_PCREL_X:
or32le(loc, applyMask(0x1ff3ffe, val & 0x3f));
break;
case R_HEX_B32_PCREL_X:
case R_HEX_GD_PLT_B32_PCREL_X:
or32le(loc, applyMask(0x0fff3fff, val >> 6));
break;
case R_HEX_GOTREL_HI16:
case R_HEX_HI16:
case R_HEX_IE_GOT_HI16:
case R_HEX_IE_HI16:
case R_HEX_TPREL_HI16:
or32le(loc, applyMask(0x00c03fff, val >> 16));
break;
case R_HEX_GOTREL_LO16:
case R_HEX_LO16:
case R_HEX_IE_GOT_LO16:
case R_HEX_IE_LO16:
case R_HEX_TPREL_LO16:
or32le(loc, applyMask(0x00c03fff, val));
break;
default:
llvm_unreachable("unknown relocation");
}
}
void Hexagon::writePltHeader(uint8_t *buf) const {
const uint8_t pltData[] = {
0x00, 0x40, 0x00, 0x00, // { immext (#0)
0x1c, 0xc0, 0x49, 0x6a, // r28 = add (pc, ##GOT0@PCREL) } # @GOT0
0x0e, 0x42, 0x9c, 0xe2, // { r14 -= add (r28, #16) # offset of GOTn
0x4f, 0x40, 0x9c, 0x91, // r15 = memw (r28 + #8) # object ID at GOT2
0x3c, 0xc0, 0x9c, 0x91, // r28 = memw (r28 + #4) }# dynamic link at GOT1
0x0e, 0x42, 0x0e, 0x8c, // { r14 = asr (r14, #2) # index of PLTn
0x00, 0xc0, 0x9c, 0x52, // jumpr r28 } # call dynamic linker
0x0c, 0xdb, 0x00, 0x54, // trap0(#0xdb) # bring plt0 into 16byte alignment
};
memcpy(buf, pltData, sizeof(pltData));
// Offset from PLT0 to the GOT.
uint64_t off = in.gotPlt->getVA() - in.plt->getVA();
relocateNoSym(buf, R_HEX_B32_PCREL_X, off);
relocateNoSym(buf + 4, R_HEX_6_PCREL_X, off);
}
void Hexagon::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
const uint8_t inst[] = {
0x00, 0x40, 0x00, 0x00, // { immext (#0)
0x0e, 0xc0, 0x49, 0x6a, // r14 = add (pc, ##GOTn@PCREL) }
0x1c, 0xc0, 0x8e, 0x91, // r28 = memw (r14)
0x00, 0xc0, 0x9c, 0x52, // jumpr r28
};
memcpy(buf, inst, sizeof(inst));
uint64_t gotPltEntryAddr = sym.getGotPltVA();
relocateNoSym(buf, R_HEX_B32_PCREL_X, gotPltEntryAddr - pltEntryAddr);
relocateNoSym(buf + 4, R_HEX_6_PCREL_X, gotPltEntryAddr - pltEntryAddr);
}
RelType Hexagon::getDynRel(RelType type) const {
if (type == R_HEX_32)
return type;
return R_HEX_NONE;
}
TargetInfo *elf::getHexagonTargetInfo() {
static Hexagon target;
return ⌖
}
|